
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322390818?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Ontological Knowledge Representation for Resolving Semantic
Heterogeneity in Software Requirements Traceability 169

Ontological Knowledge Representation for Resolving Semantic
Heterogeneity in Software Requirements Traceability

Namfon Assawamekin, Thanwadee Sunetnanta and Charnyote Pluempitiwiriyawej

x

Ontological Knowledge Representation for
Resolving Semantic Heterogeneity in

Software Requirements Traceability

Namfon Assawamekin1, Thanwadee Sunetnanta2,3 and
Charnyote Pluempitiwiriyawej2,3

1School of Science, University of the Thai Chamber of Commerce
2Department of Computer Science, Faculty of Science, Mahidol University

3Faculty of Information and Communication Technology, Mahidol University
THAILAND

1. Introduction

Heterogeneity in software requirements has regularly been discussed as a challenging
problem, especially in the areas of requirements traceability. In practice, requirements are
fundamentally expressed by customers in terms of natural language which inevitably
inherits ambiguity. Pieces of requirements may be expressed in such a way that is best
suited the view of an individual. Vocabularies and terminologies used in requirements
expression therefore can be varied, habitually depending on customer roles, their
background knowledge, perspectives and levels of understanding on system problems.
Often, system analysts may capture requirements expressed by using different vocabularies
or terminologies, yet conveying similar meaning.
Taking account of diversity of how software requirements can be expressed and who
expresses the requirements, system analysts may use different techniques to elicit the
requirements from customers. Requirements elicitation techniques range from typical ones
like introspection, questionnaires, interviews, focus group and protocol analysis (Goguen &
Linde, 1993) to modern one like scrum and agile requirements modeling (Paetsch et al.,
2003). No matter which elicitation techniques are deployed, requirements from different
customers often overlap, possibly are intertwined and inconsistent. As systems become
more complex it becomes increasingly difficult for system analysts to resolve heterogeneity
in software requirements so that the requirements can be verified and validated easily and
effectively.
The impact of heterogeneity is even more crucial in distributed and collaborative software
development environment since the heterogeneity is an inherent characteristic in such
environment. With the advents of outsourcing and offshoring software development,
software specifications can be collaboratively constructed by a team of developers in
multiple sites, possibly with various development methods and tools. It is therefore
important that system analysts must understand and be able to resolve the analogy and

11

www.intechopen.com

Knowledge Management170

poly-forms to requirements expression and representation to better communicate, check
consistency and trace between pieces of requirements in a distributed manner.
In view of that, we propose to deploy ontology as a knowledge representation to intervene
mutual “understanding” in requirements tracing process. By “ontological knowledge
representation”, we provide a basis modeling view for system analysts to express “a domain
of discourse” for software requirements elicitation as well as the basic categories of
requirements elements and their relationships. With our ontological knowledge
representation, ontology matching is applied as a reasoning mechanism in automatically
generating traceability relationships without restricting the freedom in expressing
requirements differently. The relationships are identified by deriving semantic analogy of
ontology concepts representing requirements elements. We will exemplify our ontological
knowledge representation for software requirements traceability and compare our work to
the applicability of other knowledge representations for the same purpose. Section 2
contains our literature reviews that lead to the development of ontological knowledge
representation in this work. Section 3 presents our main idea of ontological knowledge
representation for expressing software requirements. Section 4 elaborates how we can
automate requirements traceability through ontology matching process. Section 5 concludes
our contributions and further directions of our work.

2. Managing Semantic Heterogeneity in Software Development Life Cycle
with Knowledge Representation

Software development is the processing of knowledge in a very focused way (Robillard,
1999). Knowledge acquisition is underlying cognitive process of software requirements
gathering and elicitation to obtain information required to solve problems. Software models
are forms of knowledge representation resulting from transitory construction of knowledge
built up for presenting software solutions in software analysis process. Likewise, application
programs are also forms of knowledge representation of software solutions that can be
interpreted and processed by computer processors. Knowledge representation is therefore a
key vehicle for organizing and structuring information in software development life cycle so
that the information can be easily understood, systematically verified and validated by
system developers and by the end users.
To manage semantic heterogeneity in software development, it is important to select
knowledge representation that has sufficient expressive power as follows. Firstly, it is
required that such knowledge representation should be able to recognize semantic
differences in requirements expression and various software models. Secondly, it should
preserve the meaning of the expression and the models, without restricting how the
requirements are stated and the choices of software models that system developers want to
use. In view of that, the basic constructs of the knowledge representation should be able to
recognize type and instance definitions in requirements elements so that it can differentiate
the meaning of requirements from its syntactic forms. Lastly, the knowledge representation
should naturally support reasoning and inferences to resolve semantic heterogeneity arising
in software development process.
There currently exists a collection of knowledge representations that are application to
software development. Notable works are RML-the object-based knowledge representation
for requirements specifications in (Borgida et al., 1985), Cake-the knowledge representation

and inference engine based on logics and plan calculus for software development in (Rich &
Feldman, 1992) and Telos-the object-based knowledge representation with integrity
constraints and deduction rules in (Mylopoulos et al., 1990). These works provide a solid
proof on the application of knowledge representation to software development. However,
each of these knowledge representations do not emphasize on their resolution in managing
semantic heterogeneity that may arise. Although a certain degree of semantic inference may
be derived from structuring mechanisms such as generalization, aggregation and
classification as in Telos, the consistency of knowledge entered are verified through the an
explicit constraint rules.
In our view, semantic heterogeneity can be both implicit and explicit in requirements
expression. By semantic heterogeneity the meaning of words and understanding of concepts
may differ or be interpreted differently from one community to another, regardless of
syntax which refers to the structure or the schema by which the words or the concepts are
represented. In view of that, it is not possible to explicitly define constraint rules or
relationships that can be completely resolved semantic heterogeneity. Most of the times,
semantic heterogeneity is implicit and is not known to the person who expresses such
semantics of words or concepts.
Towards that view, we further explore the principle of ontology as explicit and formalized
specifications of conceptualizations to extract and formalize the semantics. In the field of
software engineering, there are many works that have applied and used ontology to
different processes or phases in software development life cycle, starting from software
requirements analysis (Kaiya & Saeki, 2005), cost estimation in project planning (Hamdan &
Khatib, 2006) to re-engineering (Yang et al., 1999). There is also a particular set of work
related to using ontology for multi-site distributed software development (Wongthongtham
et al., 2005; Wongthongtham et al., 2008). From the literature, these works focus on using a
single ontology to share a common understanding, manual construction of ontology and
applying the ontology to specific application domains. In contrast to the above relevant
works, our approach is concerned with ontology interoperability that does not force many
stakeholders into a single ontology, but supports multiple ontologies for expressing
multiperspective requirements artifacts. To be more precise, we aim to give various
stakeholders with the freedom to communicate among each other based on their own
defined ontologies. Additionally, our approach provides an automatic construction of
multiple ontologies that is applicable to represent multiperspective requirements artifacts of
any specific application domains. Next section will further describe ontology application in
our work.

3. Ontological Approach to Knowledge Representation for Software
Requirements

An ontology is an explicit formal specification of a shared conceptualization (Gruber, 1993;
Borst, 1997; Studer et al., 1998). The ontology captures consensual knowledge, which is
described in the terms of a formal model. In the ontology, a set of concept types and a set of
formal axioms are explicitly defined with both human-readable and machine-readable text.
Ontologies provide a common vocabulary of an area and define – with different levels of
formality – the meaning of the terms and relations between them. Generally speaking,
knowledge in the ontologies is formalized using five kinds of components: classes, relations,

www.intechopen.com

Ontological Knowledge Representation for Resolving Semantic
Heterogeneity in Software Requirements Traceability 171

poly-forms to requirements expression and representation to better communicate, check
consistency and trace between pieces of requirements in a distributed manner.
In view of that, we propose to deploy ontology as a knowledge representation to intervene
mutual “understanding” in requirements tracing process. By “ontological knowledge
representation”, we provide a basis modeling view for system analysts to express “a domain
of discourse” for software requirements elicitation as well as the basic categories of
requirements elements and their relationships. With our ontological knowledge
representation, ontology matching is applied as a reasoning mechanism in automatically
generating traceability relationships without restricting the freedom in expressing
requirements differently. The relationships are identified by deriving semantic analogy of
ontology concepts representing requirements elements. We will exemplify our ontological
knowledge representation for software requirements traceability and compare our work to
the applicability of other knowledge representations for the same purpose. Section 2
contains our literature reviews that lead to the development of ontological knowledge
representation in this work. Section 3 presents our main idea of ontological knowledge
representation for expressing software requirements. Section 4 elaborates how we can
automate requirements traceability through ontology matching process. Section 5 concludes
our contributions and further directions of our work.

2. Managing Semantic Heterogeneity in Software Development Life Cycle
with Knowledge Representation

Software development is the processing of knowledge in a very focused way (Robillard,
1999). Knowledge acquisition is underlying cognitive process of software requirements
gathering and elicitation to obtain information required to solve problems. Software models
are forms of knowledge representation resulting from transitory construction of knowledge
built up for presenting software solutions in software analysis process. Likewise, application
programs are also forms of knowledge representation of software solutions that can be
interpreted and processed by computer processors. Knowledge representation is therefore a
key vehicle for organizing and structuring information in software development life cycle so
that the information can be easily understood, systematically verified and validated by
system developers and by the end users.
To manage semantic heterogeneity in software development, it is important to select
knowledge representation that has sufficient expressive power as follows. Firstly, it is
required that such knowledge representation should be able to recognize semantic
differences in requirements expression and various software models. Secondly, it should
preserve the meaning of the expression and the models, without restricting how the
requirements are stated and the choices of software models that system developers want to
use. In view of that, the basic constructs of the knowledge representation should be able to
recognize type and instance definitions in requirements elements so that it can differentiate
the meaning of requirements from its syntactic forms. Lastly, the knowledge representation
should naturally support reasoning and inferences to resolve semantic heterogeneity arising
in software development process.
There currently exists a collection of knowledge representations that are application to
software development. Notable works are RML-the object-based knowledge representation
for requirements specifications in (Borgida et al., 1985), Cake-the knowledge representation

and inference engine based on logics and plan calculus for software development in (Rich &
Feldman, 1992) and Telos-the object-based knowledge representation with integrity
constraints and deduction rules in (Mylopoulos et al., 1990). These works provide a solid
proof on the application of knowledge representation to software development. However,
each of these knowledge representations do not emphasize on their resolution in managing
semantic heterogeneity that may arise. Although a certain degree of semantic inference may
be derived from structuring mechanisms such as generalization, aggregation and
classification as in Telos, the consistency of knowledge entered are verified through the an
explicit constraint rules.
In our view, semantic heterogeneity can be both implicit and explicit in requirements
expression. By semantic heterogeneity the meaning of words and understanding of concepts
may differ or be interpreted differently from one community to another, regardless of
syntax which refers to the structure or the schema by which the words or the concepts are
represented. In view of that, it is not possible to explicitly define constraint rules or
relationships that can be completely resolved semantic heterogeneity. Most of the times,
semantic heterogeneity is implicit and is not known to the person who expresses such
semantics of words or concepts.
Towards that view, we further explore the principle of ontology as explicit and formalized
specifications of conceptualizations to extract and formalize the semantics. In the field of
software engineering, there are many works that have applied and used ontology to
different processes or phases in software development life cycle, starting from software
requirements analysis (Kaiya & Saeki, 2005), cost estimation in project planning (Hamdan &
Khatib, 2006) to re-engineering (Yang et al., 1999). There is also a particular set of work
related to using ontology for multi-site distributed software development (Wongthongtham
et al., 2005; Wongthongtham et al., 2008). From the literature, these works focus on using a
single ontology to share a common understanding, manual construction of ontology and
applying the ontology to specific application domains. In contrast to the above relevant
works, our approach is concerned with ontology interoperability that does not force many
stakeholders into a single ontology, but supports multiple ontologies for expressing
multiperspective requirements artifacts. To be more precise, we aim to give various
stakeholders with the freedom to communicate among each other based on their own
defined ontologies. Additionally, our approach provides an automatic construction of
multiple ontologies that is applicable to represent multiperspective requirements artifacts of
any specific application domains. Next section will further describe ontology application in
our work.

3. Ontological Approach to Knowledge Representation for Software
Requirements

An ontology is an explicit formal specification of a shared conceptualization (Gruber, 1993;
Borst, 1997; Studer et al., 1998). The ontology captures consensual knowledge, which is
described in the terms of a formal model. In the ontology, a set of concept types and a set of
formal axioms are explicitly defined with both human-readable and machine-readable text.
Ontologies provide a common vocabulary of an area and define – with different levels of
formality – the meaning of the terms and relations between them. Generally speaking,
knowledge in the ontologies is formalized using five kinds of components: classes, relations,

www.intechopen.com

Knowledge Management172

functions, axioms and instances (Gruber, 1993). Classes in the ontology are usually
organized in the taxonomies.
The ontology is widely used as an important component in many areas, such as knowledge
management (Jurisica et al., 2004), electronic commerce (Hepp et al., 2007), distributed
systems (Haase et al., 2008), information retrieval systems (Jung, 2009) and in new emerging
fields like the Semantic Web. Ontology can prove very useful for a community as a way of
structuring and defining the meaning of the metadata terms that are currently being
collected and standardized. Using ontologies, tomorrow’s applications can be “intelligent”,
in the sense that they can more accurately work at the human conceptual level.

Ontology
Matcher

Matched
Concepts

Pre-Process of
Multiperspective Requirements Traceability Automated Multiperspective Requirements Traceability Process

Base
Ontology

Requirements
Elements
Generator

Requirements
Ontology

Constructor

Requirements
Elements

Requirements
Elements

Generator

Requirements
Ontology

Constructor

Requirements
Elements

Requirements
Ontology 1

Base
Ontology Requirements

Ontology 2

Base Ontology Constructor

IEEE Std
830-1998

ESA
PSS-05-03

Traceability
Relationships

Requirements
Analyzer

Lexical
Semantic

Representation

Requirements
Analyzer

Lexical
Semantic

Representation

Natural
Language

Requirements
Artifacts

Natural
Language

Ontology
Engineer

Stakeholder 1

Stakeholder 2

Requirements
Artifacts

Fig. 1. Multiperspective requirements traceability (MUPRET) framework

We apply ontology concept to our multipersepctive requirements traceability (MUPRET)
framework which merges the natural language processing (NLP) techniques, rule-based
approaches and ontology concepts in order to resolve the heterogeneity in multiperspective
requirements artifacts. Figure 1 illustrates our MUPRET framework containing five main
modules: requirements analyzer (RA), requirements elements generator (REG), base
ontology constructor (BOC), requirements ontology constructor (ROC) and ontology
matcher (OM). The details of all modules deployed in the MUPRET framework are
presented in depth elsewhere in our previous papers (Assawamekin et al., 2008a;
Assawamekin et al., 2008b). The five main modules can be briefly explained as follows:
1. The RA module obtains a set of requirements artifacts represented in terms of natural

language or plain English text. It uses the NLP techniques to syntactically analyze these
artifacts and generate lexical semantic representation as the output.

2. The REG module utilizes rule-based approaches to automatically extract requirements
elements from requirements artifacts.

3. The BOC module constructs a base ontology to classify requirements types of
requirements artifacts in the domain of software requirements.

4. The ROC module attaches requirements elements into the base ontology to
automatically construct requirements ontology of each stakeholder as a common
representation for knowledge interchange purposes.

5. The OM module applies ontology matching technique in order to automatically generate
traceability relationships when a match is found in the requirements ontologies.

In summary, we propose our MUPRET framework which deploys ontology as a knowledge
management mechanism to intervene mutual “understanding” without restricting the
freedom in expressing requirements differently. Ontology matching is applied as a reasoning
mechanism in automatically generating traceability relationships. The relationships are
identified by deriving semantic analogy of ontology concepts representing requirements
elements.

4. Matching Ontologies for Requirements Traceability

As briefly discussed in the introductory part, large-scaled software development inevitably
involves a group of stakeholders, each of which may express their requirements differently
in their own terminology and representation depending on their perspectives or perceptions
of their shared problems. Such requirements result in multiperspective requirements artifacts.
These artifacts may be enormous, complicated, ambiguous, incomplete, redundant and
inconsistent. However, they must be traced, verified and merged in order to achieve a
common goal of the development. Moreover, requirements artifacts are frequently subject to
changes. Planning, controlling and implementation of requirements changes can be tedious,
time-consuming and cost-intensive. Determining of effects caused by requirements changes
on software systems is based on requirements traceability (Gotel & Finkelstein, 1994).
The traceability of multiperspective requirements artifacts has regularly been discussed as a
challenging problem, particularly in the requirements change management (Grunbacher et
al., 2004). The heterogeneity of multiperspective requirements artifacts makes it difficult to
perform tracing, verification and merging of the requirements. More specifically, it can be
very problematic when multiperspective requirements artifacts are expressed with
synonyms (i.e. different terminologies representing the same concept) and homonyms (i.e.
the same term representing different concepts) and various stakeholders want to share these
artifacts to each other. In this situation, ontology can play an essential role in
communication among diverse stakeholders in the course of an integrating system.
To be able to achieve our goal, this section presents ontology matching process executed in
the following four steps to reason on traceability that arises between requirements.
Step 1: Compute concepts of labels, which denote the set of concepts that one would classify
under a label it encodes.
Step 2: Compute concepts of nodes, which denote the set of concepts that one would classify
under a node, given that it has a certain label and position in the graph. For object concepts,
the logical formula for a concept at node is defined as a conjunction of concepts of labels
located in the path from the given node to the root. For relationship concepts, the concept at
node is identified as a conjunction of domain, range and relationship concepts. For process
concepts, the concept at node is defined as a conjunction of actor, input, output and process
concepts.
Step 3: Compute the relations between concepts of labels, called element matching. In this
work, we contribute a base ontology to define the types of concepts. If two concepts have

www.intechopen.com

Ontological Knowledge Representation for Resolving Semantic
Heterogeneity in Software Requirements Traceability 173

functions, axioms and instances (Gruber, 1993). Classes in the ontology are usually
organized in the taxonomies.
The ontology is widely used as an important component in many areas, such as knowledge
management (Jurisica et al., 2004), electronic commerce (Hepp et al., 2007), distributed
systems (Haase et al., 2008), information retrieval systems (Jung, 2009) and in new emerging
fields like the Semantic Web. Ontology can prove very useful for a community as a way of
structuring and defining the meaning of the metadata terms that are currently being
collected and standardized. Using ontologies, tomorrow’s applications can be “intelligent”,
in the sense that they can more accurately work at the human conceptual level.

Ontology
Matcher

Matched
Concepts

Pre-Process of
Multiperspective Requirements Traceability Automated Multiperspective Requirements Traceability Process

Base
Ontology

Requirements
Elements
Generator

Requirements
Ontology

Constructor

Requirements
Elements

Requirements
Elements

Generator

Requirements
Ontology

Constructor

Requirements
Elements

Requirements
Ontology 1

Base
Ontology Requirements

Ontology 2

Base Ontology Constructor

IEEE Std
830-1998

ESA
PSS-05-03

Traceability
Relationships

Requirements
Analyzer

Lexical
Semantic

Representation

Requirements
Analyzer

Lexical
Semantic

Representation

Natural
Language

Requirements
Artifacts

Natural
Language

Ontology
Engineer

Stakeholder 1

Stakeholder 2

Requirements
Artifacts

Fig. 1. Multiperspective requirements traceability (MUPRET) framework

We apply ontology concept to our multipersepctive requirements traceability (MUPRET)
framework which merges the natural language processing (NLP) techniques, rule-based
approaches and ontology concepts in order to resolve the heterogeneity in multiperspective
requirements artifacts. Figure 1 illustrates our MUPRET framework containing five main
modules: requirements analyzer (RA), requirements elements generator (REG), base
ontology constructor (BOC), requirements ontology constructor (ROC) and ontology
matcher (OM). The details of all modules deployed in the MUPRET framework are
presented in depth elsewhere in our previous papers (Assawamekin et al., 2008a;
Assawamekin et al., 2008b). The five main modules can be briefly explained as follows:
1. The RA module obtains a set of requirements artifacts represented in terms of natural

language or plain English text. It uses the NLP techniques to syntactically analyze these
artifacts and generate lexical semantic representation as the output.

2. The REG module utilizes rule-based approaches to automatically extract requirements
elements from requirements artifacts.

3. The BOC module constructs a base ontology to classify requirements types of
requirements artifacts in the domain of software requirements.

4. The ROC module attaches requirements elements into the base ontology to
automatically construct requirements ontology of each stakeholder as a common
representation for knowledge interchange purposes.

5. The OM module applies ontology matching technique in order to automatically generate
traceability relationships when a match is found in the requirements ontologies.

In summary, we propose our MUPRET framework which deploys ontology as a knowledge
management mechanism to intervene mutual “understanding” without restricting the
freedom in expressing requirements differently. Ontology matching is applied as a reasoning
mechanism in automatically generating traceability relationships. The relationships are
identified by deriving semantic analogy of ontology concepts representing requirements
elements.

4. Matching Ontologies for Requirements Traceability

As briefly discussed in the introductory part, large-scaled software development inevitably
involves a group of stakeholders, each of which may express their requirements differently
in their own terminology and representation depending on their perspectives or perceptions
of their shared problems. Such requirements result in multiperspective requirements artifacts.
These artifacts may be enormous, complicated, ambiguous, incomplete, redundant and
inconsistent. However, they must be traced, verified and merged in order to achieve a
common goal of the development. Moreover, requirements artifacts are frequently subject to
changes. Planning, controlling and implementation of requirements changes can be tedious,
time-consuming and cost-intensive. Determining of effects caused by requirements changes
on software systems is based on requirements traceability (Gotel & Finkelstein, 1994).
The traceability of multiperspective requirements artifacts has regularly been discussed as a
challenging problem, particularly in the requirements change management (Grunbacher et
al., 2004). The heterogeneity of multiperspective requirements artifacts makes it difficult to
perform tracing, verification and merging of the requirements. More specifically, it can be
very problematic when multiperspective requirements artifacts are expressed with
synonyms (i.e. different terminologies representing the same concept) and homonyms (i.e.
the same term representing different concepts) and various stakeholders want to share these
artifacts to each other. In this situation, ontology can play an essential role in
communication among diverse stakeholders in the course of an integrating system.
To be able to achieve our goal, this section presents ontology matching process executed in
the following four steps to reason on traceability that arises between requirements.
Step 1: Compute concepts of labels, which denote the set of concepts that one would classify
under a label it encodes.
Step 2: Compute concepts of nodes, which denote the set of concepts that one would classify
under a node, given that it has a certain label and position in the graph. For object concepts,
the logical formula for a concept at node is defined as a conjunction of concepts of labels
located in the path from the given node to the root. For relationship concepts, the concept at
node is identified as a conjunction of domain, range and relationship concepts. For process
concepts, the concept at node is defined as a conjunction of actor, input, output and process
concepts.
Step 3: Compute the relations between concepts of labels, called element matching. In this
work, we contribute a base ontology to define the types of concepts. If two concepts have

www.intechopen.com

Knowledge Management174

different types, the relation between two concepts is mismatch. We also use external
resources (i.e., domain knowledge and WordNet (Miller, 1990; Miller, 1995)) and string
matching techniques (i.e., prefix, suffix, edit distance and n-gram) with threshold 0.85.
Lexical relations provided by WordNet are converted into semantic relations according to
the rules as shown in Table 1.
Step 4: Compute the relations between concepts of nodes, called concept matching. Each
concept is converted into a propositional validity problem. Semantic relations are translated
into propositional connectives using the rules described in Table 1.

Lexical
relations

Semantic
relations

Propositional logic Translation of formula into conjunctive
normal form

Synonym a = b a  b axioms  (context1  context2)
axioms  (context1  context2)

Hyponym or
meronym

a  b a  b axioms  (context1  context2)

Hypernym
or holonym

a  b b  a axioms  (context1  context2)

Antonym a  b (a  b) axioms  (context1  context2)
 a  b (a  b)  (a  b) 

(a  b)
axioms  (context1  context2) 
(context1  context2)  (context1 
context2)

Table 1. The relationships among lexical relations, semantic relations and propositional
formula

The criterion for determining whether a relation holds between concepts is the fact that it is
entailed by the premises. Thus, we have to prove that this formula (axioms)  rel(context1,
context2) is valid. A propositional formula is valid iff its negation is unsatisfiable. A SAT
solver (Berre, 2006) run on the formula fails.
We use types of overlap relations defined in (Spanoudakis et al., 1999) to generate
traceability relationships in our work. The traceability relationships can be generated when
a match is found in the requirements ontologies. Thus, the semantic relations will be
mapped to traceability relationships as shown in Table 2.

Semantic relations Traceability relationships
Equivalence (=) overlapTotally (=)
More or less general (, ) overlapInclusively (, )
Mismatch () noOverlap ()
Overlapping () overlapPartially ()

Table 2. Conversion of semantic relations into traceability relationships

The distinction and implication among different types of traceability relationships is
important not only because these relationships have different impact on the requirements
traceability status of two requirements artifacts but also because the corrections of
requirements changes occurring due to each of these types of traceability relationships
might not be the same. In our work, we order traceability relationships as they have been

listed, according to their binding strength, from the strongest to the weakest. The more
general and less general have the same binding strength. Hence, overlapTotally is the
strongest relationship since the sets of source concept have exactly the same as the sets of
target concept. The source and target concepts are overlapInclusively if one of the designated
sets is proper subset of the other. Both source and target concepts are overlapPartially if their
designated sets have both concepts in common and non-common concepts. More
importantly, we discard noOverlap relationship which is the weakest relationship in this
work because there is no effect on multiperspective requirements artifacts changes.
As a prototype of the processes in the MUPRET framework, we have developed the
MUPRET tool which is a Java-based tool with Prolog and WordNet-based semantic
inference engine. This tool aims to support our framework and to demonstrate its feasibility
for distributed, collaborative and multiperspective software development environment. The
details of MUPRET tool are presented in depth elsewhere in our paper (Assawamekin et al.,
2009). This tool runs on PCs running MS-Windows as a standalone environment. Our
design of the MUPRET tool primarily focuses on demonstrating “proof-of-concept” rather
than on optimizing technique used in the framework. The aim of our approach is to build a
generic support environment for the MUPRET framework. This approach is constructed
with specialized tools and techniques that either demonstrate the feasibility of the approach
or address a particular requirements traceability issue.
The MUPRET tool facilitates the automatic extraction and construction of requirements
elements of an individual stakeholder into a so-called requirements ontology. As a result,
multiperspective requirements artifacts of different stakeholders are captured in a common
taxonomy imposed by the sharing base of requirements ontology. The tool then
automatically generates traceability links by matching requirements ontologies.
To demonstrate how to use the MUPRET tool, we will illustrate how to generate traceability
relationships via two different requirements artifacts with respect to two different
perspectives. These two requirements artifacts describe parts of a hospital information
system. More specifically, they describe a doctor investigation system (DIS) and an in-
patient registration system (IPRS). These requirements artifacts are written in format of plain
English text as follows.
Requirements 1: (DIS perspective)
Each patient has a unique hospital number (HN) and a name. A patient is admitted by a
doctor. Nurses and doctors are considered as staffs. A nurse has a name. The nurse’s name
consists of a first name, an initial and a last name. A doctor is identified by an identification
number and a name.
Requirements 2: (IPRS perspective)
Physicians and nurses are staffs. Staffs have an ID, a name and an address. A surgeon is a
physician.
Both requirements are presented as a source (DIS) and a target (IPRS) in our MUPRET
browser. After both requirements are passed to the RA and REG modules, the ROC module
will attach requirements elements into the base ontology. Accordingly, the DIS and IPRS
requirements ontology are automatically constructed as depicted in Figures 2 and 3
respectively.

www.intechopen.com

Ontological Knowledge Representation for Resolving Semantic
Heterogeneity in Software Requirements Traceability 175

different types, the relation between two concepts is mismatch. We also use external
resources (i.e., domain knowledge and WordNet (Miller, 1990; Miller, 1995)) and string
matching techniques (i.e., prefix, suffix, edit distance and n-gram) with threshold 0.85.
Lexical relations provided by WordNet are converted into semantic relations according to
the rules as shown in Table 1.
Step 4: Compute the relations between concepts of nodes, called concept matching. Each
concept is converted into a propositional validity problem. Semantic relations are translated
into propositional connectives using the rules described in Table 1.

Lexical
relations

Semantic
relations

Propositional logic Translation of formula into conjunctive
normal form

Synonym a = b a  b axioms  (context1  context2)
axioms  (context1  context2)

Hyponym or
meronym

a  b a  b axioms  (context1  context2)

Hypernym
or holonym

a  b b  a axioms  (context1  context2)

Antonym a  b (a  b) axioms  (context1  context2)
 a  b (a  b)  (a  b) 

(a  b)
axioms  (context1  context2) 
(context1  context2)  (context1 
context2)

Table 1. The relationships among lexical relations, semantic relations and propositional
formula

The criterion for determining whether a relation holds between concepts is the fact that it is
entailed by the premises. Thus, we have to prove that this formula (axioms)  rel(context1,
context2) is valid. A propositional formula is valid iff its negation is unsatisfiable. A SAT
solver (Berre, 2006) run on the formula fails.
We use types of overlap relations defined in (Spanoudakis et al., 1999) to generate
traceability relationships in our work. The traceability relationships can be generated when
a match is found in the requirements ontologies. Thus, the semantic relations will be
mapped to traceability relationships as shown in Table 2.

Semantic relations Traceability relationships
Equivalence (=) overlapTotally (=)
More or less general (, ) overlapInclusively (, )
Mismatch () noOverlap ()
Overlapping () overlapPartially ()

Table 2. Conversion of semantic relations into traceability relationships

The distinction and implication among different types of traceability relationships is
important not only because these relationships have different impact on the requirements
traceability status of two requirements artifacts but also because the corrections of
requirements changes occurring due to each of these types of traceability relationships
might not be the same. In our work, we order traceability relationships as they have been

listed, according to their binding strength, from the strongest to the weakest. The more
general and less general have the same binding strength. Hence, overlapTotally is the
strongest relationship since the sets of source concept have exactly the same as the sets of
target concept. The source and target concepts are overlapInclusively if one of the designated
sets is proper subset of the other. Both source and target concepts are overlapPartially if their
designated sets have both concepts in common and non-common concepts. More
importantly, we discard noOverlap relationship which is the weakest relationship in this
work because there is no effect on multiperspective requirements artifacts changes.
As a prototype of the processes in the MUPRET framework, we have developed the
MUPRET tool which is a Java-based tool with Prolog and WordNet-based semantic
inference engine. This tool aims to support our framework and to demonstrate its feasibility
for distributed, collaborative and multiperspective software development environment. The
details of MUPRET tool are presented in depth elsewhere in our paper (Assawamekin et al.,
2009). This tool runs on PCs running MS-Windows as a standalone environment. Our
design of the MUPRET tool primarily focuses on demonstrating “proof-of-concept” rather
than on optimizing technique used in the framework. The aim of our approach is to build a
generic support environment for the MUPRET framework. This approach is constructed
with specialized tools and techniques that either demonstrate the feasibility of the approach
or address a particular requirements traceability issue.
The MUPRET tool facilitates the automatic extraction and construction of requirements
elements of an individual stakeholder into a so-called requirements ontology. As a result,
multiperspective requirements artifacts of different stakeholders are captured in a common
taxonomy imposed by the sharing base of requirements ontology. The tool then
automatically generates traceability links by matching requirements ontologies.
To demonstrate how to use the MUPRET tool, we will illustrate how to generate traceability
relationships via two different requirements artifacts with respect to two different
perspectives. These two requirements artifacts describe parts of a hospital information
system. More specifically, they describe a doctor investigation system (DIS) and an in-
patient registration system (IPRS). These requirements artifacts are written in format of plain
English text as follows.
Requirements 1: (DIS perspective)
Each patient has a unique hospital number (HN) and a name. A patient is admitted by a
doctor. Nurses and doctors are considered as staffs. A nurse has a name. The nurse’s name
consists of a first name, an initial and a last name. A doctor is identified by an identification
number and a name.
Requirements 2: (IPRS perspective)
Physicians and nurses are staffs. Staffs have an ID, a name and an address. A surgeon is a
physician.
Both requirements are presented as a source (DIS) and a target (IPRS) in our MUPRET
browser. After both requirements are passed to the RA and REG modules, the ROC module
will attach requirements elements into the base ontology. Accordingly, the DIS and IPRS
requirements ontology are automatically constructed as depicted in Figures 2 and 3
respectively.

www.intechopen.com

Knowledge Management176

requirement artifact

functional requirement non-functional requirement

data specification process specification control specification

data

data relation

function

object

relationship

process

patient-2

hospital number-3

HN-4

name-5

doctor-8 nurse-10

staff-12

name-15

first name-19 initial-20 last name-21

identification number-24 name-25admit-6

Fig. 2. Doctor investigation system (DIS) requirements ontology

requirement artifact

functional requirement non-functional requirement

data specification process specification control specification

datadata relation function

objectrelationship process

staff-1

physician-2 nurse-3 ID-7 name-8 address-9

surgeon-11

Fig. 3. In-patient registration system (IPRS) requirements ontology

A part of traceability relationships between DIS and IPRS requirements artifacts can be
expressed in the first-order logic (FOL) or predicate terms for machine-readable text as
shown below.

overlapTotally(Requirements 1/S2T7, S3T3, S6T2/doctor | Requirements 2/S1T1, S3T5/physician)
overlapInclusively(Requirements 2/S2T4/ID | Requirements 1/S2T7, S3T3, S6T2/doctor)
overlapInclusively(Requirements 2/S2T7/name | Requirements 1/S2T7, S3T3, S6T2/doctor)
overlapInclusively(Requirements 2/S2T10/address | Requirements 1/S2T7, S3T3, S6T2/doctor)
overlapInclusively(Requirements 2/S3T2/surgeon | Requirements 1/S2T7, S3T3, S6T2/doctor)
overlapInclusively(Requirements 1/S3T1, S4T2, S5T2/nurse | Requirements 2/S1T5, S2T1/staff)
overlapPartially(Requirements 1/S2T7, S3T3, S6T2/doctor | Requirements 2/S1T3/nurse)

From the example, overlapTotally(Requirements 1/S2T7, S3T3, S6T2/doctor |
Requirements 2/S1T1, S3T5/physician) means that doctor of sentence 2 token 7, sentence 3
token 3 and sentence 6 token 2 in the Requirements 1 (DIS requirements artifacts) overlaps
totally with physician of sentence 1 token 1 and sentence 3 token 5 in the Requirements 2
(IPRS requirements artifacts). Using the Figures 2 and 3, trying to prove that doctor1 in DIS
requirements ontology is less general than physician2 in IPRS requirements ontology,
requires constructing the following formula.

((staff1  staff2)  (doctor1  physician2))  (staff1  doctor1)  (staff2  physician2)

The above formula turns out to be unsatisfiable, and therefore, the less general relation
holds. It is noticeable that if we test for the more general relation between the same pair of
concepts, the corresponding formula would be also unsatisfiable. As a result, the final
relation for the given pair of concepts is the equivalence.
Equally, an example screen of traceability relationships can be depicted in Figure 4 for
human-readable text and user-friendly. The totally, (superset or subset) inclusively and
partially overlapped target can be represented with green, red, cyan and yellow color
respectively while the grey color means the source of requirements. As seen as an example
in this figure, doctor in the Requirements 1 (DIS requirements artifacts) overlaps totally with
physician, overlaps inclusively (superset) with ID, name, address and surgeon, overlaps
inclusively (subset) with staff as well as overlaps partially with nurse in the Requirements 2
(IPRS requirements artifacts).

Fig. 4. An example screen of traceability relationships

Let us consider again the example of Figure 4, the overlap between doctor in the
Requirements 1 and physician in the Requirements 2 is total. In the view of traceability, if
doctor in the Requirements 1 is changed then the modification of physician in the

www.intechopen.com

Ontological Knowledge Representation for Resolving Semantic
Heterogeneity in Software Requirements Traceability 177

requirement artifact

functional requirement non-functional requirement

data specification process specification control specification

data

data relation

function

object

relationship

process

patient-2

hospital number-3

HN-4

name-5

doctor-8 nurse-10

staff-12

name-15

first name-19 initial-20 last name-21

identification number-24 name-25admit-6

Fig. 2. Doctor investigation system (DIS) requirements ontology

requirement artifact

functional requirement non-functional requirement

data specification process specification control specification

datadata relation function

objectrelationship process

staff-1

physician-2 nurse-3 ID-7 name-8 address-9

surgeon-11

Fig. 3. In-patient registration system (IPRS) requirements ontology

A part of traceability relationships between DIS and IPRS requirements artifacts can be
expressed in the first-order logic (FOL) or predicate terms for machine-readable text as
shown below.

overlapTotally(Requirements 1/S2T7, S3T3, S6T2/doctor | Requirements 2/S1T1, S3T5/physician)
overlapInclusively(Requirements 2/S2T4/ID | Requirements 1/S2T7, S3T3, S6T2/doctor)
overlapInclusively(Requirements 2/S2T7/name | Requirements 1/S2T7, S3T3, S6T2/doctor)
overlapInclusively(Requirements 2/S2T10/address | Requirements 1/S2T7, S3T3, S6T2/doctor)
overlapInclusively(Requirements 2/S3T2/surgeon | Requirements 1/S2T7, S3T3, S6T2/doctor)
overlapInclusively(Requirements 1/S3T1, S4T2, S5T2/nurse | Requirements 2/S1T5, S2T1/staff)
overlapPartially(Requirements 1/S2T7, S3T3, S6T2/doctor | Requirements 2/S1T3/nurse)

From the example, overlapTotally(Requirements 1/S2T7, S3T3, S6T2/doctor |
Requirements 2/S1T1, S3T5/physician) means that doctor of sentence 2 token 7, sentence 3
token 3 and sentence 6 token 2 in the Requirements 1 (DIS requirements artifacts) overlaps
totally with physician of sentence 1 token 1 and sentence 3 token 5 in the Requirements 2
(IPRS requirements artifacts). Using the Figures 2 and 3, trying to prove that doctor1 in DIS
requirements ontology is less general than physician2 in IPRS requirements ontology,
requires constructing the following formula.

((staff1  staff2)  (doctor1  physician2))  (staff1  doctor1)  (staff2  physician2)

The above formula turns out to be unsatisfiable, and therefore, the less general relation
holds. It is noticeable that if we test for the more general relation between the same pair of
concepts, the corresponding formula would be also unsatisfiable. As a result, the final
relation for the given pair of concepts is the equivalence.
Equally, an example screen of traceability relationships can be depicted in Figure 4 for
human-readable text and user-friendly. The totally, (superset or subset) inclusively and
partially overlapped target can be represented with green, red, cyan and yellow color
respectively while the grey color means the source of requirements. As seen as an example
in this figure, doctor in the Requirements 1 (DIS requirements artifacts) overlaps totally with
physician, overlaps inclusively (superset) with ID, name, address and surgeon, overlaps
inclusively (subset) with staff as well as overlaps partially with nurse in the Requirements 2
(IPRS requirements artifacts).

Fig. 4. An example screen of traceability relationships

Let us consider again the example of Figure 4, the overlap between doctor in the
Requirements 1 and physician in the Requirements 2 is total. In the view of traceability, if
doctor in the Requirements 1 is changed then the modification of physician in the

www.intechopen.com

Knowledge Management178

Requirements 2 must be needed. On the other hand, if doctor in the Requirements 1 is
changed then staff in the Requirements 2 may be modified since doctor in the Requirements 1
overlaps inclusively (subset) with staff in the Requirements 2. Additionally, if doctor in the
Requirements 1 is modified then the modification of nurse in the Requirements 2 may be
needed with respect to overlap partially relationship. In contrast, if patient in the
Requirements 1 is changed then there is no modification needed for physician in the
Requirements 2 due to no overlap relationship.
To sum up, the MUPRET tool automatically constructs requirements ontologies from
multiperspective requirements artifacts with the aim of generating traceability relationships.
The ontology matching technique is executed without any user interaction in order to
achieve this goal. Suppose that the relations between element matching are correct, the
relations between concept matching can generate the precise semantic relations. In view of
that, traceability relationships are also accurate.

5. Conclusions and Ongoing Work

This chapter points out the semantic heterogeneity problems found in multiperspective
requirements artifacts and introduces the ontological knowledge representation to help
resolve such problems. The resolution is described via our MUPRET framework and tool.
Our MUPRET framework merges the NLP techniques, rule-based approaches and ontology
concepts to automatically generate traceability relationships of multiperspective
requirements artifacts, which can be applied to any software requirements domain. In
MUPRET, the base ontology representing the fundamental concepts is defined and used to
classify requirements types of requirements artifacts. Regarding the base ontology, multiple
requirements ontologies can be developed and virtually integrated through ontology
matching process. The result of the ontology matching is a set of traceability relationships of
software requirements.
Although the current stage of the MUPRET framework and tool emphasizes on tracing
multiperspectives in requirements analysis phase and focuses on requirements that are
expressed in terms of natural language or plain English text. It is possible to extend
MUPRET to cover multiperspective software artifacts expressed in terms of typical analysis
models. This can be done by adding semantics of those model elements to the base of the
MUPRET’s requirements ontology. In addition, we also aim at exploring further how to
apply our MUPRET to support traceability throughout a complete software development
process.

6. References

Assawamekin, N.; Sunetnanta, T. & Pluempitiwiriyawej, C. (2008a). Automated
Multiperspective Requirements Traceability Using Ontology Matching Technique,
Proceedings of the Twentieth International Conference on Software Engineering and
Knowledge Engineering (SEKE 2008), pp. 460-465, Hotel Sofitel, Redwood City, San
Francisco Bay, C.A., U.S.A., July 1-3, 2008

Assawamekin, N.; Sunetnanta, T. & Pluempitiwiriyawej, C. (2008b). Resolving
Multiperspective Requirements Traceability Through Ontology Integration,
Proceedings of the Second IEEE International Conference on Semantic Computing (ICSC
2008), pp. 362-369, Santa Clara Marriot Hotel, Santa Clara, C.A., U.S.A., August 4-7,
2008

Assawamekin, N.; Sunetnanta, T. & Pluempitiwiriyawej, C. (2009). MUPRET: An Ontology-
Driven Traceability Tool for Multiperspective Requirements Artifacts, Proceedings of
the 8th IEEE/ACIS International Conference on Computer and Information Science (ICIS
2009), pp. 943-948, Pine City Hotel, Shanghai, China, June 1-3, 2009

Berre, D.L. (2006). A Satisfiability Library for Java. Available at http://www.sat4j.org, June
15, 2006

Borgida, A.; Greenspan, S. & Mylopoulos, J. (1985). Knowledge Representation as the Basis
for Requirements Specifications. IEEE Computer, Vol. 18, No. 4, pp. 82-91

Borst, W.N. (1997). Construction of Engineering Ontologies for Knowledge Sharing and Reuse,
Doctoral Dissertation, Enschede, NL-Centre for Telematics and Information
Technology, University of Tweenty

Goguen, J.A. & Linde, C. (1993). Techniques for Requirements Elicitation, Proceedings of IEEE
International Symposium on Requirements Engineering, pp. 152-164, January 4-6, 1993

Gotel, O.C.Z. & Finkelstein, A.C.W. (1994). An Analysis of the Requirements Traceability
Problem, Proceedings of the 1st International Conference on Requirements Engineering
(ICRE 1994), pp. 94-101, Colorado Springs, Colorado, U.S.A., April 18-22, 1994

Gruber, T.R. (1993). A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition, Vol. 5, No. 2, pp. 199-220

Grunbacher, P.; Egyed, A. & Medvidovic, N. (2004). Reconciling Software Requirements and
Architectures with Intermediate Models. Journal for Software and System Modeling
(SoSyM), Vol. 3, No. 3, pp. 235-253

Haase, P.; Siebes, R. & Harmelen, F.v. (2008). Expertise-Based Peer Selection in Peer-to-Peer
Networks. Knowledge and Information Systems, Vol. 15, No. 1, pp. 75-107

Hamdan, K. & Khatib, H.E. (2006). A Software Cost Ontology System for Assisting
Estimation of Software Project Effort for Use with Case-Based Reasoning,
Innovations in Information Technology, pp. 1-5

Hepp, M.; Leukel, J. & Schmitz, V. (2007). A Quantitative Analysis of Product Categorization
Standards: Content, Coverage, and Maintenance of eCl@ss, UNSPSC, eOTD, and
the RosettaNet Technical Dictionary. Knowledge and Information Systems, Vol. 13, No.
1, pp. 77-114

Jung, J.J. (2009). Consensus-Based Evaluation framework for Distributed Information
Retrieval Systems. Knowledge and Information Systems, Vol. 18, No. 2, pp. 199-211

Jurisica, I.; Mylopoulos, J. & Yu, E. (2004). Ontologies for Knowledge Management: An
Information Systems Perspective. Knowledge and Information Systems, Vol. 6, No. 4,
pp. 380-401

Kaiya, H. & Saeki, M. (2005). Ontology Based Requirements Analysis: Lightweight Semantic
Processing Approach, Proceedings of the Fifth International Conference on Quality
Software (QSIC 2005), pp. 223-230

Miller, G.A. (1990). WordNet: An On-line Lexical Database. International Journal of
Lexicography, Vol. 3, No. 4, pp. 235-312

www.intechopen.com

Ontological Knowledge Representation for Resolving Semantic
Heterogeneity in Software Requirements Traceability 179

Requirements 2 must be needed. On the other hand, if doctor in the Requirements 1 is
changed then staff in the Requirements 2 may be modified since doctor in the Requirements 1
overlaps inclusively (subset) with staff in the Requirements 2. Additionally, if doctor in the
Requirements 1 is modified then the modification of nurse in the Requirements 2 may be
needed with respect to overlap partially relationship. In contrast, if patient in the
Requirements 1 is changed then there is no modification needed for physician in the
Requirements 2 due to no overlap relationship.
To sum up, the MUPRET tool automatically constructs requirements ontologies from
multiperspective requirements artifacts with the aim of generating traceability relationships.
The ontology matching technique is executed without any user interaction in order to
achieve this goal. Suppose that the relations between element matching are correct, the
relations between concept matching can generate the precise semantic relations. In view of
that, traceability relationships are also accurate.

5. Conclusions and Ongoing Work

This chapter points out the semantic heterogeneity problems found in multiperspective
requirements artifacts and introduces the ontological knowledge representation to help
resolve such problems. The resolution is described via our MUPRET framework and tool.
Our MUPRET framework merges the NLP techniques, rule-based approaches and ontology
concepts to automatically generate traceability relationships of multiperspective
requirements artifacts, which can be applied to any software requirements domain. In
MUPRET, the base ontology representing the fundamental concepts is defined and used to
classify requirements types of requirements artifacts. Regarding the base ontology, multiple
requirements ontologies can be developed and virtually integrated through ontology
matching process. The result of the ontology matching is a set of traceability relationships of
software requirements.
Although the current stage of the MUPRET framework and tool emphasizes on tracing
multiperspectives in requirements analysis phase and focuses on requirements that are
expressed in terms of natural language or plain English text. It is possible to extend
MUPRET to cover multiperspective software artifacts expressed in terms of typical analysis
models. This can be done by adding semantics of those model elements to the base of the
MUPRET’s requirements ontology. In addition, we also aim at exploring further how to
apply our MUPRET to support traceability throughout a complete software development
process.

6. References

Assawamekin, N.; Sunetnanta, T. & Pluempitiwiriyawej, C. (2008a). Automated
Multiperspective Requirements Traceability Using Ontology Matching Technique,
Proceedings of the Twentieth International Conference on Software Engineering and
Knowledge Engineering (SEKE 2008), pp. 460-465, Hotel Sofitel, Redwood City, San
Francisco Bay, C.A., U.S.A., July 1-3, 2008

Assawamekin, N.; Sunetnanta, T. & Pluempitiwiriyawej, C. (2008b). Resolving
Multiperspective Requirements Traceability Through Ontology Integration,
Proceedings of the Second IEEE International Conference on Semantic Computing (ICSC
2008), pp. 362-369, Santa Clara Marriot Hotel, Santa Clara, C.A., U.S.A., August 4-7,
2008

Assawamekin, N.; Sunetnanta, T. & Pluempitiwiriyawej, C. (2009). MUPRET: An Ontology-
Driven Traceability Tool for Multiperspective Requirements Artifacts, Proceedings of
the 8th IEEE/ACIS International Conference on Computer and Information Science (ICIS
2009), pp. 943-948, Pine City Hotel, Shanghai, China, June 1-3, 2009

Berre, D.L. (2006). A Satisfiability Library for Java. Available at http://www.sat4j.org, June
15, 2006

Borgida, A.; Greenspan, S. & Mylopoulos, J. (1985). Knowledge Representation as the Basis
for Requirements Specifications. IEEE Computer, Vol. 18, No. 4, pp. 82-91

Borst, W.N. (1997). Construction of Engineering Ontologies for Knowledge Sharing and Reuse,
Doctoral Dissertation, Enschede, NL-Centre for Telematics and Information
Technology, University of Tweenty

Goguen, J.A. & Linde, C. (1993). Techniques for Requirements Elicitation, Proceedings of IEEE
International Symposium on Requirements Engineering, pp. 152-164, January 4-6, 1993

Gotel, O.C.Z. & Finkelstein, A.C.W. (1994). An Analysis of the Requirements Traceability
Problem, Proceedings of the 1st International Conference on Requirements Engineering
(ICRE 1994), pp. 94-101, Colorado Springs, Colorado, U.S.A., April 18-22, 1994

Gruber, T.R. (1993). A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition, Vol. 5, No. 2, pp. 199-220

Grunbacher, P.; Egyed, A. & Medvidovic, N. (2004). Reconciling Software Requirements and
Architectures with Intermediate Models. Journal for Software and System Modeling
(SoSyM), Vol. 3, No. 3, pp. 235-253

Haase, P.; Siebes, R. & Harmelen, F.v. (2008). Expertise-Based Peer Selection in Peer-to-Peer
Networks. Knowledge and Information Systems, Vol. 15, No. 1, pp. 75-107

Hamdan, K. & Khatib, H.E. (2006). A Software Cost Ontology System for Assisting
Estimation of Software Project Effort for Use with Case-Based Reasoning,
Innovations in Information Technology, pp. 1-5

Hepp, M.; Leukel, J. & Schmitz, V. (2007). A Quantitative Analysis of Product Categorization
Standards: Content, Coverage, and Maintenance of eCl@ss, UNSPSC, eOTD, and
the RosettaNet Technical Dictionary. Knowledge and Information Systems, Vol. 13, No.
1, pp. 77-114

Jung, J.J. (2009). Consensus-Based Evaluation framework for Distributed Information
Retrieval Systems. Knowledge and Information Systems, Vol. 18, No. 2, pp. 199-211

Jurisica, I.; Mylopoulos, J. & Yu, E. (2004). Ontologies for Knowledge Management: An
Information Systems Perspective. Knowledge and Information Systems, Vol. 6, No. 4,
pp. 380-401

Kaiya, H. & Saeki, M. (2005). Ontology Based Requirements Analysis: Lightweight Semantic
Processing Approach, Proceedings of the Fifth International Conference on Quality
Software (QSIC 2005), pp. 223-230

Miller, G.A. (1990). WordNet: An On-line Lexical Database. International Journal of
Lexicography, Vol. 3, No. 4, pp. 235-312

www.intechopen.com

Knowledge Management180

Miller, G.A. (1995). WordNet: A Lexical Database for English. Communications of the ACM,
Vol. 38, No. 11, pp. 39-41

Mylopoulos, J.; Borgida, A.; Jarke, M. & Koubarakis, M. (1990). Telos: Representing
Knowledge about Information Systems. ACM Transactions on Information Systems
(TOIS), Vol. 8, No. 4, pp. 325-362

Paetsch, F.; Eberlein, A. & Maurer, F. (2003). Requirements Engineering and Agile Software
Development, Proceedings of the Twelfth IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WET ICE 2003), pp. 308–313,
June 9-11, 2003

Rich, C. & Feldman, Y.A. (1992). Seven Layers of Knowledge Representation and Reasoning
in Support of Software Development. IEEE Transactions on Software Engineering,
Vol. 18, No. 6, pp. 451-469

Robillard, P.N. (1999). The Role of Knowledge in Software Development. Communications of
the ACM, Vol. 42, No. 1, pp. 87-92

Spanoudakis, G.; Finkelstein, A. & Till, D. (1999). Overlaps in Requirements Engineering.
Automated Software Engineering, Vol. 6, No. 2, pp. 171-198

Studer, R.; Benjamins, V.R. & Fensel, D. (1998). Knowledge Engineering: Principles and
Methods. Data and Knowledge Engineering, Vol. 25, pp. 161-197

Wongthongtham, P.; Chang, E. & Cheah, C. (2005). Software Engineering Sub-Ontology for
Specific Software Development, Proceedings of the 2005 29th Annual IEEE/NASA
Software Engineering Workshop (SEW 2005), pp. 27-33

Wongthongtham, P.; Kasisopha, N.; Chang, E. & Dillon, T. (2008). A Software Engineering
Ontology as Software Engineering Knowledge Representation, Proceedings of the
Third International Conference on Convergence and Hybrid Information Technology
(ICCIT 2008), pp. 668-675, November 11-13, 2008

Yang, H.; Cui, Z. & O’Brien, P. (1999). Extracting Ontologies from Legacy Systems for
Understanding and Re-Engineering, Proceedings of the Twenty-Third Annual
International Conference on Computer Software and Applications, pp. 21-26

www.intechopen.com

Knowledge Management

Edited by Pasi Virtanen and Nina Helander

ISBN 978-953-7619-94-7

Hard cover, 272 pages

Publisher InTech

Published online 01, March, 2010

Published in print edition March, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book is a compilation of writings handpicked in esteemed scientific conferences that present the variety of

ways to approach this multifaceted phenomenon. In this book, knowledge management is seen as an integral

part of information and communications technology (ICT). The topic is first approached from the more general

perspective, starting with discussing knowledge management’s role as a medium towards increasing

productivity in organizations. In the starting chapters of the book, the duality between technology and humans

is also taken into account. In the following chapters, one may see the essence and multifaceted nature of

knowledge management through branch-specific observations and studies. Towards the end of the book the

ontological side of knowledge management is illuminated. The book ends with two special applications of

knowledge management.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Namfon Assawamekin, Thanwadee Sunetnanta and Charnyote Pluempitiwiriyawej (2010). Ontological

Knowledge Representation for Resolving Semantic Heterogeneity in Software Requirements Traceability,

Knowledge Management, Pasi Virtanen and Nina Helander (Ed.), ISBN: 978-953-7619-94-7, InTech, Available

from: http://www.intechopen.com/books/knowledge-management/ontological-knowledge-representation-for-

resolving-semantic-heterogeneity-in-software-requirements-t

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

