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1. Introduction 

Magnetic materials have attracted considerable attention for their applications in high 
density magneto-optical storage devices, which is not only appealing scientifically, but also 
makes the magnetic materials promising for a wide range of applications [1-11]. Due to their 
unique optical properties, magnetic materials have been introduced into the photonic 
crystals, forming magnetophotonic crystals (MPCs), i.e., the photonic crystals with at least 
one magnetic material component [2,3]. Now the optical properties can be mediated and 
controlled by the external electric or magnetic field due to the existence of magnetic 
materials. The special importance of MPCs can be ascribed to the existence of magneto-
optical effects, for example, Kerr effect and Faraday rotation [12-28]. They were discovered 
by Kerr and Faraday, respectively, and are now widely used in integrated optics and 
magneto-optical devices for magnetic domain imaging, mapping of hysteresis loops and 
high density recording [6]. 
Magnetic materials with large magneto-optical responses are always the attractive ones used 
in magnetophotonic crystals. In contrast to the corresponding three-dimensional magnetic 
structures, magnetic materials exhibit a larger magneto-optical effects due to the light's 
confinement in the MPCs, offering a genuine chance to put their optical responses into 
applications. The optimized MPCs have been shown to behave like mixed systems, with a 
coexistence of high transmittance and large magneto-optical effects [12-28]. All possible 
configurations are proposed to achieve strong magneto-opitcal effects, including the 
ordinary cavity-based, multilayered periodic and aperiodic structures. Furthermore, the 
diffracted magneto-optical enhancement is also demonstrated in the grating structures 
theoretically and experimentally, which greatly reduces the thickness of the device contrary 
to multilayered structures and miniaturizes magneto-optical devices in integrated optics 
[29,30]. 
The ability to tune the otpical properties by an external stimulus is a key issue of modern 
optoelectronics. Although most attention has so far been focused on the magneto-optical 
properties of the given structures, tunable magneto-optical devices have important 
applications and will be respected in optical switches and displays. There are few reports 
concerning with the tunable magnetophotonic crystals [31-33]. For example, it is possible to 
manipulate the magnetic order of magnetic conducting spheres using the magnetic field, 
thus forming the tunable magnetophotonic crystals [31]. Semiconductor quantum well has O
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been discussed as possible candidates for achieving artificial tunable MPCs [32]. From the 
application-oriented perspective it would be very desirable if tunable magneto-optical 
effects could be achieved by controlling applied electric fields, thus making such effect a 
potential proposition. Therefore, to search the alternate scheme is of great importance in 
tunable magneto-optical electronics. It was known that nematics liquid crystals (NLCs) are 
good choices for tunable photonic crystals due to their unique sensitivity to temperature, the 
electric, magnetic field, or lights itself [34]. However, seldom reports concerning tunable 
magneto-optical effects based on the NLCs have been presented in the literatures. Therefore, 
it would be interesting to investigate a possible way of creating electrically controlled 
magneto-optical effects in the MPCs with the NLCs. The application of liquid crystals in the 
MPCs offers new opportunities for the tunable optoelectronic devices. 
Liquid crystals are materials that display a phase of matter whose properties lie between 
those of a conventional liquid and a solid crystal. They are a class of materials particularly 
attractive for liquid crystal displays and optical electronic applications due to their high 
sensitivity to the external stimulus and have been studied experimentally extensively [35-
37]. There are three basis kinds of liquid crystals: NLCs, cholesteric liquid crystals and 
smectic liquid crystals [38-47]. Here we only focus attention on the NLCs, which is 
characterized by molecules that have no positional order but tend to align along the same 
direction. Due to thermal random motion, friction and collision between molecules, not all 
molecules align along a certain direction and their directions vary around the average 
direction randomly. This average direction is referred to as the orientation of the liquid 
crystal, which stands for the average direction of most molecules. This parameter, i.e., the 
director, is an important factor to denote the liquid crystal's properties. Normally, the light 
waves with electric fields perpendicular or parallel to the director of a NLC have ordinary no 

or extraordinary ne refractive indices, respectively. Therefore, the refractive index of a NLC 
may be changed between no and ne by controlling the orientation of the directors using the 
applied electric field or adjusting the temperature [34]. Specifically, the refractive index of 
NLC is especially easy to control using the external electric field in one-dimensional cases 
[38-40]. Previous studies have demonstrated, experimentally as well as theoretically, how 
tunability is brought to electro-optical systems by employing NLCs, such as the realization 
of tunable band gaps in one-, two-, and three-dimensional photonic crystals based on NLCs 
[34, 38-40]. Tunable negative refraction is also achieved at the interface between air and the 
NLC, and that the refraction can be adjusted by an applied electric field or by the 
temperature [48-50]. Multistable all-optical switching have been demonstrated by utilizing 
an unique nonlinear coupling between light and the NLC in a periodic dielectric structure 
[51]. The absorption peak of nanoparticles doped in the NLC can be controlled by the 
external electric field [52]. The light-induced reorientational effects have been observed in a 
one-dimensional photonic crystal with the NLCs [53]. Especially, the orientation of the 
magntic anisotropy from ferromagnetic nanorods have been manipulated by means of 
electric fields in the composite of liquid crystals and ferromagnetic nanorods [54]. While the 
investigations of the magnetic properties in a electrically controlled way is still in infancy, 
the current experimental work suggests a possible chance of realizing the tunable MPCs 
with liquid crystals for fundamental research and practical applications. 
Moreover, the particular nonreciprocity of magnetic materials, i.e., the polarized state 
(right/left handed polarized light) will switch into the opposite one (left/right handed 
polarized light) when the direction of the incident light is reversed, makes the MPCs 
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remarkable workbenches for the unidirectional electromagnetic transmission [55-61]. Such a 
character shown in the cavity-based, periodic and aperiodic multilayered structures has 
made them good candidates to be isolators, unidirectional transmitted MPCs and one way 
waveguides with MPCs [57-59]. It has been unraveled that both ternary and microcavity 
configurations combined with waveguides can generate the isolators and circulators [55]. 
The asymmetric isolators are shown to be much efficient compared with symmetric ones 
[62]. The performance of small antennas embedded within MPCs constructed from periodic 
arrangements of homogenous and anisotropic material layers was demonstrated that the 
extraordinary high gain and enhanced power reception can be achieved [63]. Furthermore, it 
has been demonstrated that the optical Tamm states (OTS) can be observed in one 
dimensional MPCs in recent theoretical and experimental works [64-70]. There will be 
considerable interest to exploit and identify the OTS in the MPCs. The ability of creating and 
manipulating the surface states is central to the development of subwavelength microscopy. 
However, few reports concerning the tunable OTS in MPCs have been presented [66]. 
Therefore, it is interesting to find whether the NLCs can be used to realize the OTS in MPCs, 
or more importantly, whether such a configuration will support the controllable OTS. 
Controlling the OTS by electrical means is particularly interesting, as that would allow the 
integration of magnetic materials and the NLC with conventional optical electronics. Due to 
these unique optical properties, the MPCs with the NLC will hold substantial promise for 
possible optoelectronic devices. 
In this chapter, we present a theoretical investigation on the NLC-based MPCs by 

performing a 4×4 transfer matrix method [71-73]. The optical properties of the MPCs with 
the NLCs will be reminiscent of both components. The coupling between the incident waves 
and the magnetic materials creates the magneto-optical effects, while the component of the 
NLCs is now responsible for its tunability occurring in the present configurations. The 

chapter is organized as follows: In Sec. II, we give a general description of the 4×4 transfer 
matrix method, which is a consequence of the combination of Maxwell equations and 
constitutive relations. The relations between the reflected, transmitted field vectors and the 
incident field vectors are listed to elucidate the magnitude of magneto-optical effects. In 
Section III, the case of periodic structure is considered, i.e., one dimensional MPC whose 
unit cell is composed of alternating NLCs and magnetic materials. In this part, the NLC is 
treated as a simple isotropic dielectric material approximately [74]. In Sec. IV, one-
dimensional MPC infiltrated with the NLC is investigated, where the intrinsic anisotropic 
properties of the NLC are taken into account. Combined with transfer matrix method and a 
piecewise homogeneity approximation method for the NLC [75], the magneto-optical effects 
of MPCs with the NLC is definitely achieved. In Sec. V, the tunable OTS is reported 
theoretically in the MPCs with the NLC. Finally, we give a summary about this work. 
Our investigations reveal a variety of interesting results which are the main characteristics 
of one-dimensional MPCs with the NLC. The magneto-optical effects appear the peaks due 
to the abnormal dispersion relations at the edge of the band gaps. It is shown the shift of the 
peaks and the enhanced values in the magneto-optical spectrum as the permittivity of NLCs 
increases, which demonstrates that the magneto-optical effects can be altered by changing 
the permittivity in the NLCs. When the NLC-based cavity structure is subject to the applied 
electric field, the magneto-optical effects are observed to exhibit the similar trends as those 
of the periodic one treating the NLC as an approximate isotropic dielectric material. A 
significant shift of the peaks in the magneto-optical spectrum is observed with the external 
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voltage due to the directors' reorientation. In addition, the existence of intra-Brillouin-zone 
band gaps is demonstrated and they are predicted to be dependent on the applied voltages 
in the MPC with the NLC. If the present MPC is attached to the other photonic crystals with 
two dielectric materials, the OTS is also observed in the transmission spectrum and can be 
controlled by the applied voltages. Our results provide an approach to modify a interface 
state in a controllable manner, which is significant to its potential applications. Moreover, it 
is possible to design a larger tunable magneto-optical effects by simply selecting the 
appropriate liquid crystals in the MPCs with the NLC. The ability of creating the electrically-
controlled magneto-optical effects can provide an extra space to be explored in the future. 
Such tunability of the magneto-optical effect may be useful for future application in electro-
optical devices. 

2. Theoretical treatment 

A 4×4 transfer matrix method is an effective way to explore the optical properties of one 
dimensional multilayered configurations, which has been proved to be accurate enough to 
tackle the band structures of the uniaxial, bi-axially anisotropic dielectric materials and 
liquid crystals [71-72]. For the sake of convenience, we describe the theoretical method and 
detailed treatment in this section. 
 

 

Fig. 1. Schematic view of the multilayered structure. 

Fig. 1 shows a typical multilayered structure, which is sandwiched to the incident medium 

with the refractive index ni and transmitted medium with the refractive index nt, 

respectively. The incident wave vector is expressed as , where , ω 
is the angular frequency of the incident wave, and c stands for the velocity of light in the 

vacuum. Here an electromagnetic wave impinges on the multilayered structure with an 

angle ┠i, which is confined in the x –z plane indicating ky = 0, vx = ni sin ┠ and vz = ni cos ┠. 

The dielectric permittivity and magnetic permeability of any component are characterized 

by the tensors: 

 

(1) 
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For a monochrome light propagating along the z - axis with a given frequency ω, based on 

Maxwell's equations, we have [71] 

 
(2) 

where Ψ(z) is the field vector provided as , and Δ(z) is the 

Berrmeman matrix which is the function of the permittivity, permeability of the material 

and the incident wave vector. The subscript t denotes the transpose operator. The 

components of the Berreman matrix are provided with [71] 

 

(3) 

Eq. (2) has a solution of the form: 

 (4) 

Within the frame of transfer matrix method, the field vector can be expressed as, 

 (5) 

where T(z, z0) is the transfer matrix provided with the Cauchy and Hamilton theorem [71]: 

 (6) 
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These coefficients βi  are: 

 

(7) 

where 

 

(8) 

λi are the eigenvalues of the Berreman matrix. In contrast with the isotropic materials, it is 

more complicate due to the existence of the non-diagonal elements in the dielectric 

permittivity or magnetic permeability tensors. Even the incident plane wave is a linear 

polarization, it will form the non-linear polarized waves. Therefore, it typically yields the 

four solutions for the anisotropic materials, two of which represent left- and right- handed 

polarized forward propagating waves and another two are the corresponding backward 

propagating waves. If the individual layer occupies the spatial region of z0 < z < z0+d, the 

field vectors Ψ(z0 + d) and Ψ(z0) can be connected with 

 (9) 

where Ti is the single-layer transfer matrix and d is the thickness of this layer. For the finite 

photonic crystals, the total transfer matrix Ttotal of the system can be achieved by multiplying 

the individual transfer matrix together. The NLC is of spatially inhomogeneity, whose 

treatment needs to adapt the piecewise homogeneity approximation method [75]. 

 and are used to describe the electric field components of the 

incident, reflected and transmitted waves, respectively. Subscript p(s) denotes 

electromagnetic wave parallel (perpendicular) to the incident plane x –z, respectively. The 

incident, reflected and transmitted field vectors are expressed as 

 

(10)

Due to the continuous boundary conditions of electronic and magnetic fields, the equation 

Ψt = T (Ψi + Ψr) should be satisfied. Accordingly, the relations between the reflected, 

transmitted and incident waves are connected with [79] 
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(11)

 

(12)

where R (T) is the Jones reflectance (transmitted) matrices and rij (tij) is the ratio of the 

incident j polarized electric field and the reflected (transmitted) i polarized electric field. 

Then, the magneto-optical effects, i.e., Kerr effect and Faraday effect can be determined by 

[79] 

 
(13)

 
(14)

 
(15)

 
(16)

where  and  are the Kerr/Faraday rotation angle and the ellipticity 

for the p(s) polarized wave, respectively. Based on these equations, the magneto-optical 

effects and the corresponding transmission/reflectance coefficients can be obtained directly. 

3. Electrically-controlled magneto-optical effects in magnetophotonic 
crystals consisting of magnetic materials and NLC 

In this part, we investigate the magneto-optical effects of a one dimensional MPC whose 
unit cell is composed of a magnetic material and NLC and give a detailed explanation to the 
obtained results. 

Generally, the permittivity of NLC is provided by 
 

for linear 

polarized light incident as an extraordinary wave onto it, where εo and εe are the respective 

dielectric permittivities for light polarized parallel and perpendicular to the director axis  

[74]. It is noted that the only factor which affects the value of the permittivity of NLC is the 

director axis orientation angle θ with respect to the optical wave vector. Normally, losses are 

negligible for typical micron thick NLC in the optical frequency region. In the following 

numerical simulation, we treat the NLC as a homogeneous isotropic dielectric layer with the 

permittivity of  approximately, which simplify the calculations greatly [74]. In our 

model, we apply an electric field to control the director axis orientation θ of the aligned NLC 

with respect to the wave vector, which results in the variation of the extraordinary refractive 
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index from . The corresponding range of dielectric permittivity of 

NLC, , is taken as 2  ≤  ≤ 3 from nematic liquid crystal  [34]. 
 

 

Fig. 2. One dimensional MPC consisting of the NLC and magnetic materials. 

Fig. 2 shows a schematic illustration of a one-dimensional finite MPC, i.e., (NLC/magnetic 

materials). In the calculations, the total periodic number N is taken as 8 and the thicknesses 

of NLC and magnetic layers are d1 = 500nm and d2 = 20nm, respectively. The input and 

output media are supposed to be vacuum and glass, i.e., ni = 1 and nt = 1.5, respectively. The 

dielectric tensor of magnetic layers has an antisymmetric form and is denoted as [80] 

 

(17)

where the magnetization vector makes an angle Θ with the z axis and its projection on the  

x –y plane makes the azimuth Φ with the x axis. As an illustrative example, the permittivity 

parameters of magnetic material are taken as εxx = εyy = εzz = –4.8984 + 19.415 i, εxy = –εyx = 

0.4322 + 0.0058i [81] while the permeability of magnetic material is nearly 1 at the optical 

frequency. Note that there are three cases according to the different values of Θ and Φ: the 

polar Kerr effect (Θ = Φ = 0), the longitudinal Kerr effect (Θ= ,Φ = 0) and the transverse 

Kerr effect (Θ, Φ = ). Here we only focus attention on the polar Kerr effect since the other 

two cases can be treated in the same way. The Kerr rotation angles as a function of the 

incident wavelength for different εLC are calculated when the light is incident normally to 

MPC. Since normal incident light leads to decoupling between p- and s-polarized waves and 

the two polarized lights are degenerate, only results for the p-wave are presented in the 

following figures. 
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Fig. 3. (a) θp versus the incident wavelength under the dielectric permittivities of LCs εLC = 2, 

2.5, 3 at the normal incident angle, are shown by solid, dash and dotted lines, respectively. 
(b) The dependence of the reflectance on the wavelength with the same conditions as Fig. 

3(a). The inset in (a) shows θp in a single magnetic material with the thickness d = 20nm. 

The solid, dash and dotted lines in Fig. 3 (a) describe the behaviors of θp for εLC = 2, 2.5, 3, 

respectively. Though the choice of the value of εLC seems arbitrary, the general tendency can 

still be seen clearly in the figures. Compared with the wavelength dependence of θp of a 

single magnetic layer as shown in the inset of Fig. 3(a), the Kerr rotation angles exhibited in 

the NLC-based MPC structures are enhanced dramatically, especially at certain 

wavelengths. The maximum value of θp increases from θpmax = –0.86º for εLC = 2 up to –8º for 

εLC = 3. The latter is nearly 40 times larger than that of the single magnetic layer(θpmax = –

0.19º). The enhancement of θp compared with the single magnetic layer originates from the 

weak localization of light caused by the multiple interference due to the nonreciprocal 

properties of the Kerr effect [2]. Furthermore, the emergence of the θp-peaks is also an 

important feature of the multilayered structure in our MPC model. It is well-known that the 

Kerr effect is strengthened dramatically due to the abnormal dispersion relation at the edges 

of the photonic band gaps [28]. To make it more clear, Fig. 3 (b) shows the dependence of 

the reflectance of MPC on the wavelength. We clearly observe that the positions of the 

remarkable enhancement of θp are coincident with the positions of photonic band gap 

exactly. 
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Note that all the peaks in Fig. 3(a) shift towards longer wavelengths when the NLC's 

permittivity increases, which is particularly interesting since it reflects the good tunability of 

the Kerr effect in our model. A similar shift is also observed for the photonic band gaps as 

shown in Fig. 3(b). This result is reasonable since the positions of photonic band gaps 

depend on the wave impedance ratio of two components [82, 83], while the latter changes 

with the NLC's permittivity in the present case. For a rough estimation, the central 

wavelength of the NLC-based MPC structure can be evaluated by λc = 2(nLCd1+nmd2) 

approximately [84], where nm is the complex refractive index of magnetic layers and 

invariable with temperature or applied field. So the increase of the refractive index of NLC 

will directly lead to the enhancement of the central wavelength of the MPC structure. Since 

the refractive index of liquid crystal may be tuned between the ordinary and extraordinary 

refractive indices by controlling the orientation of the molecules under the influence of the 

applied electric field, the upper (lower) limit of the red shift is determined by the 

extraordinary (ordinary) permittivity, i.e., εLC = 3 (εLC = 2). Therefore, the NLC with larger 

optical anisotropy may behave as a better candidate for realizing larger tunability. 

Fig. 3(a) also shows the significant increase of peak height with the permittivity of  

NLC in the spectrums of the Kerr rotation angle, which can be explained according to  

the circular birefringence. Different refractive indices due to different localization 

conditions, i.e., the localization wavelengths for left- and right- circular polarized lights, 

leads to the rotation of the reflected light [2]. In photonic crystals, the effective parameters of 

the unit cell can be expressed by the effective homogeneous anisotropic medium  

method [85]. The effective permittivity of MPC consisting of magnetic materials and NLC is 

given by 

 

(18)

where  and  Note that the diagonal components of the effective 

permittivity depend on the permittivity of NLC but the non-diagonal components do not. 

Therefore, with the increase of εLC, the difference between the dielectric permittivity of the 

left- and right- circular polarized lights is enlarged, which leads to a relatively larger Kerr 

rotation angle at a longer wavelength. 

Generally, refractive indices of liquid crystal are fundamentally interesting and practically 

useful parameters in the calculation of optical properties. By changing the permittivity of 

the liquid crystals, the magneto-optical effects varied in a controlled fashion, indicating that 

the engineering of magneto-optical devices relies on the control of the applied electric field. 

Here we focus attention on the change of the orientation of the molecules under the 

influence of the applied electric field at a fixed temperature. Actually, besides the external 

electric field, temperature is also an important factor affecting the liquid crystal refractive 

indices, which offers an alternative approach to control the magneto-optical effects, i.e., a 

temperature tunable MPC. 
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4. Voltage-controlled magneto-optical effects in cavity- based 
magnetophotonic crystal with the NLC 

We have predicted that the opportunity of creating electrically controlled Kerr effect in 

magnetic multilayered structures [76]. It was suggested that a one-dimensional MPC 

composed of alternating NLC and magnetic materials can create tunable Kerr effect by 

considering the properties of liquid crystals and thus provide for tunable MPCs. However, 

we just employed an approximate isotropic treatment of NLC to analyze magneto-optical 

effects, which is a rough theoretical evaluation. It is generally known that the directors of 

NLCs exhibit inhomogeneous distribution under the influence of the applied electrical field 

[40]. Therefore, a rigorous anisotropic treatment of NLCs is employed to consider the NLC 

director’s spatially inhomogeneous property upon an applied external voltage, which is 

based on the Newton method and continuous elastic theories. Although we expect such the 

tunable magneto-optical effect to be seen with a variety of patterns containing NLCs, we 

investigated a multilayered structure infiltrated with NLC, as shown schematically in Fig. 4. 

The defect of the NLC ensures that the present structure is sensitive to the external electric 

field and therefore shows the tunability of magneto-optical effects for observations at 

normal incidence. 

 

Fig. 4. The magnetophotonic crystal with the defect of NLC. 

The gray and white regions are magnetic materials, yttrium-iron-garnet(YIG) and non-

magnetic materials gadolinium-gallium garnet (GGG) with permittivity ε2, respectively. The 

magnetization vector is oriented along the z axis in the YIG layers, which are characterized 

by antisymmetrical permittivity and have the following nonzero components, εxx = εyy = εzz = 

ε1, εxy = –εyx = ig, where g is the gyrotropy of the magnetic layer. The thicknesses of magnetic 

and nonmagnetic materials are d1 and d2, respectively. The NLC is characterized by a long-

range uniaxial orientational order of rod-like anisotropic molecules along a common 

director, whose dielectric tensor is given by [86] 

 

(19)
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where α is the tilt angle between the principal axis of NLC molecule and the x axis. Δε is the 

optical dielectric anisotropy given as , n0 and ne are ordinary and extraordinary 

refractive indices, respectively. Upon an applied external voltage, the distribution of NLC 

director exhibits spatially inhomogeneous property. The distribution of α is given in the 

NLC slab by the Ossen Frank elastic theory when an electric field is applied along the z axis. 

The relations between α and the voltage V applied to NLC slab can be achieved in the light 

of the following equations [87] 

 
(20)

 

(21)

with ┟ = sin αm and k = (k3 –k1)/k1. The parameters k1 and k3 are the Frank elastic constants 

for splay and bend modes of the nematic director distortion, respectively. αm is the 

maximum tilt angle in the NLC slab, Δε0 is the dielectric anisotropy at zero frequency. Note 

that the direction of NLC molecules is affected by the external voltage only when the 

applied voltage V exceeds a threshold value . 

For the one-dimensional multilayered structure (GGG|YIG)n(YIG|GGG)mNLC(YIG|GGG)n, 

at the near infrared wavelength λ = 1.55μm, YIG and GGG are characterized by ε1 = 5.5 + 

i0.0025, g = (1 – i0.15) ×10–2, and ε2 = 3.709, respectively [80]. The thicknesses are d1 = 0.466D 

and d2 = 0.534D, respectively. k1 = 7.4pN, k3= 10.2pN, Δε0 = 1.43 ×10–10F/m, ne = 1.75, n0 = 1.54 

for typical NLC (5CB) [72], dLC = D. The repetition numbers are n = 16 and m = 29, 

respectively. 

Fig. 5(a) corresponds to the distribution of α with different voltage V = 0, 2Vc, 5Vc for p-

polarized wave. The anisotropic character of NLC can be considered exactly by utilizing the 

obtained distribution of α. The calculated results for θp as functions of normalized frequency 

ωD/(2πc) with different voltages are plotted in Fig. 5(b). The solid, dashed, and dot-dashed 

lines correspond to θp with V = 0, 2Vc, 5Vc, respectively. It can be seen clearly that the 

spectrum of θp moves at different voltages, which is a direct manifestation of voltage-

controlled Kerr effect. The frequency dependence of θp in the present case exhibits the 

following features. First, the positions of θp-peaks are dependent on the applied voltage due 

to the reorientation of the director. It is seen that the positions of peaks move toward high 

frequencies with the applied voltages. This is because of NLC's high sensitivity to the 

applied voltage. When the applied voltage is very small, the distribution of the director 

aligns x-direction due to the surface anchoring. With the increase of applied voltage, the 

energy of electric field adds gradually. When the applied voltage is bigger than the 

threshold value, the function of electric field plays a leading role. In such a case, the 

alignment of the director along the electric field can be observed. The reorientation of the 

NLC's director will lead to the change of its permittivity, which directly affects the Kerr 

rotation angles. Second, the amplitudes of θp depend strongly on the applied voltage, i.e., the 
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heights of θp-peaks increase considerably with the increase of V. For example, the maximum 

of θp at V = 5Vc (θp max = –30º) is approximately 3 times larger than that of θp (θp max = –10º) at 

V = 0, which describes the large difference in the indices of refraction between the right and 

left circularly polarized light. This can be understood according to the circular birefringence, 

in which different refractive indices due to different localization wavelengths for left- and 

right- circularly polarized lights, leads to the large rotation of the reflected light [2]. In 

addition, the positions of θp-peaks agree with those of the dips in the reflection spectrum 

exactly. Take V = 5Vc as an example, we calculated θp and the corresponding reflection 

spectrum, which are exhibited in Fig. 5(c) and (d). Such a phenomenon is directly related to 

the edges of photonic band gaps, where the abnormal dispersion relation leads to strong 

photonic localization. As a result, θp can be enhanced at these specific frequencies in the 

present structure [28]. 
Thus, the controllable magneto-optical effects have been predicted in the MPCs with the 
NLC, which will be a critical problem in the optoelectronic applications. 
 

 
 

Fig. 5. (Color online) (a) α versus the distance at V =0,2Vc,5Vc, respectively; (b) θp versus the 

normalized frequency under V=0,2Vc,5Vc at the normal incident angle, are shown by solid, 

dashed, and dotted curves, respectively. (c) The dependence of θp and (d) the reflectance on 

the normalized frequency at V=5Vc. 
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5. Voltage-controlled tamm state in periodic magnetophotonic crystal with 
the NLC 

The Tamm state proposed by Tamm is one of the most fundamental physical properties of 

the interface, which means electron states can occur in the energy band gap at a crystal 

surface [68]. In analogy with the electronic case, the OTS can be realized at the interface 

between two different photonic crystals with all isotropic dielectric materials. Conventional 

surface waves with a wave vector exceeding that of light in an incident medium decay 

exponentially away from the surface. In comparison with the conventional surface waves, 

the OTS can be formed for both the s– and p–polarized waves and occurs even at normal 

incidence [70]. In this part, we consider a one-dimensional MPC composed of the NLC and 

magnetic material, as illustrated in Fig. 6 (a). A linearly p-polarized monochromatic light 

impinges normally onto the structure. The thicknesses of the NLC and magnetic materials 

are d1 and d2, respectively. Due to the periodicity of the structure the eigenwaves satisfy 

Bloch's theorem, which leads to the equation det[P – eikd] = 0. Here P is the total propagation 

matrix of unit cell. Based on these equations, we may illustrate the characteristics of the 

normalized angular frequency and kd in the present configuration. 

The parameters used in our calculations are taken as ε1 = 3 and g = 0.5, where a larger value 

of g is used to make the band gaps easily observable. k1 = 7.4pN, k3= 10.2pN, 

 Δε0 = 1.43 × 10-10 F/m, ne = 1.75, n0 = 1.54 for the NLC (5CB)[72], with the thicknesses d1 = 

0.5D, d2 = 0.5D, respectively. The spatially inhomogeneous property of the directors is also 

taken into account in this calculation. In Fig. 7 (a), we present the ωd / c - kd characteristics 

under the applied voltages V = 0, 2Vc, 5Vc, respectively. From the figure it is clear that the 

intra-Brillouin-zone band gaps do occur and obviously depend on the applied voltages. This 

is a remarkable result in itself, as it indicates the existence and tunability of the OTS with the 

NLC. To understand qualitatively the origin of the appearance of intra-Brillouin-zone band 

gaps, we start with the simple case, i.e., we set the applied voltage as zero, where the 

distribution of the directors aligns along x-direction due to the surface anchoring. Now the 

NLC is a general anisotropic dielectric layer, where the eigenmodes are the ordinary and 

extraordinary waves when the incident wave enters into the NLC [88], then they become 

left- and right-circularly polarized waves in the magnetic materials. It appears an 

approximate standing wave due to the strong interference between these forward and 

backward waves, which leads to the formation of the intra-Brillouin-zone band gaps [65]. 

More interesting, the kd dependence on ωd/c in the present case exhibits the following 

feature, i.e., the intra-Brillouin-zone band gap moves with the applied voltages. The driving 

mechanism for manipulating the OTS arise from the intrinsic properties of the NLC. It is 

mainly caused by the sensitivity of the NLC on the applied voltage, which has significantly 

influence on the distribution of the NLC's directors. As widely known, the directors of the 

NLC molecules are affected by the external electric fleld only when the voltage V exceeds a 

threshold value Vc, where Vc is given by
   

 The directors rotate parallel to the 

applied electric fleld to minimize the total free energy for V/Vc > 1. The reorientation of the 

NLC's directors leads to the variation of the effective refractive index, which change the 

optical path directly. Subsequently, the positions of standing waves will be finally changed 

with the applied voltages. 
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Fig. 6. (a) magnetophotonic crystal; (b) two adjoining photonic crystals, one of which 
consists of two dielectric materials and the other is composed of the NLC and magnetic 

material, i.e., (Ta2O5|SiO2)8(NLC|Bi : DyIG)8. 

 

Fig. 7. (a) Normalized angular frequency ω * d/c versus kd at the normal incident angle 

under V = 0 (dash line), V = 2Vc (dot line) and V = 5Vc (dash dot line), respectively. ε1 = 3 

and g = 0.5 are used for the magnetic material. (b) The transmission of Fig. 6(b) versus λ at 

the normal incident angle under V = 0; 3Vc; 5Vc (solid, dash, and dash dot line), 

respectively. Here εTa2O5 = 4.41, εSiO2 = 2.07, the realistic values ε1 = 5.58 and g = –0.00198 are 

taken for Bi:DyIG. 
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Furthermore, two stacked photonic crystals are generally used to illuminate the existence of 

the OTS in experiments [64], which can be observed by studying the transmission/reflection 

spectra with a sharp narrow peak/dip in the finite photonic crystal. Thus, it is necessary for 

us to provide the transmission spectrum. We design the two stacked photonic crystals, 

shown in Fig. 6(b), one of which consists of two dielectric materials and the other is 

composed of the NLC and magnetic material. Now we use the realistic material parameters 

at the wavelength λ = 1.55μm,  = 4.41,  = 2.07, ε1 = 5.58 and g = –0.00198 for 

Bi:DyIG. The thicknesses are  = 0.696μm,  = 1.37μm, dNLC = 1μm and  = 

1.77μm, respectively [67]. Fig. 7 (b) depicts the transmission of the two photonic crystals as a 

function of wavelength at normal incidence. It is observed that a sharp narrow peak indeed 

appears in the transmission spectrum. In particular, we notice two photonic crystals 

generate photonic gaps nearly from 1.12 – 1.17μm and 1.13 – 1.16μm, respectively. However, 

the peak appears in the band gaps of two photonic crystals, which significantly 

demonstrates the sharp peak comes from the resonant tunneling of the electromagnetic 

wave through the OTS at the interface. In addition, the peak undergoes slightly blueshift 

with the applied voltages, which manifest itself a good candidate to be a controlled OTS 

structure. Finally, it is noted that the existence of OTS survives for s-polarized wave but the 

tunability disappears because εyy is not dependent on the external voltage. 

6. Conclusion 

The tunable magneto-optical effects in magnetophotonic crystals with the NLC have been 
reviewed in this chapter. Two types of MPCs are studied, i.e., MPCs consisting of alternate 
magnetic materials and the NLC; the cavity-based MPCs with the NLC. Both of them exhibit 
the tunable magneto-optical properties qualitatively different from those of the unvariable 
MPCs without the NLC. It is predicted theoretically that the magneto-optical effects can be 

manipulated by the applied voltages in the theoretical treatments, i.e., the 4×4 transfer 
matrix method in combination with a piecewise homogeneity approximation for liquid 
crystals. A significant shift of the peaks' positions in magneto-optical spectrum is observed 
toward high frequencies with the applied voltages due to the high sensitivity of the 
directors on the external electric fields. By applying a tunable electric field, the voltage-
induced reorientation of the directors of the NLCs alters the values of the dielectric 
permittivity in the NLC, thus leading to alternating magneto-optical effects. In addition, the 
tunable intra-Brillouin-zone band gaps can be realized in the MPCs with the NLC, which 
implies the existence of the OTS at the interface between two photonic crystals. The methods 
described here may possible to be implemented on many other periodic multilayered 
structures, cavity-based periodic structure, quasi-periodic and aperiodic structures, thus, 
opening the possibility to systematically investigate the magneto-optical effects in a 
controlled way. The structures we propose here is not only interesting in itself but also 
allows easy access to fabricate it in the experiments due to the mature techniques for one-
dimensional systems. In fact, apart from the external applied electric field, the variation of 
temperature can also change the permittivity in the NLC component, and then alter the 
magneto-optical effects. It is obvious that there are a great space for the potential application 
of the MPCs with NLC. These results highlight an intriguing avenue for future 
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investigations in the development of tunable liquid crystal-based magnetophotonic crystals 
optoelectronic devices. 
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Liquid crystal technology is a subject of many advanced areas of science and engineering. It is commonly

associated with liquid crystal displays applied in calculators, watches, mobile phones, digital cameras, monitors

etc. But nowadays liquid crystals find more and more use in photonics, telecommunications, medicine and

other fields. The goal of this book is to show the increasing importance of liquid crystals in industrial and

scientific applications and inspire future research and engineering ideas in students, young researchers and

practitioners.
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