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1. Introduction     
  

Robots are important for industrial automation. Similar to CNC machining, robotic systems 
can be applied to numerous applications such as material assembling, welding, painting, 
manufacturing and so on. For control of robot manipulators, a conventional way is to 
establish their mathematical models in the joint space and therefore precise positioning of 
end-effector relies on control performance in the joint space. 
In terms of utilizations of industrial robots, it is well known that the position of end-effector 
is an important factor and significantly dominates the quality of final product. Based on 
given trajectories in work space (also known as Cartesian space), there are two main 
approaches for manipulator motion control, 1) one is to determine the desired joint space 
positions by solving the inverse kinematics,  2) the other is to consider the dynamic model in 
the work space directly (Feng & Palaniswami, 1993). In both approaches, tracking 
performance should be good enough in order to follow real time commands and achieve 
prescribed contours. In respect of the joint space approach, for instance, providing the 
tracking errors of each joint position can not be eliminated well, the end-effector can not 
track the desired profile precisely; to put it another way, once good tracking capability in 
any one of robot arms can not be guaranteed, the synchronization control task fails and 
thereby gives rise to unsatisfactory machining result. Consequently, it is worthy to 
investigate a better control strategy to guarantee the machining quality even in the presence 
tolerable tracking errors. To achieve this goal, we have to deviate the topic regarding control 
of robotic systems for a moment and address a certain core issues about contouring control 
systems.  

 
1.1 Definition of contour error 
First of all, a machining quality index called contour error is introduced. As shown in Fig. 1, 
the contouring error p  corresponding to point )t(P  is defined geometrically as the shortest 

distance from )t(P  to the desired contour D  and can be written as )t(PPmin *

Dp  , 

where S)t(P   is the actual position of end-effector at time t  and DP *  . Once the shortest 
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target *P  is found, (ideal) resultant control effort will force )t(P  moving towards *P  firstly 
and then keep it attaching on the prescribed path. This control behavior involves two stages 
i.e., normal and tangential errors reduction. This concept is clear and has been widely used 
in contouring control designs (Koren, 1980; Chin & Lin, 1997; Ho et al., 1998; Yeh & Hsu, 
1999; Chiu & Tomizuka, 2001, Shih et al., 2002; Wang & Zhang, 2004; Hsieh et al., 2006; Peng 
& Chen, 2007a; Peng & Chen, 2007b; Chen & Lin, 2008). 

  

PP

*P

D

S

 
Fig. 1. Definition of contour error. 


Ae Be

 
Fig. 2.  Special issues appeared in contour following control systems. 

 
1.2 Tracking and contouring control 
Based on the definition of contour error, the following is to illustrate a main discrepancy 
between tracking control and contouring control. Consider Fig. 2, suppose that A is the 
location of the end-effector and D is the corresponding command position at a certain time 
instant. Providing the tracking error eA exists significantly, a resultant tracking control force, 
where the orientation is towards from A to D, is going to be generated by controllers such 
that an undesirable working path away from the desired profile is induced. Moreover, Fig. 2 
also reveals that a good tracking performance is just a sufficient, but not necessary, 
condition to reach good contouring performance. For example, the tracking error at point A 

 

is apparently larger than the one at point B, but from contouring control point of view, 
contouring error is defined as the shortest distance from the end-effector to the desired path, 
so the position A is preferable in the contouring process rather than B. A couple of features 
and problems of contour control systems can be found in the tutorial study by Ramesh et al 
(2005). 

 
1.3 Contouring control strategies 
In terms of the literature on contouring control strategies, a well known cross-coupling 
control (CCC) structure (Koren, 1980) has been widely applied. Using this framework, 
contouring error attenuation can be carried out by designing various control strategies. For 
example, to raise machining speed, a modified CCC structure, where an additional pre-
compensated controller is involved, called cross-coupled pre-compensation method (CCPM) 
(Chin & Lin, 1997) was proposed. However, these control components, namely tracking 
controller, contouring controller and feed-forward controller, are usually designed 
independently such that the coupling effects between them are not manifest. It is difficult to 
distinguish which one dominates the eventual contouring result. Thus, a systematic design 
procedure for CCC structure is highly desirable. To this end, transfer function methods for 
CCC structure are proposed (Yeh & Hsu, 1999; Shih et al., 2002; Zhong et al., 2002). These 
methods make the CCC design into a unit feedback control problem and offer a systematic 
analysis for stability and performance of a linear contouring system. However, superior 
tracking level is still needed to confirm final contouring qualities when these approaches are 
utilized. 
Some contouring control architectures, which involve coordinate transformation techniques, 
such as tangent-normal (T-N) coordinate frame (Ho et al., 1998; Chiu & Tomizuka, 2001; 
Wang & Zhang, 2004; Hsieh et al., 2006) and polar coordinate frame (Chen et al., 2002) have 
been presented in recent years. For T-N coordinate transformation approaches, contouring 
dynamics are decomposed into tangential and normal directions, where the tangential 
dynamics is associated with feed-rates while the normal dynamics is relevant to contouring 
error. Nevertheless, only the contour error of straight paths can be evaluated exactly. The 
normal errors just stand for approximated contour errors for arbitrary non-linear curves. On 
the other hand for polar coordinate transformation scheme, dynamics of radial orientation is 
derived in consideration of both circular and noncircular profiles. The polar coordinate 
based contouring control framework is adequate for circular profiles. For non-circular 
profiles, the precision of contouring error estimation relies upon that the radius variation 
with respect to angle change is small. However, for a given straight line which is (almost) 
perpendicular to x-axis may not satisfy this assumption. 
For the preceding coordinate transformation based contouring control schemes, the main 
advantage is that the goal of contouring controller design becomes clear and simple; in other 
words, a tangential controller focuses on maintaining a desired feed-rate while a 
normal/radial controller is applied to eliminate normal/radial errors. However, good 
contouring performance still depends on good tracking results when applying the T-N 
coordinate transformation methods. Once a large tracking error occurs, the contouring 
quality will be degraded considerably. 
In order to complete contouring tasks efficiently and accurately, an adequate control 
strategy is prerequisite. Computed torque method, which uses the nominal dynamic model 
of the robots to decouple and to linearize the nonlinear system, is one of the well-known 
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based contouring control framework is adequate for circular profiles. For non-circular 
profiles, the precision of contouring error estimation relies upon that the radius variation 
with respect to angle change is small. However, for a given straight line which is (almost) 
perpendicular to x-axis may not satisfy this assumption. 
For the preceding coordinate transformation based contouring control schemes, the main 
advantage is that the goal of contouring controller design becomes clear and simple; in other 
words, a tangential controller focuses on maintaining a desired feed-rate while a 
normal/radial controller is applied to eliminate normal/radial errors. However, good 
contouring performance still depends on good tracking results when applying the T-N 
coordinate transformation methods. Once a large tracking error occurs, the contouring 
quality will be degraded considerably. 
In order to complete contouring tasks efficiently and accurately, an adequate control 
strategy is prerequisite. Computed torque method, which uses the nominal dynamic model 
of the robots to decouple and to linearize the nonlinear system, is one of the well-known 
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approaches. However, when utilizing the computed torque method only, the resultant 
performance may not be satisfactory due to the effects caused by lump perturbations 
including uncertain parameters, modeling errors, load variations and nonlinear friction 
effects. For the sake of system robustness enhancement, several robust control theories such 
as learning control (Sun et al., 2006), H-infinity (Fang & Chen, 2002), sliding mode control 
(SMC) (Zhu et al., 1992; Chen & Xu, 1999) and adaptive control (Slotine & Li, 1988; Dong & 
Kuhnert, 2005; Lee et al., 2005) have been proposed. In recent decades, SMC and adaptive 
algorithm have been widely used to control of robot systems. Known as robust and accurate, 
SMC is a good candidate when systems are interfered by model uncertainties and 
exogenous disturbances. On the other hand, adaptive algorithm, which possesses learning 
behavior, is capable of estimating uncertain parameters when the parameters are not 
precisely known. Therefore in this study, by considering well known backstepping design 
technique, an integral type SMC is designed together with an adaptation law such that the 
controlled robotic system is robust against lumped perturbations and an adequate switching 
gain used in sliding controller is determined systematically without try and error and 
tedious analysis. 

 
2. Main Concerned Issues and Contributions on Robot Contouring Control 
Systems 
  

For concerning control of robot manipulator, the main control objective is to control the 
motion trajectory of the end-effector following a prescribed contour. For conventional 
trajectory control, a given profile in work space is decoded into independent reference joint 
positions and the success in contouring control task depends on tracking capability of 
individual robot joint. However, as argued in the preceding section, once one of the robot 
joint does not perform good tracking result, the end-effector may deviate from the desired 
path seriously. Therefore, the contouring control problem on a multi-link robot manipulator 
leads to a synchronization task of joint position, which can also be referred to as master-
slave control scheme (Sarachik & Ragazzini, 1957). Moreover, it has been illustrated by a 
couple of experiments that good contouring quality doesn’t necessary depend on good 
tracking performance (Peng & Chen, 2007a). Consequently for manipulator contouring 
control, how to relax tracking capability and preserve contouring precision becomes the 
main concerned issue in this chapter. 
To fulfill the main object mentioned above, some short-term tasks must be considered: 

(i) Define an equivalent contour error. 
(ii) Derive a contour error model for robotic system. 
(iii) Design robust contouring controllers. 

For task (i), it is well known that a closed-form solution of the exact contour error for an 
arbitrary curve is quite difficult to formulate. Thus, approximated contour error estimations 
are usually applied. Due to the use of inexact contour error models, attenuation of the 
approximated contour errors may not guarantee the elimination of real contour error 
especially in the presence of large tracking errors. As a result, an adequate equivalent error 
index should be defined. In this work, a new error variable named contour index (CI) is 
given by means of a geometric way in a virtual contouring space (VCS). The properties 
include: i) the CI is able to act as an equivalent contouring error and replace the normal 

 

tracking error (Hsieh et al., 2006, Chen & Lin, 2008) to be a new performance index without 
causing geometric over estimation and ii) the CI contributes to contour following behavior 
(Peng & Chen, 2007a). This phenomenon can be illustrated by referring Fig. 2, where the 
end-effector at A approaches to the real time command D through the desired profile 
instead of moving along AD  directly. 
Regarding task (ii), the design processes are summarized as follows: dynamic correlation 
between joint space and work space is firstly established. The work space dynamics are 
further derived into the VCS, which consists of tangential and normal dynamics.  Then, a 
dynamic equation of CI, which offers the end-effector to trail the prescribed path, is derived. 
Finally, based on the developed error dynamics, an adaptive sliding controller together with 
the idea of inverse dynamics control (Spong & Vidyasagar, 1989) is applied to provide 
system robustness against lumped uncertainties and fulfill the main control object. 
The advantage of the proposed method for manipulator contouring control problem 
contains:  

(1) The derivation of contour error model for robotic system is systematic 
(2) The closed-loop stability analysis is clear. 
(3) Final contouring quality can be maintained even if the end-effector doesn’t 

track the real time command very well. 
(4) The proposed method is also extendable to three-dimensional case (Peng 

& Chen, 2007b). 

 
3. Proposed Contouring Control Framework for a Robot Manipulator 
  

3.1 Forward kinematics 
By using the Euler-Lagrange method, a dynamic equation of a vertical robot arm can be 
expressed as 

                           FτθGθθθCθθM    ,                                                 (1) 
 
where θ , θ  and nθ  are the joint position, velocity and acceleration vectors, respectively. 

  nnθM  is a positive definite inertia matrix;   nn, θθC   is a matrix containing Coriolis 
and centrifugal terms;   nθG  stands for gravitational term; nτ  represents a torque 
vector and nF  is a disturbance vector referred to nonlinear friction effects. In this study, 
a two degree of freedom robot ( 2n  ) is considered and depicted in Fig. 3. The position 
translation from joint space to work space can be calculated by considering forward 
kinematics as follows, 

  th θPa                                                                  (2) 
 
Taking the twice time derivative of (2) gives 

θJθJPa
                                                                  (3) 

 
where T]yx[aP  is the end-effector position vector in work space, J  is the Jacobian 
matrix and T  denotes the transpose. Note that the Jacobian matrix is assumed to be fully 
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known for position measurement and is nonsingular during the whole contouring control 
processes. The definition of matrices used in (2) and (3) are listed in Appendix. 
 

X

Y

1

2

1l

2l

1I

2I

 
Fig. 3.  Two degree of freedom robot. 

 
3.2 Contour generation 
Consider a desired profile in work space generated by 

odβd cPκTP                                                              (4) 
 
where T]yx[ dddP  and T]yx[ dddP are position vectors in work space and VCS, 
respectively. As an example, a standard unit circle in VCS is made up of )ft2sin(xd   and 

)ft2cos(yd  , where the frequency f  is relative to tangential velocity. βT  denotes a 
rotational matrix with a angle   and the diagonal gain matrix κ (please see Appendix) is 
relative to the length of major axis and minor axis of the desired profile. The term 

T]cc[ yoxooc  denotes a shifting operator. The geometric meaning of (4) is depicted in Fig. 
4, where an oblique ellipse can be generated from a unit circle by the matrix operation, κTβ . 
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Fig. 4.  Command generation via matrix operation. 

 

3.3 Derivation of contour error dynamics 
Define the tracking error in work space as T]ee[ yx ad PPe  and then the resulting 

error dynamics is 

ad PPe                                                                    (5) 
 
Subsequently, the error relationship between VCS and work space can be represented by 

eκ)T(Tε 1
β

                                                               (6) 
 

where T][ tn ε  denotes a transformed error vector including normal tracking error and 
tangential tracking error. The projection-matrix T  is orthogonal, continuous and 
differentiable, defined by 
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T                                                            (7) 

 

where   is an instantaneous inclination of the tangential direction corresponding to the 
circular profile shown in Fig. 5. From the definition of tracking error in work space, Eq. (6) 
can be rewritten as 

           o
1

β

E

adad
1

β cκTTPPTPPκTTε                                    (8) 

where a
1

βa PκTP  )(  and T]EE[ yxE . The corresponding geometrical meaning is shown 
in Fig. 5. Eq. (8) means that the information in the work space is transformed into the VCS 
through 1

βκTT )( ; namely, the vectors aP , dP and e  in the work space are transformed to 

be aP  , dP  and E  in VCS, respectively. Then the error vector E  can be further 
decomposed into tangential and normal directions through the matrix T . 
Fig. 5 shows that a moving T-N coordinate attaching to the profile guides aP  to follow dP  
along the profile. In the control point of view, Eq. (8) also indicates that 0 ad PP  if and 
only if 0ε . Therefore, the control problem turns into a regulation problem in both 
tangential and normal directions. 
From (6)-(7), since TT 1 , it follows 

  eκTTεTTεT2Tε 1
β                                                    (9) 

 

Substituting (5) into (9) yields 
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21 ][ τ  for (10) is chosen as the form 

 ετΣΓτ   ˆˆ 1                                                            (11) 

 

where Γ̂  and Σ̂  are denoted as the nominal value of Γ  and Σ (i.e., ΓΓΓ ~ˆ  , ΣΣΣ ~ˆ  ), 
respectively and T

tn ][  ετ .  
Substituting (11) into (10) yields 

  

ε

εε

εε

ε

τΛ
τfτΓΣ

τΓτΣΓΓfΣ

ΓτfΣεTTεT2Tε









                           
                           

                           
~~

~ˆˆˆ 1



                                      (12) 

where T
tn ][~~ ΛΛfτΓΣΛ ε  represents model uncertainty and external disturbance 

(for example, the friction effects). Refer to (9), it can be rewritten as 
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Providing the desired feed-rate is set to be constant for predetermined profiles, it follows 

0 . 
From Fig. 5, one can find that the mismatched term n  in normal direction is caused by the 
existence of t . Thus, the elimination of normal tracking error n  causes an over-cutting 
segment n  when 0t  . In order to solve this problem, the CI is introduced in the VCS 
and is defined by 

nnInd                                                                  (14) 
 
where 2/12

t
2

n )R(R   . Note that the CI replaces n to be a new performance index or 
to be regarded as an equivalent contouring error during control process; to put it simply, the 
purpose of the contouring control is to eliminate Ind  instead of n  while 0t  . Invoking 
(13) with (14) yields 

n321nInd Λ                                                     (15) 
where  
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Examining (14) again, it is necessary to remind that for all the control period, the condition 

Rt   must be guaranteed. Consequently, the maximum allowable tracking error in 
tangential direction is R , which is not a crucial condition in practice. 
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Therefore, the modified system dynamics in VCS becomes 

tttnt 2   Λ2                                             (16.a) 

nn321Ind   Λ                                             (16.b) 
 
For (16), contouring controller design will be addressed in the next section. 

 
4. Contouring Controller Design 
 

In this section, design of contouring controller is considered separately for tangential and 
modified normal dynamics. For demonstration purpose, a general proportional-derivative 
(PD) controller is applied in tangential error equation. It is well known that the PD 
controller is capable of achieving stabilization and improving transient response, but is not 
adequate for error elimination. Consequently, tangential tracking errors exist unavoidably. 
Under this circumstance, we are going to show that precise contouring performance can still 
be achieved by applying the CI approach. Building on the developed contouring control 
framework, the tangential and normal control objects can be respectively interpreted as 
stabilization and regulation problems. 

 
4.1 Design of tangential control effort 
Considering the tangential dynamics of (16.a), a PD controller with the form 

tntPttVtt 2KK  
2                                            (17) 

 
is applied. Substituting (17) into (16.a) results in 

ttPttVtt KK Λ                                                      (18) 
 
where VtK  and PtK  are positive real. The selection of control gains should guarantee the 

criterion Rt  . Eq. (18) indicates that the tangential tracking error cannot be eliminated 

very well due to the existence of tΛ . However, it will be shown that the existence of t  
causes no harm to contouring performance with the aid of CI. 

 
4.2 Design of normal control effort 
In the following, an integral type sliding controller for the modified normal dynamics is 
developed by using backstepping approach. Firstly, let 1IndInd    and define an internal 
state w . Then the system (16.b) can be represented as 

1Indw                                                                           (19.a) 

2Ind1Ind                                                                        (19.b) 

nn3212Ind   Λ                                          (19.c) 

 

Assume that the system state 1Ind  can be treated as an independent input  )w(1 , and let 

wk 111Ind                                                          (20) 
 

where 0k 1  . Then, consider as a Lyapunov function 

2/wV 2
1                                                                (21) 

 
The derivative of (21) is 

0wkwV 2
111                                                       (22) 

 
In practice, there may exist a difference between 1Ind  and 1 . Hence, define a new error 
variable by 11Ind1z   , which gives 

11zw                                                              (23.a) 
 
and 

12Ind1z                                                             (23.b) 
 
Second, in a similar manner, consider 2Ind  as a virtual control input and let 

11222Ind zkw                                                    (24) 
 
Selecting as a Lyapunov candidate 
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and taking its time derivative gives 
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Note that the criterion (26) is achieved only when the virtual control law (24) comes into 
effect. Taking the constraint into account, one can design a sliding surface as 22Ind2z   , 
and then the augmented system can be represented as 

11zw                                                                        (27.a) 
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1221 zz                                                                  (27.b) 

2nn3212z  
  Λ                                     (27.c) 

 
Suppose that the parameter uncertainties and external disturbances satisfy the inequality 

   n3max Λ , where  is an unknown positive constant, then the final control object is 
to develop a controller that provides system robustness against  . 
Design a control law in the following form 

          )zsgn(zkz 2223121n                                        (28) 
 
where   denotes the switching gain. Select a Lyapunov candidate as 
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From (28) and (29), one can obtain 
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where kkkk 321   is applied. Therefore, system (27) is exponentially stable by using the 
control law (28) when the selected   satisfies  .  Since the upper bound of   may not 
be efficiently determined, the following well known adaptation law (Yoo & Chung, 1992), 
which dedicates to estimate an adequate constant value a , is applied 

),z(satzˆ
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where â  is denoted as an estimated switching gain and 
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stands for an adaptation gain, where the use of dead-zone is needed due to the face that the 
ideal sliding does not occur in practical applications. For chattering avoidance, the 
discontinuous controller (28) is replaced by 

         ),z(satˆzkz 2a223121n                                       (33) 
 
The saturation function is described as follows 
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where   is relative to the thickness of the boundary layer. 

Let the estimative error be a
~ , i.e., aaa

ˆ~    and then select a Lyapunov function as 
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The time derivative of (35) is 
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where )t(  is bounded by max)t(   . In general, a  is available. Suppose that a , 

it follows  1/zz)t( 22   . The maximum value 4/max    occurs at 2/z2  . 
Eq. (36) reveals that for t , it follows 
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Fig. 6.  Block diagram of the proposed contouring control scheme for a 2-Link robotic system. 
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Fig. 6.  Block diagram of the proposed contouring control scheme for a 2-Link robotic system. 
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By (37), the system is exponentially stable with a guaranteed performance associated with 
the size of control parameters   and k . The overall contouring control architecture is 
illustrated in Fig. 6. It is similar with the standard feedback control loop, where the main 
control components are highlighted in the dotted blocks. 
Remark. 1 For illustration purpose, a PD controller is applied to the tangential dynamics 
such that tangential tracking error cannot be eliminated completely. Of course one can also 
apply a robust controller to pursue its performance if necessary. However, the following 
simulations are going to show that even in the presence of tracking errors, the contouring 
performance will not be degraded by using the proposed contouring control framework. 
Remark. 2 The action of the adaptive law activates when 2z . It means that for a given 

small gain value, â  will be renewed in real time until the criterion 2z  is achieved. 

 
5. Numerical Simulations 
  

In this section, a robot system in consideration of nonlinear friction effects is taken as an 
example. The friction model used in numerical simulations is given by 

        isi

2

siicisiciii /expFFFsgnF                                      (38) 
 
where ciF  is the Coulomb friction and siF  is the static friction force. si  denotes an angular 
velocity relative to the Stribeck effect and si  denotes the viscous coefficient. The suffix 

2,1i   indicates the number of robot joint.  
The parameters used in friction model are: 

025.0F 1c  , 02.0F 2c  , 04.0F 1s  , 035.0F 2s   

001.02s1s   , 005.01s   and 004.02s  . 
 
According to the foregoing analysis, an adequate switching gain is suggested to be 
determined in advance for confirming system robustness. Thus, estimations are performed 
previously for two contouring control tasks, i.e., circular and elliptical contours. Fig. 7(a) 
and (c) show the responses of sliding surface and Fig. 7(b) and (d) depict the response of â  
during update. 
From Fig. 7, it implies that the sliding surfaces were suppressed to the prescribed boundary 
layer by integrating with the adaptation law.  The initial guess-value   120â   and the 

adaptation gain 100  are applied in (31). According to (32), an adequate value of â  was 
determined when 0025.0z2    is achieved. From the adaptation results shown in Fig. 

7(b) and 7(d), the conservative switching gains 18â   and 5.16  are adopted to handle 
circular and elliptical profiles, respectively. 

 

â

 
(a)                                                                         (b) 

â

 
(c)                                                                           (d) 

Fig. 7.  Responses of sliding surface and estimated robust gain. (a)-(b) for circular contour, 
(c)-(d) for elliptical contour. 

 
5.1 Circular contour 
The following values are used for the control of circular profile: 

0 , 1.0yx   , 1f  ,    15.0,21.0cc yoxo    ,   

10k  ,  9K Vt  , 20KPt  , 8.7m̂1  , 37.0m̂2   

 
Exact system parameters of two-arm robot are 

344.8m 1  , 348.0m 2  , 25.0l1  , 21.0l2   
 
In this case, the position of starting point in the working space is set to be at 

  TT ]25.021.0[]yx[0 00 aP . For a given position  0aP , initial joint positions can be 
calculated by applying the inverse kinematics as follows 
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Referring to the simulations, Fig. 8 obviously illustrates the contour following behavior. It 
shows that even though the real time command position (i.e., the moving ring) goes ahead 
the end-effector, the end-effector still follows to the desired contour without significant 
deviation. The tracking responses are shown in Fig. 9(a) and (b), where the tracking errors 
exist significantly, but the contouring performance, evaluated by the contour index Ind , 
remains in a good level. The corresponding control efforts of each robot joint are drawn in 
Fig.10(a)-(b). Examining Fig. 8(a) and (b) again, it can be seen that the time instants where 
the relative large tracking errors occur are also the time instants the relative large CIs are 
induced. The reason can refer to the dynamics of CI given in (16). Due to the face that (16b) 
is perturbed by the coupling uncertain terms 3  when 0t  , the control performance will 
be (relatively) degraded when large tangential tracking errors occur. 
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Fig. 8. Behavior of path following by the proposed method. 
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Fig. 9.  Performance of tracking and equivalent contouring errors. 

 

     
(a)                                                                        (b) 

Fig. 10.  Applied control torque. 

 
5.2 Elliptical contour 
In this case, the value of parameters are the same with those used in the previous case 
except 3/  , 15.0x   and 1.0y  .  
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The result is consistent with the behavior illustrated in Fig. 2, i.e., the end-effector at A 
approaches to the real time command D through the desired path without causing short 
cutting phenomenon. Moreover, it has been demonstrated that the CI approach is also 
capable of avoiding over-cutting phenomenon, which is induced by the T-N coordinate 
transformation approach, in the presence of large tracking errors (Peng & Chen, 2007a). The 
simulation results confirm again that good contouring control performance does not 
necessarily rely on the good tracking level. The corresponding continuous control efforts of 
joint-1 and -2 are shown in Fig. 12(a) and (b), respectively. 
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Fig. 13.  Applied control torque. 

 
6. Conclusion 
  

In the robotic motion control field, positioning and tracking are considered as the main 
control tasks. In this Chapter, we have addressed a specific motion control topic, termed as 
contouring control. The core concept of the contouring control is different from the main 
object of the tracking control according to its goal.  
For tracking control, the desired goal is to track the real time reference command as precise 
as possible. On the other hand, the main object is to achieve precise motion along prescribed 
contours for contouring control. Under this circumstance, tracking error is no longer a 
necessary performance index requiring to be minimized. To enhance resulting contour 
precision without relying on tracking performance, a contour following control strategy for 
robot manipulators is presented.  
Different from the conventional manipulator motion control, a contour error dynamics is 
derived via coordinate transformation and an equivalent error called CI is introduced in 
VCS to evaluate contouring control performance. The contouring control task in the VCS 
turns into a stabilizing problem in tangential dynamics and a regulation problem in 

 

modified normal dynamics. The main advantage of the control scheme is that the final 
contouring accuracy will not be degraded even if the tracking performance of the robot 
manipulator is not good enough; that is, the existence of tracking errors will not make harm 
to the final contouring quality. This advantage has been apparently clarified through 
numerical study. 
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