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1. Introduction 
 

In the real world, people often reuse their knowledge in dealing with daily life problems. 
They can observe facts in an environment and recall similar experience in the past to deal 
with new situations. This phenomenon implies that there must be some features for people 
to compare the similarity between two environments. For example, toilet papers are usually 
placed nearby cashiers in different marts in Taiwan as shown in Fig. 1. In these two photos, 
orange ovals represent features for cashiers and red ovals represent features for toilet papers. 
The features which allow people to recognize the fact “Toilet papers are usually placed 
nearby cashiers.” are the kinds of experience which could be reused. 
 

  
Fig. 1. Two different marts in Taiwan 
 
One of disadvantages in reinforcement learning (Kimberly & Mahadevan) (Sutton & Barto, 
1998) is that two different tasks with different initial states and goal states must be learned 
to acquire good policies separately. It would waste time to simply learn twice in two 
different tasks if they share some similar subtasks. Transfer learning is an approach to 
improve the performance of cross tasks by avoiding redundancy. Some previous work show 
that transferring knowledge between two tasks could speed up learning (Matthew E. Taylor, 
Stone, & Liu, 2005). In reinforcement learning, the value function provides a guideline for 
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action selection in a given state. In other words, the value function could be converted to the 
corresponding policy, which guides action selection. Therefore, transferring the value 
function is an intuitive approach in reinforcement learning. 
The aim of transfer learning is to reuse learned knowledge from a source task to accelerate 
learning in a related target task. Many transfer methods which are based on different 
features, such as the value function or the policy, have been proposed (Hessling & Goel, 
2005; Liu & Stone, 2006; Matthew E. Taylor & Stone, 2007; Mattew E. Taylor, Whiteson, & 
Stone, 2007). Some researchers propose a rule transfer method which is based on case-based 
reasoning. They acquire some rules by approximating the policy in a source task and then 
translate them into corresponding rules, which could be used as the policy for a target task 
(Hessling & Goel, 2005). In more details, they train a decision tree as rules with respect to 
the value function in a source task and then reuse the decision tree in the target task. In 
order to transfer, they assume that two tasks have similar descriptions. In addition, some 
researchers represent the policy as a neural network in a source task and transfer it to a 
target task (Mattew E. Taylor et al., 2007). However, it requires some hand-coded translation 
functions. Some researchers represent states and actions as qualitative dynamic Bayes 
networks (QDBNs) and find their mapping between a source task and a target task (Liu & 
Stone, 2006). However, finding the mapping needs a lot of efforts. The major problem of the 
above methods is the use of translation functions that are problem dependent and thus 
difficult to be defined, even by an expert. 
A novel transfer method which is based on proto-value functions has been proposed 
(Kimberly & Mahadevan, 2006; Mahadevan, 2005; Mahadevan & Maggioni, 2006, 2007). 
Proto-value functions, which are derived from spectral graph theory, harmonic analysis, 
and Riemannian manifold, could be used to represent a set of basis functions to 
approximate a function. This method reuses proto-value functions from a source task and 
just learns their weights in composing the value function for a target task. Therefore, an 
advantage of this method is that it transfers from a source task to a target task without any 
translation function. However, it needs some exploring trials in a target task to acquire 
accurate weights for proto-value functions. 
Reusing learned knowledge could save some time by avoiding redundant learning. Transfer 
learning is an approach to achieve it. In this chapter, we propose transfer methods to obtain 
a better prior policy from a source task to reduce learning time in a target task without 
hand-coded translation functions by graph Laplacian. Graph Laplacian, which is 
constructed by the topology of the state space, are problem independent, so it is helpful for 
transfer. In the following sections, we will introduce our transfer methods step-by-step. In 
section 2, we introduce some background knowledge such as Markov decision process 
(MDP), reinforcement learning, graph Laplacian, and etc. In section 3, we illustrate our 
transfer methods in detail. In section 4, we show experimental results on our transfer 
methods. In section 5, we conclude and discuss future work. 

 
2. Background 
 

2.1 Markov Decision Process 
Markov decision process (Puterman, 2005) is a specification of a sequential decision problem 
with a Markovian transition model and additive rewards. Markov decision process is 
defined by 4-tuple ),,,( ''

a
ss

a
ss RPAS , where S  denotes a finite set of states, A  denotes a finite 

 

set of actions, a
ssP '  denotes the transition probability of taking action a  from state s  to state 

's , and a
ssR '  denotes the reward for transiting from state s  to state 's  with action a . A 

function which determines an agent’s action in any state on Markov decision process is 
called a policy  . In other words, a policy is a mapping from a state to a unique action. A 
value function V maps each state to its expected reward with respect to a policy   as 
shown in (1), where   denotes a discount factor and ),( as  denotes the corresponding 
probability of taking action a  in state s . The equation (1) is also called Bellman equation. 
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An optimal policy *  maps each state to a specific action to maximize the expected total 
discounted reward and an optimal value function *

V  corresponds to the optimal policy *  
as shown in (2). 
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The value function could be represented in tabular form with one output for each input 
tuple. However, some state space in the real world is too huge to memorize the tabular form 
of the value function. Approximating the value function in terms of a linear combination of 
a set of basis functions as shown in (3) is an apporach to deal with this problem. For each i , 
iv  denotes a basis function and iw  denotes a corresponding weight. 

 
nnvwvwV  ...11  (3) 

 
Represneting a function by a linear combination of basis functions could save a lot of 
memory. However, different sets of basis functions might affect the performance of 
functional approximation and the preformance directly impacts an agent’s behavior. In 
other words, a suitable set of basis functions plays an important role for an agent’s behavior 
on Markov decision process. 

 
2.2 Reinforcement Learning 
Reinforcement learning (Sutton & Barto, 1998) is about learning from interaction to achieve 
the goal. A reinforcement learning problem is based on Markov decision process. In other 
words, a reinforcement learning problem which satisfies the Markov property1 is called 
Markov decision process. Some reinforcement learning problems do not satisfy the Markov 
property  in the real world, but they still could be approximated by the Markov assumption. 
Most reinforcement learning methods are based on estimating the value function 2  by 
                                                                 
1 Roughly speaking, if deciding a next state only requires using current information, it 
satisfies the Markov property. 
2  The value function includes two types: the state-value function and the action-value 
function. In this paper, we focus on the state-value function. 
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action selection in a given state. In other words, the value function could be converted to the 
corresponding policy, which guides action selection. Therefore, transferring the value 
function is an intuitive approach in reinforcement learning. 
The aim of transfer learning is to reuse learned knowledge from a source task to accelerate 
learning in a related target task. Many transfer methods which are based on different 
features, such as the value function or the policy, have been proposed (Hessling & Goel, 
2005; Liu & Stone, 2006; Matthew E. Taylor & Stone, 2007; Mattew E. Taylor, Whiteson, & 
Stone, 2007). Some researchers propose a rule transfer method which is based on case-based 
reasoning. They acquire some rules by approximating the policy in a source task and then 
translate them into corresponding rules, which could be used as the policy for a target task 
(Hessling & Goel, 2005). In more details, they train a decision tree as rules with respect to 
the value function in a source task and then reuse the decision tree in the target task. In 
order to transfer, they assume that two tasks have similar descriptions. In addition, some 
researchers represent the policy as a neural network in a source task and transfer it to a 
target task (Mattew E. Taylor et al., 2007). However, it requires some hand-coded translation 
functions. Some researchers represent states and actions as qualitative dynamic Bayes 
networks (QDBNs) and find their mapping between a source task and a target task (Liu & 
Stone, 2006). However, finding the mapping needs a lot of efforts. The major problem of the 
above methods is the use of translation functions that are problem dependent and thus 
difficult to be defined, even by an expert. 
A novel transfer method which is based on proto-value functions has been proposed 
(Kimberly & Mahadevan, 2006; Mahadevan, 2005; Mahadevan & Maggioni, 2006, 2007). 
Proto-value functions, which are derived from spectral graph theory, harmonic analysis, 
and Riemannian manifold, could be used to represent a set of basis functions to 
approximate a function. This method reuses proto-value functions from a source task and 
just learns their weights in composing the value function for a target task. Therefore, an 
advantage of this method is that it transfers from a source task to a target task without any 
translation function. However, it needs some exploring trials in a target task to acquire 
accurate weights for proto-value functions. 
Reusing learned knowledge could save some time by avoiding redundant learning. Transfer 
learning is an approach to achieve it. In this chapter, we propose transfer methods to obtain 
a better prior policy from a source task to reduce learning time in a target task without 
hand-coded translation functions by graph Laplacian. Graph Laplacian, which is 
constructed by the topology of the state space, are problem independent, so it is helpful for 
transfer. In the following sections, we will introduce our transfer methods step-by-step. In 
section 2, we introduce some background knowledge such as Markov decision process 
(MDP), reinforcement learning, graph Laplacian, and etc. In section 3, we illustrate our 
transfer methods in detail. In section 4, we show experimental results on our transfer 
methods. In section 5, we conclude and discuss future work. 

 
2. Background 
 

2.1 Markov Decision Process 
Markov decision process (Puterman, 2005) is a specification of a sequential decision problem 
with a Markovian transition model and additive rewards. Markov decision process is 
defined by 4-tuple ),,,( ''
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ss RPAS , where S  denotes a finite set of states, A  denotes a finite 

 

set of actions, a
ssP '  denotes the transition probability of taking action a  from state s  to state 

's , and a
ssR '  denotes the reward for transiting from state s  to state 's  with action a . A 

function which determines an agent’s action in any state on Markov decision process is 
called a policy  . In other words, a policy is a mapping from a state to a unique action. A 
value function V maps each state to its expected reward with respect to a policy   as 
shown in (1), where   denotes a discount factor and ),( as  denotes the corresponding 
probability of taking action a  in state s . The equation (1) is also called Bellman equation. 
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An optimal policy *  maps each state to a specific action to maximize the expected total 
discounted reward and an optimal value function *

V  corresponds to the optimal policy *  
as shown in (2). 
 

))'((max)(
'

''* sVRPsV
s

a
ss

a
ssa 

   (2) 

 
The value function could be represented in tabular form with one output for each input 
tuple. However, some state space in the real world is too huge to memorize the tabular form 
of the value function. Approximating the value function in terms of a linear combination of 
a set of basis functions as shown in (3) is an apporach to deal with this problem. For each i , 
iv  denotes a basis function and iw  denotes a corresponding weight. 
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Represneting a function by a linear combination of basis functions could save a lot of 
memory. However, different sets of basis functions might affect the performance of 
functional approximation and the preformance directly impacts an agent’s behavior. In 
other words, a suitable set of basis functions plays an important role for an agent’s behavior 
on Markov decision process. 

 
2.2 Reinforcement Learning 
Reinforcement learning (Sutton & Barto, 1998) is about learning from interaction to achieve 
the goal. A reinforcement learning problem is based on Markov decision process. In other 
words, a reinforcement learning problem which satisfies the Markov property1 is called 
Markov decision process. Some reinforcement learning problems do not satisfy the Markov 
property  in the real world, but they still could be approximated by the Markov assumption. 
Most reinforcement learning methods are based on estimating the value function 2  by 
                                                                 
1 Roughly speaking, if deciding a next state only requires using current information, it 
satisfies the Markov property. 
2  The value function includes two types: the state-value function and the action-value 
function. In this paper, we focus on the state-value function. 
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approximately solving the Bellman equation. Some other learning methods are also based 
on estimating the value function. A major difference is that the reinforcement learning 
methods put more efforts into learning to make good decisions for frequently encountered 
states and less efforts for infrequently encountered states. 
Temporal-difference (TD) learning, which combines the Monte Carlo method and dynamic 
programming, is a central concept in reinforcement learning. Temporal-difference learning 
estimates the value function of one state from the next state without waiting for an actual 
final outcome as shown in (4), where V  denotes the value function, s  denotes the current 
state, 's  denotes the next state, a

ssR '  denotes the reward for transiting from state s  to state 's  
with action a ,   denotes the learning rate, and   denotes the discount factor. 
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The value function guides an agent’s behavior on Markov decision process and 
reinforcement learning learns the value function by continuously updating. Therefore, the 
updating method plays an important role in an agent’s performance.  
 
2.3 Graph Laplacian 
The Fourier analysis is to decompose a function in terms of a sum of trigonometric functions 
with different frequencies. In other words, the trigonometric functions could be combined 
together to represent the function. In addition, each frequency of trigonometric functions is 
inversely proportional to its importance as representing more features of the function. If two 
functions are similar, their trigonometric functions tend to be the same at low frequencies 
and the difference at high frequencies. 
Graph Laplacian can be defined as the combinatorial Laplacian or the normalized Laplacian 
(Chung, 1997). The combinatorial Laplacian of an undirected unweighted graph G  is 
defined as an operator ADL  , where A  is the adjacency matrix and D  is a diagonal 
matrix whose entries are the row sums of A . In other words, the combinatorial Laplacian 
could represent the connection (undirected) or the transition (directed) between two vertices 
u  and v  as shown in (5), where vd  denotes the degree of vertex v  without the self loop. In 
problem solving, states are represented as vertices and connections or transitions between 
states are represented as edges. 
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Let f  denote a function mapping each vertex u  in a graph into a real number. The 
combinatorial Laplacian L  acts on a function f  as shown in (6), where vu ~  denotes 

 

vertex u and vertex v  are adjacent. To minimize the equation 
2

~
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f  with condition, which f is a unit vector, is equivalent to solving the eigenproblem of L  
as shown in (7), where   denotes the eigenvalue and f  denotes the eigenfunction. By the 
spectral theorem (Chung, 1997), eigenfunctions with respect to smaller eigenvalues are 
smoother. In other words, the smoothness of eigenfunctions is inversely proportional to 
their eigenvalues. 
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Furthermore, the normalized Laplacian L~  of a graph is defined as 2/12/1~  LDDL  and each 
eigenfunction of L~  is defined as fDg 2/1 , where f  denotes each eigenfunction of L . The 
difference between the combinatorial Laplacian L  and the normalized Laplacian L~  is that 
the normalized Laplacian models the degree of a vertex as a local measure. 
The spectral analysis of graph Laplacian operator provides an orthonormal set of basis 
functions that can approximate any square-integrable functions on a graph (Chung, 1997). 
These basis functions, which are a set of eigenfunctions of L or L~ , are called as proto-value 
functions (Kimberly & Mahadevan, 2006; Mahadevan, 2005; Mahadevan & Maggioni, 2006, 
2007). Proto-value functions construct a global smooth approximation of a function on a 
graph. In other words, a function on a graph could be decomposed into a linear combination 
of proto-value functions. 
Therefore, the notion of the spectral analysis on graph Laplacian is similar to the Fourier 
analysis. Basis functions of graph Laplacian corresponding to the smaller eigenvalues 
represent more features and are more important. It also implies that if two graphs are 
similar, their features tend to be the same at low-order basis functions and the difference at 
high-order basis functions. 

 
2.4 Transfer Types 
In previous work (Kimberly & Mahadevan, 2006), the authors have proposed three transfer 
types: task transfer, topological domain transfer, and scaling domain transfer as shown in 
Fig. 2. The task transfer problem means that the size of states and the transition model does 
not change but the rewards change. For example, tranferring from Fig. 2(a) to Fig. 2(b) is a 
task transfer problem and vice versa. The domain transfer problem means that the size of 
states or the transition model changes but the rewards are still the same. In detail, the 
scaling domain transfer problem is the change of the size of states and the topological 
domain transfer problem is the change of a transition model.  For example, tranferring from 
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approximately solving the Bellman equation. Some other learning methods are also based 
on estimating the value function. A major difference is that the reinforcement learning 
methods put more efforts into learning to make good decisions for frequently encountered 
states and less efforts for infrequently encountered states. 
Temporal-difference (TD) learning, which combines the Monte Carlo method and dynamic 
programming, is a central concept in reinforcement learning. Temporal-difference learning 
estimates the value function of one state from the next state without waiting for an actual 
final outcome as shown in (4), where V  denotes the value function, s  denotes the current 
state, 's  denotes the next state, a

ssR '  denotes the reward for transiting from state s  to state 's  
with action a ,   denotes the learning rate, and   denotes the discount factor. 
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The value function guides an agent’s behavior on Markov decision process and 
reinforcement learning learns the value function by continuously updating. Therefore, the 
updating method plays an important role in an agent’s performance.  
 
2.3 Graph Laplacian 
The Fourier analysis is to decompose a function in terms of a sum of trigonometric functions 
with different frequencies. In other words, the trigonometric functions could be combined 
together to represent the function. In addition, each frequency of trigonometric functions is 
inversely proportional to its importance as representing more features of the function. If two 
functions are similar, their trigonometric functions tend to be the same at low frequencies 
and the difference at high frequencies. 
Graph Laplacian can be defined as the combinatorial Laplacian or the normalized Laplacian 
(Chung, 1997). The combinatorial Laplacian of an undirected unweighted graph G  is 
defined as an operator ADL  , where A  is the adjacency matrix and D  is a diagonal 
matrix whose entries are the row sums of A . In other words, the combinatorial Laplacian 
could represent the connection (undirected) or the transition (directed) between two vertices 
u  and v  as shown in (5), where vd  denotes the degree of vertex v  without the self loop. In 
problem solving, states are represented as vertices and connections or transitions between 
states are represented as edges. 
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smoother. In other words, the smoothness of eigenfunctions is inversely proportional to 
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Furthermore, the normalized Laplacian L~  of a graph is defined as 2/12/1~  LDDL  and each 
eigenfunction of L~  is defined as fDg 2/1 , where f  denotes each eigenfunction of L . The 
difference between the combinatorial Laplacian L  and the normalized Laplacian L~  is that 
the normalized Laplacian models the degree of a vertex as a local measure. 
The spectral analysis of graph Laplacian operator provides an orthonormal set of basis 
functions that can approximate any square-integrable functions on a graph (Chung, 1997). 
These basis functions, which are a set of eigenfunctions of L or L~ , are called as proto-value 
functions (Kimberly & Mahadevan, 2006; Mahadevan, 2005; Mahadevan & Maggioni, 2006, 
2007). Proto-value functions construct a global smooth approximation of a function on a 
graph. In other words, a function on a graph could be decomposed into a linear combination 
of proto-value functions. 
Therefore, the notion of the spectral analysis on graph Laplacian is similar to the Fourier 
analysis. Basis functions of graph Laplacian corresponding to the smaller eigenvalues 
represent more features and are more important. It also implies that if two graphs are 
similar, their features tend to be the same at low-order basis functions and the difference at 
high-order basis functions. 

 
2.4 Transfer Types 
In previous work (Kimberly & Mahadevan, 2006), the authors have proposed three transfer 
types: task transfer, topological domain transfer, and scaling domain transfer as shown in 
Fig. 2. The task transfer problem means that the size of states and the transition model does 
not change but the rewards change. For example, tranferring from Fig. 2(a) to Fig. 2(b) is a 
task transfer problem and vice versa. The domain transfer problem means that the size of 
states or the transition model changes but the rewards are still the same. In detail, the 
scaling domain transfer problem is the change of the size of states and the topological 
domain transfer problem is the change of a transition model.  For example, tranferring from 
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Fig. 2(a) to Fig. 2(c) is a topological domain transfer problem and from Fig. 2(a) to Fig. 2(d) is 
a scaling domain transfer problem. These three transfer types are symmetric which means 
that if transferring from graph SG  to graph TG  is one of transfer types, transferring from 
graph TG  to graph SG  is the same transfer type. Notice that R  denotes a reward in a state, 
but  rewards could be gained after any state transition in general case. 
 

RR
                                 

RR

 
                         (a) source                                                                      (b) the task transfer 
 

RR
                 

RR
 

  (c) the topological domain transfer                                (d) the scaling domain transfer 
Fig. 2. Examples of transfer types 

 
3. Methodology 
 

3.1 An Example 
Before we describe how to transfer, we show a simple example for the combinatorial 
Laplacian and a simple scenario for the transfer problem. A 3x3 grid world and its 
corresponding state transitioin graph are shown in Fig. 3(a) and Fig. 3(c). A state is defined 

 

as an agent at one of cells in the grid world and the state transition graph shows the possible 
transitions from one state to another. By definitioin in section 2.2, we could derive the 
combinatorial Laplacian as shown in Fig. 3(b). The diagonal terms denote the degree of 
states and the others denote the connection. Notice that the combinatorial  Laplacian does 
not only describe the grid world problems, but also others. For example, the task of putting 
on a pair of shoes (Russell & Norvig, 2003) is defined as an agent who wants to put on shoes 
with a condition of putting on socks before shoes. The state transition graph of this problem 
is shown in Fig. 3(d). By camparing Fig. 3(c) and Fig. 3(d), we could find that the two graphs 
are the same. It means that their combinatorial Laplacians are also the same. Therefore, we 
could do the domain transfer between these two tasks.  
 

                   
                           (a) 3x3 grid world                                    (b) the combinatorial Laplacian 
 

 
       (c) the state transition graph of (a)                 (d) the state transition graph of the problem 

                                                                                           of putting on a pair of shoes 
Fig. 3. A simple example 

 
3.2 A Simple Transfer Method 
In this section, we describe a simple transfer method which is based on transferring the 
value function. We represent the value function by a linear combination of basis functions 
and the idea is transferring the weights between two similar tasks whose details are 
described in Fig. 4. The first step is to collect the knowledge of state transitions in both tasks. 
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Fig. 2(a) to Fig. 2(c) is a topological domain transfer problem and from Fig. 2(a) to Fig. 2(d) is 
a scaling domain transfer problem. These three transfer types are symmetric which means 
that if transferring from graph SG  to graph TG  is one of transfer types, transferring from 
graph TG  to graph SG  is the same transfer type. Notice that R  denotes a reward in a state, 
but  rewards could be gained after any state transition in general case. 
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  (c) the topological domain transfer                                (d) the scaling domain transfer 
Fig. 2. Examples of transfer types 
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as an agent at one of cells in the grid world and the state transition graph shows the possible 
transitions from one state to another. By definitioin in section 2.2, we could derive the 
combinatorial Laplacian as shown in Fig. 3(b). The diagonal terms denote the degree of 
states and the others denote the connection. Notice that the combinatorial  Laplacian does 
not only describe the grid world problems, but also others. For example, the task of putting 
on a pair of shoes (Russell & Norvig, 2003) is defined as an agent who wants to put on shoes 
with a condition of putting on socks before shoes. The state transition graph of this problem 
is shown in Fig. 3(d). By camparing Fig. 3(c) and Fig. 3(d), we could find that the two graphs 
are the same. It means that their combinatorial Laplacians are also the same. Therefore, we 
could do the domain transfer between these two tasks.  
 

                   
                           (a) 3x3 grid world                                    (b) the combinatorial Laplacian 
 

 
       (c) the state transition graph of (a)                 (d) the state transition graph of the problem 

                                                                                           of putting on a pair of shoes 
Fig. 3. A simple example 
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The second step is to construct the normalized Laplacian by the collected state transitions. 
The third step is to compute the corresponding basis functions of the normalized Laplacians. 
The fourth step is to obtain the weights of the source basis functions by approximating the 
source value function. The fifth step is to approximate the target value function in terms of 
the target basis functions and the obtained weights. The last step is to acquire the target 
policy through the approximated target value function. 
 
1. Perform N -steps random walk to obtain M trials on a source task and a target task 

respectively. 
2. Construct the normalized Laplacians SL~ ,  by the undirected graphs SG , TG  which are 

obtained by the trials. 
3. Solve the eigenproblems of SL~ , TL~  to obtain the basis functions }{ S

iv , }{ T
iv  which are 

ordered by the ascending eigenvalues. 
4. Approximate the source value function SV *

 to obtain the weights }{ S
iw  corresponding 

to }{ S
iv  by the least-square error fit method. 

5. Transfer the weight }{ S
iw  from }{ S

iv  to the corresponding target basis functions }{ T
iv . 

 
i

T
ii

T vwV '  

6. Convert the approximation target value function TV '  to the target policy ' . 

Fig. 4. A simple transfer method 
 
The reason why the simple transfer method works is that basis functions of both tasks with 
the same order play the same important role for both value functions. Therefore, we transfer 
the obtained weights from a source task to a target task. If two tasks are similar, two sets of 
basis functions tend to be similar. Notice that it does not imply that numeric values are 
similar but the structure is similar as shown in Fig. 5. On the one hand, a small difference 
between two tasks cannot affect the global smooth structure so the both low-order basis 
functions tend to be the same. On the other hand, the high-order basis functions are affected 
by a small change so the target policy could obtain from the similar low-order basis 
functions and the different high-order basis functions. For example, the basis functions in 
Fig. 5 are the lower-order ones and the basis functions in Fig. 6 are the high-order ones. 
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Fig. 5. The similar structure of the basis functions of Fig. 2(a) and Fig. 2(d) 
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Fig. 6. The different structures of the basis functions of Fig. 2(a) and Fig. 2(d) 

 
3.3 Modified Graph Laplacian 
In section 2.3, we introduce the graph Laplacian and the smoothness property of its 
corresponding eigenfunction. In this section, we assume that each state transition is 
bidirectional and a positive circular reward does not exist for every task, which means that 
both edges, vu ~  and uv ~ , have positive rewards. Then, the modified graph Laplacian 'L  of 
a directed graph is defined in (8), where vS  denotes the entry sum of the v -th row. Roughly 
speaking, the modified graph Laplacian treats the state with a positive reward as a termination. 
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Let f  denote a function mapping each vertex u  in a graph into a real number and the 
modified graph Laplacian 'L  acts on f  as shown in (9), where vu   denotes vu ~  and 

uv ~  without a positive reward. To minimize the equation (9) subject to f  with the 
condition which f is a unit vector is equivalent to solving the eigenproblem of 'L . It is 
similar to the graph Laplacian case. 
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Because the graph Laplacian L  is a positive semidefinite matrix, the eigenvalues of L  are 
non-negative real numbers. To analyze the eigenvalues of the modified graph Laplacian 'L   
we observe the characteristic equation of the modified graph Laplacian 'L  as shown in (10), 
where  L̂  denotes the combinatorial Laplacian L  without i -th row and column, which 

),(' iiL  is equivalent to zero. By the definition, L̂  is a possible graph Laplacian. Therfore,  L̂  
is a positive semidefinite matrix and its eigenvalues are non-negtaive numbers. Furthermore, 
we could derive that the eigenvalues of 'L  are still non-negative and the normalized version 

2/12/1 ''''~  DLDL , where 'D  denotes a matrix with diagonal terms of 'L . 
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The second step is to construct the normalized Laplacian by the collected state transitions. 
The third step is to compute the corresponding basis functions of the normalized Laplacians. 
The fourth step is to obtain the weights of the source basis functions by approximating the 
source value function. The fifth step is to approximate the target value function in terms of 
the target basis functions and the obtained weights. The last step is to acquire the target 
policy through the approximated target value function. 
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respectively. 
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Fig. 4. A simple transfer method 
 
The reason why the simple transfer method works is that basis functions of both tasks with 
the same order play the same important role for both value functions. Therefore, we transfer 
the obtained weights from a source task to a target task. If two tasks are similar, two sets of 
basis functions tend to be similar. Notice that it does not imply that numeric values are 
similar but the structure is similar as shown in Fig. 5. On the one hand, a small difference 
between two tasks cannot affect the global smooth structure so the both low-order basis 
functions tend to be the same. On the other hand, the high-order basis functions are affected 
by a small change so the target policy could obtain from the similar low-order basis 
functions and the different high-order basis functions. For example, the basis functions in 
Fig. 5 are the lower-order ones and the basis functions in Fig. 6 are the high-order ones. 
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3.3 Modified Graph Laplacian 
In section 2.3, we introduce the graph Laplacian and the smoothness property of its 
corresponding eigenfunction. In this section, we assume that each state transition is 
bidirectional and a positive circular reward does not exist for every task, which means that 
both edges, vu ~  and uv ~ , have positive rewards. Then, the modified graph Laplacian 'L  of 
a directed graph is defined in (8), where vS  denotes the entry sum of the v -th row. Roughly 
speaking, the modified graph Laplacian treats the state with a positive reward as a termination. 
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Let f  denote a function mapping each vertex u  in a graph into a real number and the 
modified graph Laplacian 'L  acts on f  as shown in (9), where vu   denotes vu ~  and 

uv ~  without a positive reward. To minimize the equation (9) subject to f  with the 
condition which f is a unit vector is equivalent to solving the eigenproblem of 'L . It is 
similar to the graph Laplacian case. 
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we observe the characteristic equation of the modified graph Laplacian 'L  as shown in (10), 
where  L̂  denotes the combinatorial Laplacian L  without i -th row and column, which 
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we could derive that the eigenvalues of 'L  are still non-negative and the normalized version 
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The eigenfunctions with respect to different eigenvalues represent different levels of 
smoothness. Therefore, the eigenfunction with respect to the first nonzero eigenvalue on the 
modified graph Laplacian is the smoothest. In most cases, the value function tends to be 
smooth. By the observation, we find the eigenfunction with respect to the first nonzero 
eigenvalue have the similar behavior tendency as its value function. An simple task and its 
value function are shown in Fig. 7, where R  denotes a reward to illustrate the tendency. In 
this grid world task, an agent in each cell represents a state and its topology represents the 
possible state transitions. An agent reaches the state with R  to obtain a reward 1 and 
terminate, otherwise a penalty 04.0 . By the definition, we construct the modified graph 
Laplacian as shown in (11). Then, we compute the eigenfunction with respect to the first 
nonzero eigenvalue as shown in Fig. 8. Because the eigenfunction is a vector, it have two 
possible directions. For convenience, if all values are non-negative, it is called the positive 
eigenfunction, otherwise the negative eigenfunction. By the definition (Sutton & Barto, 1998), 
the value of a terminal state in value function is zero and the value of the state which is 
adjacent to a positive reward is close to the value of the reward. Therefore, we could expect 
the value function and the negative eigenfunction with respect to the first nonzero 
eigenvalue to be similar and thus we could transfer the value function by the negative 
eigenfunction with respect to the first nonzero eigenvalue. 
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Fig. 7. A 8x8 grid world task and its optimal value function 
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              (a) the positive eigenfunction                           (b) the negative eigenfunction 
Fig. 8. The eigenfunctions of the 8x8 grid world in Fig. 7(a) with respect to the first nonzero 
eigenvalue 
 
3.4 Transfer Method 
In this section, we describe a transfer method which is based on the tendency of the 
eigenfunction with respect to the first nonzero eigenvalue of the modified graph Laplacian. 
The detail of the transfer method is shown in Fig. 9. The first step is to collect the knowledge 
of state transitions in both tasks. The second step is to construct the normalized modified 
Laplacian by the collected state transitions. The third step is to compute the corresponding 
negative eigenfunctions with respect to the first nonzero eigenvalue of the normalized 
modified Laplacians. The fourth step is to sort the eigenfunctions in descending order 
respectively to obtain the one-to-one state mappings which map states in the source task to 
the corresponding ones in the target task. The fifth step is to map the values of states in the 
source task to the corresponding ones in the target task. The last step applies only for the 
case with different state sizes. If the number of states in the target task is bigger than in the 
source task, some states do not obtain the mapping states in the step 4. Therefore, the 
extrapolated method is used to estimate their value in terms of the negative eigenfunction in 
the target task and the value function in the source task. If the number of states in the target 
task is smaller than in the source task, all states in the target task can find the mapping states 
in the source task and some states in the source task are useless.  
 
1. Perform N -steps random walk to obtain M trials on a source task and a target task 

respectively. 
2. Construct the normalized modified Laplacians SL '~ , TL '~  by the directed graphs SG , 

TG , which are obtained by the trials. 
3. Solve the eigenproblems of SL~ , TL~  to obtain the negative eigenfunctions with respect 

the first nonzero eigenvalue Sv1 , Tv1 . 
4. Sort the negative eigenfunctions Sv1 , Tv1  in descending order respectively to obtain the 

one-to-one state mappings. 
5. Map the values of the source value function to the values of the corresponding states 

in the target task. 
6. (optional) If the number of states in the target task is bigger than that in the source 

task, an extrapolated method is used to estimate the rest of states. 
Fig. 9. The transfer method 
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The eigenfunctions with respect to different eigenvalues represent different levels of 
smoothness. Therefore, the eigenfunction with respect to the first nonzero eigenvalue on the 
modified graph Laplacian is the smoothest. In most cases, the value function tends to be 
smooth. By the observation, we find the eigenfunction with respect to the first nonzero 
eigenvalue have the similar behavior tendency as its value function. An simple task and its 
value function are shown in Fig. 7, where R  denotes a reward to illustrate the tendency. In 
this grid world task, an agent in each cell represents a state and its topology represents the 
possible state transitions. An agent reaches the state with R  to obtain a reward 1 and 
terminate, otherwise a penalty 04.0 . By the definition, we construct the modified graph 
Laplacian as shown in (11). Then, we compute the eigenfunction with respect to the first 
nonzero eigenvalue as shown in Fig. 8. Because the eigenfunction is a vector, it have two 
possible directions. For convenience, if all values are non-negative, it is called the positive 
eigenfunction, otherwise the negative eigenfunction. By the definition (Sutton & Barto, 1998), 
the value of a terminal state in value function is zero and the value of the state which is 
adjacent to a positive reward is close to the value of the reward. Therefore, we could expect 
the value function and the negative eigenfunction with respect to the first nonzero 
eigenvalue to be similar and thus we could transfer the value function by the negative 
eigenfunction with respect to the first nonzero eigenvalue. 
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Fig. 8. The eigenfunctions of the 8x8 grid world in Fig. 7(a) with respect to the first nonzero 
eigenvalue 
 
3.4 Transfer Method 
In this section, we describe a transfer method which is based on the tendency of the 
eigenfunction with respect to the first nonzero eigenvalue of the modified graph Laplacian. 
The detail of the transfer method is shown in Fig. 9. The first step is to collect the knowledge 
of state transitions in both tasks. The second step is to construct the normalized modified 
Laplacian by the collected state transitions. The third step is to compute the corresponding 
negative eigenfunctions with respect to the first nonzero eigenvalue of the normalized 
modified Laplacians. The fourth step is to sort the eigenfunctions in descending order 
respectively to obtain the one-to-one state mappings which map states in the source task to 
the corresponding ones in the target task. The fifth step is to map the values of states in the 
source task to the corresponding ones in the target task. The last step applies only for the 
case with different state sizes. If the number of states in the target task is bigger than in the 
source task, some states do not obtain the mapping states in the step 4. Therefore, the 
extrapolated method is used to estimate their value in terms of the negative eigenfunction in 
the target task and the value function in the source task. If the number of states in the target 
task is smaller than in the source task, all states in the target task can find the mapping states 
in the source task and some states in the source task are useless.  
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respectively. 
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TG , which are obtained by the trials. 
3. Solve the eigenproblems of SL~ , TL~  to obtain the negative eigenfunctions with respect 

the first nonzero eigenvalue Sv1 , Tv1 . 
4. Sort the negative eigenfunctions Sv1 , Tv1  in descending order respectively to obtain the 

one-to-one state mappings. 
5. Map the values of the source value function to the values of the corresponding states 

in the target task. 
6. (optional) If the number of states in the target task is bigger than that in the source 

task, an extrapolated method is used to estimate the rest of states. 
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4. Experiments 
 

4.1 Setting 
These experiments investigate the effects of the simpler transfer method and the transfer 
methods by three transfer types. The transition model is shown in Fig. 10. It means that 
when an agent takes an action in a state, the consequence is not deterministic. For example, 
if an agent goes forward in a state, the possible next states can be the forward state, the left 
state and the right state. Notice that the symbol R  denotes a terminal state with reward 1  
and any state transitions could not reach the terminal state with a penalty 04.0 . We 
compare the results by an  -greedy TD learning agent which means that the agent takes an 
action which is not according to the policy with probability  . We set 1.0 , the learning 
rate 1.0  and the discount factor 9.0 . 
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Fig. 10. The transition model in the experiments 
 
The goal of these experiments is to understand the performance and the accelerated effects. 
To calculate the steps we assume that the upper left corner is the start state. In the domain 
transfer cases, we compare the steps of reaching the reward of a random policy, the simple 
transferred policy, the transferred policy and the optimal one as the performance 
evaluations. In the task transfer cases, we compare the steps of reaching the reward of a 
random policy and the transferred policy to evaluate the performance. In addition, to show 
the accelerated effects, we compare the convergence using a random initial policy and the 
transferred initial policy for all cases. 

 
4.2 Scaling Domain Transfer 
To investigate the performance of the simple transferred policy we separate the scaling 
domain transfer into two cases: the up-scaling case and the down-scaling case. The topology 
of the task is the same as Fig. 2(a). In the up-scaling case, we choose the 6x6 grid world as a 
source task and 8x8, 10x10, 12x12, 14x14, 16x16, 18x18, and 20x20 grid world as target tasks. 
In down-scaling case, we choose the 20x20 grid world as a source task and 6x6, 8x8, 10x10, 
12x12, 14x14, 16x16, and 18x18 grid world as target tasks. The results are shown in Fig. 11, 
where the simple transferred policy is derived from the simple transfer method and the 
transferred policy is derived from the transfer method. We could discover that regardless of 
the size is changed in a target task, the simple transferred policy still performs very close to 
the optimal policy and the transferred policy doe not always perform well. Therefore, we 
investigate the accelerated effect of the transfer method with different topologies in the up-
scaling case as shown in Fig. 2(a) and Fig. 7(a). The results are shown in Fig. 12. We could 
discover that different topologies have different effects and the transfer method is not 
always good for the scaling domain transfer. 
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      (a) the up-scaling case                                       (b) the down-scaling case 

Fig. 11. The performance of transferred policies in the scaling domain transfer 
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      (a) corresponding to Fig. 2(a)                      (b) corresponding to Fig. 7(a) 

Fig. 12. The accelerated effect of the transfer method in the scaling domain transfer 

 
4.3 Topological Domain Transfer 
The source task is shown in Fig. 2(a) and the target tasks are shown in Fig. 13. Fig. 13(a) 
represents that the door is separated into two doors and the distances between each door 
and the center is equal to a unit. Fig. 13(b) represents that the size of the door is increased. 
We investigate the topological domain transfer in different sizes as follows: 6x6, 8x8, 10x10, 
12x12, 14x14, 16x16, 18x18, 20x20. The performance of the transferred policies is shown in 
Fig. 14. We could discover that different transfer methods are good for different topological 
domain transfer tasks. Although sometimes the transferred policy is not as good as the 
optimal policy, if the convergence is good enough, it is still a pretty good transfer. That is 
one of reasons why we take the accelerated effect into consideration. Another reason is that 
even though a policy is acceptable so far, it is possible to have a bad performance in a bigger 
task. The accelerated effect of the transfer method is shown in Fig. 15. We discover that the 
convergence of the transferred policy is faster  than the random policy in both cases. 
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4. Experiments 
 

4.1 Setting 
These experiments investigate the effects of the simpler transfer method and the transfer 
methods by three transfer types. The transition model is shown in Fig. 10. It means that 
when an agent takes an action in a state, the consequence is not deterministic. For example, 
if an agent goes forward in a state, the possible next states can be the forward state, the left 
state and the right state. Notice that the symbol R  denotes a terminal state with reward 1  
and any state transitions could not reach the terminal state with a penalty 04.0 . We 
compare the results by an  -greedy TD learning agent which means that the agent takes an 
action which is not according to the policy with probability  . We set 1.0 , the learning 
rate 1.0  and the discount factor 9.0 . 
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Fig. 10. The transition model in the experiments 
 
The goal of these experiments is to understand the performance and the accelerated effects. 
To calculate the steps we assume that the upper left corner is the start state. In the domain 
transfer cases, we compare the steps of reaching the reward of a random policy, the simple 
transferred policy, the transferred policy and the optimal one as the performance 
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random policy and the transferred policy to evaluate the performance. In addition, to show 
the accelerated effects, we compare the convergence using a random initial policy and the 
transferred initial policy for all cases. 

 
4.2 Scaling Domain Transfer 
To investigate the performance of the simple transferred policy we separate the scaling 
domain transfer into two cases: the up-scaling case and the down-scaling case. The topology 
of the task is the same as Fig. 2(a). In the up-scaling case, we choose the 6x6 grid world as a 
source task and 8x8, 10x10, 12x12, 14x14, 16x16, 18x18, and 20x20 grid world as target tasks. 
In down-scaling case, we choose the 20x20 grid world as a source task and 6x6, 8x8, 10x10, 
12x12, 14x14, 16x16, and 18x18 grid world as target tasks. The results are shown in Fig. 11, 
where the simple transferred policy is derived from the simple transfer method and the 
transferred policy is derived from the transfer method. We could discover that regardless of 
the size is changed in a target task, the simple transferred policy still performs very close to 
the optimal policy and the transferred policy doe not always perform well. Therefore, we 
investigate the accelerated effect of the transfer method with different topologies in the up-
scaling case as shown in Fig. 2(a) and Fig. 7(a). The results are shown in Fig. 12. We could 
discover that different topologies have different effects and the transfer method is not 
always good for the scaling domain transfer. 
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      (a) the up-scaling case                                       (b) the down-scaling case 

Fig. 11. The performance of transferred policies in the scaling domain transfer 
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      (a) corresponding to Fig. 2(a)                      (b) corresponding to Fig. 7(a) 

Fig. 12. The accelerated effect of the transfer method in the scaling domain transfer 

 
4.3 Topological Domain Transfer 
The source task is shown in Fig. 2(a) and the target tasks are shown in Fig. 13. Fig. 13(a) 
represents that the door is separated into two doors and the distances between each door 
and the center is equal to a unit. Fig. 13(b) represents that the size of the door is increased. 
We investigate the topological domain transfer in different sizes as follows: 6x6, 8x8, 10x10, 
12x12, 14x14, 16x16, 18x18, 20x20. The performance of the transferred policies is shown in 
Fig. 14. We could discover that different transfer methods are good for different topological 
domain transfer tasks. Although sometimes the transferred policy is not as good as the 
optimal policy, if the convergence is good enough, it is still a pretty good transfer. That is 
one of reasons why we take the accelerated effect into consideration. Another reason is that 
even though a policy is acceptable so far, it is possible to have a bad performance in a bigger 
task. The accelerated effect of the transfer method is shown in Fig. 15. We discover that the 
convergence of the transferred policy is faster  than the random policy in both cases. 
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Fig. 13. The target tasks of the topological domain transfer 
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Fig. 14. The performance of transferred policies in the topological domain transfer 
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Fig. 15. The accelerated effect of the transfer method in the topological domain transfer 

 
4.4 Task Transfer 
So far, we compare only the simple transfer method and the transfer method in the domain 
transfer cases. In this section, we investigate the transfer method in the task transfer. The 
reason why we do not discuss the simple transfer method is that it could not use in the task 
transfer because it does not take the reward into consideration. The source task and the 
target tasks are shown in Fig. 16. Fig. 16(a) represents the source task and the Fig. 16(b), (c), 
(d), (e) represent the target tasks with different rewards. Notice that we investigate the task 
transfer in a fixed size 10x10 because we think the task transfer is independent to the size. 

 

The performance of the transfer method is shown in Fig. 17. We could discover that the 
transferred policy is much better than the random policy. The accelerated effect of the 
transferred method is shown in Fig. 18. The convergence is obviously much faster than the 
random policy. In other words, the transfer method could accelerate learning in the task 
transfer cases. 
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Fig. 16. The source and target tasks of the task transfer 
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Fig. 17. The performance of the transfer method in the task transfer 
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Fig. 13. The target tasks of the topological domain transfer 
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Fig. 14. The performance of transferred policies in the topological domain transfer 
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Fig. 15. The accelerated effect of the transfer method in the topological domain transfer 
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Fig. 16. The source and target tasks of the task transfer 
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Fig. 17. The performance of the transfer method in the task transfer 
 

www.intechopen.com



Autonomous Agents42

 

1
1001
2001
3001
4001
5001
6001
7001
8001
9001

1 11 21 31 41 51 61 71 81 91

number of episode

nu
m
be

r 
of
 s
te
ps

random (b)

transferred (b)

random (c)

transferred (c)

 

1
1001
2001
3001
4001
5001
6001
7001
8001
9001

1 11 21 31 41 51 61 71 81 91

number of episode

nu
m
be

r 
of
 s
te
ps

random (d)

transferred (d)

random (e)

transferred (e)

 
Fig. 18. The accelerated effect of the transfer method in the task transfer 

 
4.5 Synthetic Transfer 
In this section, we synthesize the scaling domain transfer, the topological domain transfer 
and the task transfer to be a synthetic transfer. The synthetic transfer is like transferring a 
maze to another. The source task and the target tasks are shown in Fig. 19. Notice that these 
three tasks are randomly generated with the condition that each state could reach the 
terminal state. The accelerated effects of the transfer method are shown in Fig. 20. The 
results show that the transfer method is not only used in one of transfer types, but also in 
the synthetic case. That is the reason why we discuss the transfer method rather than the 
simple transfer method.  
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Fig. 19. The source task (a) and the target tasks (b) and (c) of the synthetic transfer 
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Fig. 20. The accelerated effect of the transfer method in the synthetic transfer 
 

 

5. Discussions 
 

The theoretical analysis of the simple transfer method is based on the spectral analysis on 
graph Laplacian. Low-order basis functions of graph Laplacian tend to represent more 
features of the value functions and high-order basis functions tend to represent fewer 
features. If low-order basis functions of two tasks are similar, the simple transfer method 
performs well. In other words, similar tasks tend to keep similar structures in low-order 
basis functions so transferring weights from one task to another could acquire a good 
approximate policy. The experimental results show that if two tasks are similar, the 
transferred policy of the simple transfer method could be very close to the optimal one. 
However, even though the simple transfer method seems to be good in the domain transfer 
cases, it could not be used in the task transfer. Furthermore, it still needs more theoretical 
analysis as to determine if topological similarity is close enough to apply the simple transfer 
method that ensures the simple transferred policy to be close to the optimal one. 
The transfer method could be used in three transfer types: the scaling domain transfer, the 
topological domain transfer and the task transfer. However, the transfer method is not 
always better than the simple transfer method. The experimental results show that the 
transferred policy of the transfer method converges earlier than the random policy. In other 
words, the evidence demonstrates the accelerated effect of the transfer method. The reason 
why the transfer method could work in the task transfer is taking rewards into consideration 
on the modified graph Laplacian. However, how to evaluate the accelerated effect of the 
transfer method in more objective manner is a challenge because different tasks tend to have 
different effects. 
In this chapter, we have proposed the transfer method based on the topology of state 
transitions for reinforcement learning. It could be used in three transfer types: the scaling 
domain transfer, the topological domain transfer and the task transfer. Because the transfer 
method is transferring the state-value function, we need a perfect transition model to obtain 
the policy. However, to obtain the perfect transition model sometimes is not easy so 
extending this idea to the action-value function might be an approach to avoid this problem.  
Because the transfer method only deals with the discrete tasks, mapping continuous tasks to 
discrete tasks might be an approach to deal with the transfer in continuous tasks. 

 
6. References 
 

Chung, F. R. K. (1997). Spectral graph theory, American Mathematical Society. 
Hessling, A. v., & Goel, A. K. (2005). Abstracting reusable cases from reinforcement 

learning. Proceedings of the Sixth International Conference on Case-Based Reasoning 
Workshop.  

Kimberly, F., & Mahadevan, S. (2006). Proto-transfer learning in Markov decision processes 
using spectral methods. Proceedings of the Twenty-Third International Conference on 
Machine Learning Workshop on Structural Knowledge Transfer for Machine Learning.  

Liu, Y., & Stone, P. (2006). Value-function-based transfer for reinforcement learning using 
structure mapping. Proceedings of the Twenty-First National Conference on Artificial 
Intelligence.  

Mahadevan, S. (2005). Proto-value functions: Developmental reinforcement learning. 
Proceedings of the Twenty-Second International Conference on Machine Learning.  

www.intechopen.com



Graph Laplacian Based Transfer Learning Methods in Reinforcement Learning 43

 

1
1001
2001
3001
4001
5001
6001
7001
8001
9001

1 11 21 31 41 51 61 71 81 91

number of episode

nu
m
be

r 
of
 s
te
ps

random (b)

transferred (b)

random (c)

transferred (c)

 

1
1001
2001
3001
4001
5001
6001
7001
8001
9001

1 11 21 31 41 51 61 71 81 91

number of episode

nu
m
be

r 
of
 s
te
ps

random (d)

transferred (d)

random (e)

transferred (e)

 
Fig. 18. The accelerated effect of the transfer method in the task transfer 
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