
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

Graph Laplacian Based Transfer Learning Methods in Reinforcement Learning 27

Graph Laplacian Based Transfer Learning Methods in Reinforcement
Learning

Yi-Ting Tsao, Ke-Ting Xiao, Von-Wun Soo and Chung-Cheng Chiu

X

Graph Laplacian Based Transfer Learning
Methods in Reinforcement Learning

Yi-Ting Tsao, Ke-Ting Xiao, Von-Wun Soo and Chung-Cheng Chiu

Department of Computer Science, National Tsing Hua University
HsinChu, Taiwan

1. Introduction

In the real world, people often reuse their knowledge in dealing with daily life problems.
They can observe facts in an environment and recall similar experience in the past to deal
with new situations. This phenomenon implies that there must be some features for people
to compare the similarity between two environments. For example, toilet papers are usually
placed nearby cashiers in different marts in Taiwan as shown in Fig. 1. In these two photos,
orange ovals represent features for cashiers and red ovals represent features for toilet papers.
The features which allow people to recognize the fact “Toilet papers are usually placed
nearby cashiers.” are the kinds of experience which could be reused.

Fig. 1. Two different marts in Taiwan

One of disadvantages in reinforcement learning (Kimberly & Mahadevan) (Sutton & Barto,
1998) is that two different tasks with different initial states and goal states must be learned
to acquire good policies separately. It would waste time to simply learn twice in two
different tasks if they share some similar subtasks. Transfer learning is an approach to
improve the performance of cross tasks by avoiding redundancy. Some previous work show
that transferring knowledge between two tasks could speed up learning (Matthew E. Taylor,
Stone, & Liu, 2005). In reinforcement learning, the value function provides a guideline for

2

www.intechopen.com

Autonomous Agents28

action selection in a given state. In other words, the value function could be converted to the
corresponding policy, which guides action selection. Therefore, transferring the value
function is an intuitive approach in reinforcement learning.
The aim of transfer learning is to reuse learned knowledge from a source task to accelerate
learning in a related target task. Many transfer methods which are based on different
features, such as the value function or the policy, have been proposed (Hessling & Goel,
2005; Liu & Stone, 2006; Matthew E. Taylor & Stone, 2007; Mattew E. Taylor, Whiteson, &
Stone, 2007). Some researchers propose a rule transfer method which is based on case-based
reasoning. They acquire some rules by approximating the policy in a source task and then
translate them into corresponding rules, which could be used as the policy for a target task
(Hessling & Goel, 2005). In more details, they train a decision tree as rules with respect to
the value function in a source task and then reuse the decision tree in the target task. In
order to transfer, they assume that two tasks have similar descriptions. In addition, some
researchers represent the policy as a neural network in a source task and transfer it to a
target task (Mattew E. Taylor et al., 2007). However, it requires some hand-coded translation
functions. Some researchers represent states and actions as qualitative dynamic Bayes
networks (QDBNs) and find their mapping between a source task and a target task (Liu &
Stone, 2006). However, finding the mapping needs a lot of efforts. The major problem of the
above methods is the use of translation functions that are problem dependent and thus
difficult to be defined, even by an expert.
A novel transfer method which is based on proto-value functions has been proposed
(Kimberly & Mahadevan, 2006; Mahadevan, 2005; Mahadevan & Maggioni, 2006, 2007).
Proto-value functions, which are derived from spectral graph theory, harmonic analysis,
and Riemannian manifold, could be used to represent a set of basis functions to
approximate a function. This method reuses proto-value functions from a source task and
just learns their weights in composing the value function for a target task. Therefore, an
advantage of this method is that it transfers from a source task to a target task without any
translation function. However, it needs some exploring trials in a target task to acquire
accurate weights for proto-value functions.
Reusing learned knowledge could save some time by avoiding redundant learning. Transfer
learning is an approach to achieve it. In this chapter, we propose transfer methods to obtain
a better prior policy from a source task to reduce learning time in a target task without
hand-coded translation functions by graph Laplacian. Graph Laplacian, which is
constructed by the topology of the state space, are problem independent, so it is helpful for
transfer. In the following sections, we will introduce our transfer methods step-by-step. In
section 2, we introduce some background knowledge such as Markov decision process
(MDP), reinforcement learning, graph Laplacian, and etc. In section 3, we illustrate our
transfer methods in detail. In section 4, we show experimental results on our transfer
methods. In section 5, we conclude and discuss future work.

2. Background

2.1 Markov Decision Process
Markov decision process (Puterman, 2005) is a specification of a sequential decision problem
with a Markovian transition model and additive rewards. Markov decision process is
defined by 4-tuple),,,(''

a
ss

a
ss RPAS , where S denotes a finite set of states, A denotes a finite

set of actions, a
ssP ' denotes the transition probability of taking action a from state s to state

's , and a
ssR ' denotes the reward for transiting from state s to state 's with action a . A

function which determines an agent’s action in any state on Markov decision process is
called a policy  . In other words, a policy is a mapping from a state to a unique action. A
value function V maps each state to its expected reward with respect to a policy  as
shown in (1), where  denotes a discount factor and),(as denotes the corresponding
probability of taking action a in state s . The equation (1) is also called Bellman equation.

))'((),()(
'

'' sVRPassV
s

a
ss

a
ss

a
    (1)

An optimal policy * maps each state to a specific action to maximize the expected total
discounted reward and an optimal value function *

V corresponds to the optimal policy *
as shown in (2).

))'((max)(
'

''* sVRPsV
s

a
ss

a
ssa 

  (2)

The value function could be represented in tabular form with one output for each input
tuple. However, some state space in the real world is too huge to memorize the tabular form
of the value function. Approximating the value function in terms of a linear combination of
a set of basis functions as shown in (3) is an apporach to deal with this problem. For each i ,
iv denotes a basis function and iw denotes a corresponding weight.

nnvwvwV  ...11 (3)

Represneting a function by a linear combination of basis functions could save a lot of
memory. However, different sets of basis functions might affect the performance of
functional approximation and the preformance directly impacts an agent’s behavior. In
other words, a suitable set of basis functions plays an important role for an agent’s behavior
on Markov decision process.

2.2 Reinforcement Learning
Reinforcement learning (Sutton & Barto, 1998) is about learning from interaction to achieve
the goal. A reinforcement learning problem is based on Markov decision process. In other
words, a reinforcement learning problem which satisfies the Markov property1 is called
Markov decision process. Some reinforcement learning problems do not satisfy the Markov
property in the real world, but they still could be approximated by the Markov assumption.
Most reinforcement learning methods are based on estimating the value function 2 by

1 Roughly speaking, if deciding a next state only requires using current information, it
satisfies the Markov property.
2 The value function includes two types: the state-value function and the action-value
function. In this paper, we focus on the state-value function.

www.intechopen.com

Graph Laplacian Based Transfer Learning Methods in Reinforcement Learning 29

action selection in a given state. In other words, the value function could be converted to the
corresponding policy, which guides action selection. Therefore, transferring the value
function is an intuitive approach in reinforcement learning.
The aim of transfer learning is to reuse learned knowledge from a source task to accelerate
learning in a related target task. Many transfer methods which are based on different
features, such as the value function or the policy, have been proposed (Hessling & Goel,
2005; Liu & Stone, 2006; Matthew E. Taylor & Stone, 2007; Mattew E. Taylor, Whiteson, &
Stone, 2007). Some researchers propose a rule transfer method which is based on case-based
reasoning. They acquire some rules by approximating the policy in a source task and then
translate them into corresponding rules, which could be used as the policy for a target task
(Hessling & Goel, 2005). In more details, they train a decision tree as rules with respect to
the value function in a source task and then reuse the decision tree in the target task. In
order to transfer, they assume that two tasks have similar descriptions. In addition, some
researchers represent the policy as a neural network in a source task and transfer it to a
target task (Mattew E. Taylor et al., 2007). However, it requires some hand-coded translation
functions. Some researchers represent states and actions as qualitative dynamic Bayes
networks (QDBNs) and find their mapping between a source task and a target task (Liu &
Stone, 2006). However, finding the mapping needs a lot of efforts. The major problem of the
above methods is the use of translation functions that are problem dependent and thus
difficult to be defined, even by an expert.
A novel transfer method which is based on proto-value functions has been proposed
(Kimberly & Mahadevan, 2006; Mahadevan, 2005; Mahadevan & Maggioni, 2006, 2007).
Proto-value functions, which are derived from spectral graph theory, harmonic analysis,
and Riemannian manifold, could be used to represent a set of basis functions to
approximate a function. This method reuses proto-value functions from a source task and
just learns their weights in composing the value function for a target task. Therefore, an
advantage of this method is that it transfers from a source task to a target task without any
translation function. However, it needs some exploring trials in a target task to acquire
accurate weights for proto-value functions.
Reusing learned knowledge could save some time by avoiding redundant learning. Transfer
learning is an approach to achieve it. In this chapter, we propose transfer methods to obtain
a better prior policy from a source task to reduce learning time in a target task without
hand-coded translation functions by graph Laplacian. Graph Laplacian, which is
constructed by the topology of the state space, are problem independent, so it is helpful for
transfer. In the following sections, we will introduce our transfer methods step-by-step. In
section 2, we introduce some background knowledge such as Markov decision process
(MDP), reinforcement learning, graph Laplacian, and etc. In section 3, we illustrate our
transfer methods in detail. In section 4, we show experimental results on our transfer
methods. In section 5, we conclude and discuss future work.

2. Background

2.1 Markov Decision Process
Markov decision process (Puterman, 2005) is a specification of a sequential decision problem
with a Markovian transition model and additive rewards. Markov decision process is
defined by 4-tuple),,,(''

a
ss

a
ss RPAS , where S denotes a finite set of states, A denotes a finite

set of actions, a
ssP ' denotes the transition probability of taking action a from state s to state

's , and a
ssR ' denotes the reward for transiting from state s to state 's with action a . A

function which determines an agent’s action in any state on Markov decision process is
called a policy  . In other words, a policy is a mapping from a state to a unique action. A
value function V maps each state to its expected reward with respect to a policy  as
shown in (1), where  denotes a discount factor and),(as denotes the corresponding
probability of taking action a in state s . The equation (1) is also called Bellman equation.

))'((),()(
'

'' sVRPassV
s

a
ss

a
ss

a
    (1)

An optimal policy * maps each state to a specific action to maximize the expected total
discounted reward and an optimal value function *

V corresponds to the optimal policy *
as shown in (2).

))'((max)(
'

''* sVRPsV
s

a
ss

a
ssa 

  (2)

The value function could be represented in tabular form with one output for each input
tuple. However, some state space in the real world is too huge to memorize the tabular form
of the value function. Approximating the value function in terms of a linear combination of
a set of basis functions as shown in (3) is an apporach to deal with this problem. For each i ,
iv denotes a basis function and iw denotes a corresponding weight.

nnvwvwV  ...11 (3)

Represneting a function by a linear combination of basis functions could save a lot of
memory. However, different sets of basis functions might affect the performance of
functional approximation and the preformance directly impacts an agent’s behavior. In
other words, a suitable set of basis functions plays an important role for an agent’s behavior
on Markov decision process.

2.2 Reinforcement Learning
Reinforcement learning (Sutton & Barto, 1998) is about learning from interaction to achieve
the goal. A reinforcement learning problem is based on Markov decision process. In other
words, a reinforcement learning problem which satisfies the Markov property1 is called
Markov decision process. Some reinforcement learning problems do not satisfy the Markov
property in the real world, but they still could be approximated by the Markov assumption.
Most reinforcement learning methods are based on estimating the value function 2 by

1 Roughly speaking, if deciding a next state only requires using current information, it
satisfies the Markov property.
2 The value function includes two types: the state-value function and the action-value
function. In this paper, we focus on the state-value function.

www.intechopen.com

Autonomous Agents30

approximately solving the Bellman equation. Some other learning methods are also based
on estimating the value function. A major difference is that the reinforcement learning
methods put more efforts into learning to make good decisions for frequently encountered
states and less efforts for infrequently encountered states.
Temporal-difference (TD) learning, which combines the Monte Carlo method and dynamic
programming, is a central concept in reinforcement learning. Temporal-difference learning
estimates the value function of one state from the next state without waiting for an actual
final outcome as shown in (4), where V denotes the value function, s denotes the current
state, 's denotes the next state, a

ssR ' denotes the reward for transiting from state s to state 's
with action a ,  denotes the learning rate, and  denotes the discount factor.

)]()'([)()(' sVsVRsVsV a
ss   (4)

The value function guides an agent’s behavior on Markov decision process and
reinforcement learning learns the value function by continuously updating. Therefore, the
updating method plays an important role in an agent’s performance.

2.3 Graph Laplacian
The Fourier analysis is to decompose a function in terms of a sum of trigonometric functions
with different frequencies. In other words, the trigonometric functions could be combined
together to represent the function. In addition, each frequency of trigonometric functions is
inversely proportional to its importance as representing more features of the function. If two
functions are similar, their trigonometric functions tend to be the same at low frequencies
and the difference at high frequencies.
Graph Laplacian can be defined as the combinatorial Laplacian or the normalized Laplacian
(Chung, 1997). The combinatorial Laplacian of an undirected unweighted graph G is
defined as an operator ADL  , where A is the adjacency matrix and D is a diagonal
matrix whose entries are the row sums of A . In other words, the combinatorial Laplacian
could represent the connection (undirected) or the transition (directed) between two vertices
u and v as shown in (5), where vd denotes the degree of vertex v without the self loop. In
problem solving, states are represented as vertices and connections or transitions between
states are represented as edges.

 otherwise
adjacent are and if

 f

0
1),(vu

vuid
vuL

v 








 (5)

Let f denote a function mapping each vertex u in a graph into a real number. The
combinatorial Laplacian L acts on a function f as shown in (6), where vu ~ denotes

vertex u and vertex v are adjacent. To minimize the equation
2

~

))()(( 
vu

vfuf 3 subject to

f with condition, which f is a unit vector, is equivalent to solving the eigenproblem of L
as shown in (7), where  denotes the eigenvalue and f denotes the eigenfunction. By the
spectral theorem (Chung, 1997), eigenfunctions with respect to smaller eigenvalues are
smoother. In other words, the smoothness of eigenfunctions is inversely proportional to
their eigenvalues.

 
vu

vfufuLf
~

))()(()((6)

fLf  (7)

Furthermore, the normalized Laplacian L~ of a graph is defined as 2/12/1~  LDDL and each
eigenfunction of L~ is defined as fDg 2/1 , where f denotes each eigenfunction of L . The
difference between the combinatorial Laplacian L and the normalized Laplacian L~ is that
the normalized Laplacian models the degree of a vertex as a local measure.
The spectral analysis of graph Laplacian operator provides an orthonormal set of basis
functions that can approximate any square-integrable functions on a graph (Chung, 1997).
These basis functions, which are a set of eigenfunctions of L or L~ , are called as proto-value
functions (Kimberly & Mahadevan, 2006; Mahadevan, 2005; Mahadevan & Maggioni, 2006,
2007). Proto-value functions construct a global smooth approximation of a function on a
graph. In other words, a function on a graph could be decomposed into a linear combination
of proto-value functions.
Therefore, the notion of the spectral analysis on graph Laplacian is similar to the Fourier
analysis. Basis functions of graph Laplacian corresponding to the smaller eigenvalues
represent more features and are more important. It also implies that if two graphs are
similar, their features tend to be the same at low-order basis functions and the difference at
high-order basis functions.

2.4 Transfer Types
In previous work (Kimberly & Mahadevan, 2006), the authors have proposed three transfer
types: task transfer, topological domain transfer, and scaling domain transfer as shown in
Fig. 2. The task transfer problem means that the size of states and the transition model does
not change but the rewards change. For example, tranferring from Fig. 2(a) to Fig. 2(b) is a
task transfer problem and vice versa. The domain transfer problem means that the size of
states or the transition model changes but the rewards are still the same. In detail, the
scaling domain transfer problem is the change of the size of states and the topological
domain transfer problem is the change of a transition model. For example, tranferring from

3 Minimizing the equation  

vu

vfuf
~

))()((has the same result as minimizing the equation

2

~

))()(( 
vu

vfuf .

www.intechopen.com

Graph Laplacian Based Transfer Learning Methods in Reinforcement Learning 31

approximately solving the Bellman equation. Some other learning methods are also based
on estimating the value function. A major difference is that the reinforcement learning
methods put more efforts into learning to make good decisions for frequently encountered
states and less efforts for infrequently encountered states.
Temporal-difference (TD) learning, which combines the Monte Carlo method and dynamic
programming, is a central concept in reinforcement learning. Temporal-difference learning
estimates the value function of one state from the next state without waiting for an actual
final outcome as shown in (4), where V denotes the value function, s denotes the current
state, 's denotes the next state, a

ssR ' denotes the reward for transiting from state s to state 's
with action a ,  denotes the learning rate, and  denotes the discount factor.

)]()'([)()(' sVsVRsVsV a
ss   (4)

The value function guides an agent’s behavior on Markov decision process and
reinforcement learning learns the value function by continuously updating. Therefore, the
updating method plays an important role in an agent’s performance.

2.3 Graph Laplacian
The Fourier analysis is to decompose a function in terms of a sum of trigonometric functions
with different frequencies. In other words, the trigonometric functions could be combined
together to represent the function. In addition, each frequency of trigonometric functions is
inversely proportional to its importance as representing more features of the function. If two
functions are similar, their trigonometric functions tend to be the same at low frequencies
and the difference at high frequencies.
Graph Laplacian can be defined as the combinatorial Laplacian or the normalized Laplacian
(Chung, 1997). The combinatorial Laplacian of an undirected unweighted graph G is
defined as an operator ADL  , where A is the adjacency matrix and D is a diagonal
matrix whose entries are the row sums of A . In other words, the combinatorial Laplacian
could represent the connection (undirected) or the transition (directed) between two vertices
u and v as shown in (5), where vd denotes the degree of vertex v without the self loop. In
problem solving, states are represented as vertices and connections or transitions between
states are represented as edges.

 otherwise
adjacent are and if

 f

0
1),(vu

vuid
vuL

v 








 (5)

Let f denote a function mapping each vertex u in a graph into a real number. The
combinatorial Laplacian L acts on a function f as shown in (6), where vu ~ denotes

vertex u and vertex v are adjacent. To minimize the equation
2

~

))()(( 
vu

vfuf 3 subject to

f with condition, which f is a unit vector, is equivalent to solving the eigenproblem of L
as shown in (7), where  denotes the eigenvalue and f denotes the eigenfunction. By the
spectral theorem (Chung, 1997), eigenfunctions with respect to smaller eigenvalues are
smoother. In other words, the smoothness of eigenfunctions is inversely proportional to
their eigenvalues.

 
vu

vfufuLf
~

))()(()((6)

fLf  (7)

Furthermore, the normalized Laplacian L~ of a graph is defined as 2/12/1~  LDDL and each
eigenfunction of L~ is defined as fDg 2/1 , where f denotes each eigenfunction of L . The
difference between the combinatorial Laplacian L and the normalized Laplacian L~ is that
the normalized Laplacian models the degree of a vertex as a local measure.
The spectral analysis of graph Laplacian operator provides an orthonormal set of basis
functions that can approximate any square-integrable functions on a graph (Chung, 1997).
These basis functions, which are a set of eigenfunctions of L or L~ , are called as proto-value
functions (Kimberly & Mahadevan, 2006; Mahadevan, 2005; Mahadevan & Maggioni, 2006,
2007). Proto-value functions construct a global smooth approximation of a function on a
graph. In other words, a function on a graph could be decomposed into a linear combination
of proto-value functions.
Therefore, the notion of the spectral analysis on graph Laplacian is similar to the Fourier
analysis. Basis functions of graph Laplacian corresponding to the smaller eigenvalues
represent more features and are more important. It also implies that if two graphs are
similar, their features tend to be the same at low-order basis functions and the difference at
high-order basis functions.

2.4 Transfer Types
In previous work (Kimberly & Mahadevan, 2006), the authors have proposed three transfer
types: task transfer, topological domain transfer, and scaling domain transfer as shown in
Fig. 2. The task transfer problem means that the size of states and the transition model does
not change but the rewards change. For example, tranferring from Fig. 2(a) to Fig. 2(b) is a
task transfer problem and vice versa. The domain transfer problem means that the size of
states or the transition model changes but the rewards are still the same. In detail, the
scaling domain transfer problem is the change of the size of states and the topological
domain transfer problem is the change of a transition model. For example, tranferring from

3 Minimizing the equation  

vu

vfuf
~

))()((has the same result as minimizing the equation

2

~

))()(( 
vu

vfuf .

www.intechopen.com

Autonomous Agents32

Fig. 2(a) to Fig. 2(c) is a topological domain transfer problem and from Fig. 2(a) to Fig. 2(d) is
a scaling domain transfer problem. These three transfer types are symmetric which means
that if transferring from graph SG to graph TG is one of transfer types, transferring from
graph TG to graph SG is the same transfer type. Notice that R denotes a reward in a state,
but rewards could be gained after any state transition in general case.

RR

RR

 (a) source (b) the task transfer

RR

RR

 (c) the topological domain transfer (d) the scaling domain transfer
Fig. 2. Examples of transfer types

3. Methodology

3.1 An Example
Before we describe how to transfer, we show a simple example for the combinatorial
Laplacian and a simple scenario for the transfer problem. A 3x3 grid world and its
corresponding state transitioin graph are shown in Fig. 3(a) and Fig. 3(c). A state is defined

as an agent at one of cells in the grid world and the state transition graph shows the possible
transitions from one state to another. By definitioin in section 2.2, we could derive the
combinatorial Laplacian as shown in Fig. 3(b). The diagonal terms denote the degree of
states and the others denote the connection. Notice that the combinatorial Laplacian does
not only describe the grid world problems, but also others. For example, the task of putting
on a pair of shoes (Russell & Norvig, 2003) is defined as an agent who wants to put on shoes
with a condition of putting on socks before shoes. The state transition graph of this problem
is shown in Fig. 3(d). By camparing Fig. 3(c) and Fig. 3(d), we could find that the two graphs
are the same. It means that their combinatorial Laplacians are also the same. Therefore, we
could do the domain transfer between these two tasks.

 (a) 3x3 grid world (b) the combinatorial Laplacian

 (c) the state transition graph of (a) (d) the state transition graph of the problem

 of putting on a pair of shoes
Fig. 3. A simple example

3.2 A Simple Transfer Method
In this section, we describe a simple transfer method which is based on transferring the
value function. We represent the value function by a linear combination of basis functions
and the idea is transferring the weights between two similar tasks whose details are
described in Fig. 4. The first step is to collect the knowledge of state transitions in both tasks.

















































210100000
131010000

012001000
100310100

010141010
001013001
000100210
000010131
000001012

www.intechopen.com

Graph Laplacian Based Transfer Learning Methods in Reinforcement Learning 33

Fig. 2(a) to Fig. 2(c) is a topological domain transfer problem and from Fig. 2(a) to Fig. 2(d) is
a scaling domain transfer problem. These three transfer types are symmetric which means
that if transferring from graph SG to graph TG is one of transfer types, transferring from
graph TG to graph SG is the same transfer type. Notice that R denotes a reward in a state,
but rewards could be gained after any state transition in general case.

RR

RR

 (a) source (b) the task transfer

RR

RR

 (c) the topological domain transfer (d) the scaling domain transfer
Fig. 2. Examples of transfer types

3. Methodology

3.1 An Example
Before we describe how to transfer, we show a simple example for the combinatorial
Laplacian and a simple scenario for the transfer problem. A 3x3 grid world and its
corresponding state transitioin graph are shown in Fig. 3(a) and Fig. 3(c). A state is defined

as an agent at one of cells in the grid world and the state transition graph shows the possible
transitions from one state to another. By definitioin in section 2.2, we could derive the
combinatorial Laplacian as shown in Fig. 3(b). The diagonal terms denote the degree of
states and the others denote the connection. Notice that the combinatorial Laplacian does
not only describe the grid world problems, but also others. For example, the task of putting
on a pair of shoes (Russell & Norvig, 2003) is defined as an agent who wants to put on shoes
with a condition of putting on socks before shoes. The state transition graph of this problem
is shown in Fig. 3(d). By camparing Fig. 3(c) and Fig. 3(d), we could find that the two graphs
are the same. It means that their combinatorial Laplacians are also the same. Therefore, we
could do the domain transfer between these two tasks.

 (a) 3x3 grid world (b) the combinatorial Laplacian

 (c) the state transition graph of (a) (d) the state transition graph of the problem

 of putting on a pair of shoes
Fig. 3. A simple example

3.2 A Simple Transfer Method
In this section, we describe a simple transfer method which is based on transferring the
value function. We represent the value function by a linear combination of basis functions
and the idea is transferring the weights between two similar tasks whose details are
described in Fig. 4. The first step is to collect the knowledge of state transitions in both tasks.

















































210100000
131010000

012001000
100310100

010141010
001013001
000100210
000010131
000001012

www.intechopen.com

Autonomous Agents34

The second step is to construct the normalized Laplacian by the collected state transitions.
The third step is to compute the corresponding basis functions of the normalized Laplacians.
The fourth step is to obtain the weights of the source basis functions by approximating the
source value function. The fifth step is to approximate the target value function in terms of
the target basis functions and the obtained weights. The last step is to acquire the target
policy through the approximated target value function.

1. Perform N -steps random walk to obtain M trials on a source task and a target task

respectively.
2. Construct the normalized Laplacians SL~ , by the undirected graphs SG , TG which are

obtained by the trials.
3. Solve the eigenproblems of SL~ , TL~ to obtain the basis functions }{ S

iv , }{ T
iv which are

ordered by the ascending eigenvalues.
4. Approximate the source value function SV *

 to obtain the weights }{ S
iw corresponding

to }{ S
iv by the least-square error fit method.

5. Transfer the weight }{ S
iw from }{ S

iv to the corresponding target basis functions }{ T
iv .

 
i

T
ii

T vwV '

6. Convert the approximation target value function TV ' to the target policy ' .

Fig. 4. A simple transfer method

The reason why the simple transfer method works is that basis functions of both tasks with
the same order play the same important role for both value functions. Therefore, we transfer
the obtained weights from a source task to a target task. If two tasks are similar, two sets of
basis functions tend to be similar. Notice that it does not imply that numeric values are
similar but the structure is similar as shown in Fig. 5. On the one hand, a small difference
between two tasks cannot affect the global smooth structure so the both low-order basis
functions tend to be the same. On the other hand, the high-order basis functions are affected
by a small change so the target policy could obtain from the similar low-order basis
functions and the different high-order basis functions. For example, the basis functions in
Fig. 5 are the lower-order ones and the basis functions in Fig. 6 are the high-order ones.

0
2

4
6

8

0

2

4

6

8
-0.2

-0.1

0

0.1

0.2

0
2

4
6

8
10

0

5

10
-0.2

-0.1

0

0.1

0.2

Fig. 5. The similar structure of the basis functions of Fig. 2(a) and Fig. 2(d)

0
2

4
6

8

0

2

4

6

8
-0.2

-0.1

0

0.1

0.2

0
2

4
6

8
10

0

5

10
-0.2

-0.1

0

0.1

0.2

Fig. 6. The different structures of the basis functions of Fig. 2(a) and Fig. 2(d)

3.3 Modified Graph Laplacian
In section 2.3, we introduce the graph Laplacian and the smoothness property of its
corresponding eigenfunction. In this section, we assume that each state transition is
bidirectional and a positive circular reward does not exist for every task, which means that
both edges, vu ~ and uv ~ , have positive rewards. Then, the modified graph Laplacian 'L of
a directed graph is defined in (8), where vS denotes the entry sum of the v -th row. Roughly
speaking, the modified graph Laplacian treats the state with a positive reward as a termination.

 otherwise
reward positive a without and
 if

0
1),(' v~uu~v

vuS
vuL

v 











 (8)

Let f denote a function mapping each vertex u in a graph into a real number and the
modified graph Laplacian 'L acts on f as shown in (9), where vu  denotes vu ~ and

uv ~ without a positive reward. To minimize the equation (9) subject to f with the
condition which f is a unit vector is equivalent to solving the eigenproblem of 'L . It is
similar to the graph Laplacian case.





vu

vfufufL))()(()(' (9)

Because the graph Laplacian L is a positive semidefinite matrix, the eigenvalues of L are
non-negative real numbers. To analyze the eigenvalues of the modified graph Laplacian 'L
we observe the characteristic equation of the modified graph Laplacian 'L as shown in (10),
where L̂ denotes the combinatorial Laplacian L without i -th row and column, which

),(' iiL is equivalent to zero. By the definition, L̂ is a possible graph Laplacian. Therfore, L̂
is a positive semidefinite matrix and its eigenvalues are non-negtaive numbers. Furthermore,
we could derive that the eigenvalues of 'L are still non-negative and the normalized version

2/12/1 ''''~  DLDL , where 'D denotes a matrix with diagonal terms of 'L .

)ˆdet()()'det(ILIL k   (10)

www.intechopen.com

Graph Laplacian Based Transfer Learning Methods in Reinforcement Learning 35

The second step is to construct the normalized Laplacian by the collected state transitions.
The third step is to compute the corresponding basis functions of the normalized Laplacians.
The fourth step is to obtain the weights of the source basis functions by approximating the
source value function. The fifth step is to approximate the target value function in terms of
the target basis functions and the obtained weights. The last step is to acquire the target
policy through the approximated target value function.

1. Perform N -steps random walk to obtain M trials on a source task and a target task

respectively.
2. Construct the normalized Laplacians SL~ , by the undirected graphs SG , TG which are

obtained by the trials.
3. Solve the eigenproblems of SL~ , TL~ to obtain the basis functions }{ S

iv , }{ T
iv which are

ordered by the ascending eigenvalues.
4. Approximate the source value function SV *

 to obtain the weights }{ S
iw corresponding

to }{ S
iv by the least-square error fit method.

5. Transfer the weight }{ S
iw from }{ S

iv to the corresponding target basis functions }{ T
iv .

 
i

T
ii

T vwV '

6. Convert the approximation target value function TV ' to the target policy ' .

Fig. 4. A simple transfer method

The reason why the simple transfer method works is that basis functions of both tasks with
the same order play the same important role for both value functions. Therefore, we transfer
the obtained weights from a source task to a target task. If two tasks are similar, two sets of
basis functions tend to be similar. Notice that it does not imply that numeric values are
similar but the structure is similar as shown in Fig. 5. On the one hand, a small difference
between two tasks cannot affect the global smooth structure so the both low-order basis
functions tend to be the same. On the other hand, the high-order basis functions are affected
by a small change so the target policy could obtain from the similar low-order basis
functions and the different high-order basis functions. For example, the basis functions in
Fig. 5 are the lower-order ones and the basis functions in Fig. 6 are the high-order ones.

0
2

4
6

8

0

2

4

6

8
-0.2

-0.1

0

0.1

0.2

0
2

4
6

8
10

0

5

10
-0.2

-0.1

0

0.1

0.2

Fig. 5. The similar structure of the basis functions of Fig. 2(a) and Fig. 2(d)

0
2

4
6

8

0

2

4

6

8
-0.2

-0.1

0

0.1

0.2

0
2

4
6

8
10

0

5

10
-0.2

-0.1

0

0.1

0.2

Fig. 6. The different structures of the basis functions of Fig. 2(a) and Fig. 2(d)

3.3 Modified Graph Laplacian
In section 2.3, we introduce the graph Laplacian and the smoothness property of its
corresponding eigenfunction. In this section, we assume that each state transition is
bidirectional and a positive circular reward does not exist for every task, which means that
both edges, vu ~ and uv ~ , have positive rewards. Then, the modified graph Laplacian 'L of
a directed graph is defined in (8), where vS denotes the entry sum of the v -th row. Roughly
speaking, the modified graph Laplacian treats the state with a positive reward as a termination.

 otherwise
reward positive a without and
 if

0
1),(' v~uu~v

vuS
vuL

v 











 (8)

Let f denote a function mapping each vertex u in a graph into a real number and the
modified graph Laplacian 'L acts on f as shown in (9), where vu  denotes vu ~ and

uv ~ without a positive reward. To minimize the equation (9) subject to f with the
condition which f is a unit vector is equivalent to solving the eigenproblem of 'L . It is
similar to the graph Laplacian case.





vu

vfufufL))()(()(' (9)

Because the graph Laplacian L is a positive semidefinite matrix, the eigenvalues of L are
non-negative real numbers. To analyze the eigenvalues of the modified graph Laplacian 'L
we observe the characteristic equation of the modified graph Laplacian 'L as shown in (10),
where L̂ denotes the combinatorial Laplacian L without i -th row and column, which

),(' iiL is equivalent to zero. By the definition, L̂ is a possible graph Laplacian. Therfore, L̂
is a positive semidefinite matrix and its eigenvalues are non-negtaive numbers. Furthermore,
we could derive that the eigenvalues of 'L are still non-negative and the normalized version

2/12/1 ''''~  DLDL , where 'D denotes a matrix with diagonal terms of 'L .

)ˆdet()()'det(ILIL k   (10)

www.intechopen.com

Autonomous Agents36

The eigenfunctions with respect to different eigenvalues represent different levels of
smoothness. Therefore, the eigenfunction with respect to the first nonzero eigenvalue on the
modified graph Laplacian is the smoothest. In most cases, the value function tends to be
smooth. By the observation, we find the eigenfunction with respect to the first nonzero
eigenvalue have the similar behavior tendency as its value function. An simple task and its
value function are shown in Fig. 7, where R denotes a reward to illustrate the tendency. In
this grid world task, an agent in each cell represents a state and its topology represents the
possible state transitions. An agent reaches the state with R to obtain a reward 1 and
terminate, otherwise a penalty 04.0 . By the definition, we construct the modified graph
Laplacian as shown in (11). Then, we compute the eigenfunction with respect to the first
nonzero eigenvalue as shown in Fig. 8. Because the eigenfunction is a vector, it have two
possible directions. For convenience, if all values are non-negative, it is called the positive
eigenfunction, otherwise the negative eigenfunction. By the definition (Sutton & Barto, 1998),
the value of a terminal state in value function is zero and the value of the state which is
adjacent to a positive reward is close to the value of the reward. Therefore, we could expect
the value function and the negative eigenfunction with respect to the first nonzero
eigenvalue to be similar and thus we could transfer the value function by the negative
eigenfunction with respect to the first nonzero eigenvalue.

RR

0
2

4
6

8

0

2

4

6

8
-0.5

0

0.5

1

1.5

x

value function

y

va
lu

e

 (a) (b)
Fig. 7. A 8x8 grid world task and its optimal value function

R

R

 with state0000
1300

0031
0012

 with state





































 (11)

0
2

4
6

8

0
2

4
6

8
0

0.05

0.1

0.15

0.2

x

eigenfunction

y

va
lu

e

0
2

4
6

8

0
2

4
6

8
-0.2

-0.15

-0.1

-0.05

0

x

eigenfunction

y

va
lu

e

 (a) the positive eigenfunction (b) the negative eigenfunction
Fig. 8. The eigenfunctions of the 8x8 grid world in Fig. 7(a) with respect to the first nonzero
eigenvalue

3.4 Transfer Method
In this section, we describe a transfer method which is based on the tendency of the
eigenfunction with respect to the first nonzero eigenvalue of the modified graph Laplacian.
The detail of the transfer method is shown in Fig. 9. The first step is to collect the knowledge
of state transitions in both tasks. The second step is to construct the normalized modified
Laplacian by the collected state transitions. The third step is to compute the corresponding
negative eigenfunctions with respect to the first nonzero eigenvalue of the normalized
modified Laplacians. The fourth step is to sort the eigenfunctions in descending order
respectively to obtain the one-to-one state mappings which map states in the source task to
the corresponding ones in the target task. The fifth step is to map the values of states in the
source task to the corresponding ones in the target task. The last step applies only for the
case with different state sizes. If the number of states in the target task is bigger than in the
source task, some states do not obtain the mapping states in the step 4. Therefore, the
extrapolated method is used to estimate their value in terms of the negative eigenfunction in
the target task and the value function in the source task. If the number of states in the target
task is smaller than in the source task, all states in the target task can find the mapping states
in the source task and some states in the source task are useless.

1. Perform N -steps random walk to obtain M trials on a source task and a target task

respectively.
2. Construct the normalized modified Laplacians SL '~ , TL '~ by the directed graphs SG ,

TG , which are obtained by the trials.
3. Solve the eigenproblems of SL~ , TL~ to obtain the negative eigenfunctions with respect

the first nonzero eigenvalue Sv1 , Tv1 .
4. Sort the negative eigenfunctions Sv1 , Tv1 in descending order respectively to obtain the

one-to-one state mappings.
5. Map the values of the source value function to the values of the corresponding states

in the target task.
6. (optional) If the number of states in the target task is bigger than that in the source

task, an extrapolated method is used to estimate the rest of states.
Fig. 9. The transfer method

www.intechopen.com

Graph Laplacian Based Transfer Learning Methods in Reinforcement Learning 37

The eigenfunctions with respect to different eigenvalues represent different levels of
smoothness. Therefore, the eigenfunction with respect to the first nonzero eigenvalue on the
modified graph Laplacian is the smoothest. In most cases, the value function tends to be
smooth. By the observation, we find the eigenfunction with respect to the first nonzero
eigenvalue have the similar behavior tendency as its value function. An simple task and its
value function are shown in Fig. 7, where R denotes a reward to illustrate the tendency. In
this grid world task, an agent in each cell represents a state and its topology represents the
possible state transitions. An agent reaches the state with R to obtain a reward 1 and
terminate, otherwise a penalty 04.0 . By the definition, we construct the modified graph
Laplacian as shown in (11). Then, we compute the eigenfunction with respect to the first
nonzero eigenvalue as shown in Fig. 8. Because the eigenfunction is a vector, it have two
possible directions. For convenience, if all values are non-negative, it is called the positive
eigenfunction, otherwise the negative eigenfunction. By the definition (Sutton & Barto, 1998),
the value of a terminal state in value function is zero and the value of the state which is
adjacent to a positive reward is close to the value of the reward. Therefore, we could expect
the value function and the negative eigenfunction with respect to the first nonzero
eigenvalue to be similar and thus we could transfer the value function by the negative
eigenfunction with respect to the first nonzero eigenvalue.

RR

0
2

4
6

8

0

2

4

6

8
-0.5

0

0.5

1

1.5

x

value function

y

va
lu

e

 (a) (b)
Fig. 7. A 8x8 grid world task and its optimal value function

R

R

 with state0000
1300

0031
0012

 with state





































 (11)

0
2

4
6

8

0
2

4
6

8
0

0.05

0.1

0.15

0.2

x

eigenfunction

y

va
lu

e

0
2

4
6

8

0
2

4
6

8
-0.2

-0.15

-0.1

-0.05

0

x

eigenfunction

y

va
lu

e

 (a) the positive eigenfunction (b) the negative eigenfunction
Fig. 8. The eigenfunctions of the 8x8 grid world in Fig. 7(a) with respect to the first nonzero
eigenvalue

3.4 Transfer Method
In this section, we describe a transfer method which is based on the tendency of the
eigenfunction with respect to the first nonzero eigenvalue of the modified graph Laplacian.
The detail of the transfer method is shown in Fig. 9. The first step is to collect the knowledge
of state transitions in both tasks. The second step is to construct the normalized modified
Laplacian by the collected state transitions. The third step is to compute the corresponding
negative eigenfunctions with respect to the first nonzero eigenvalue of the normalized
modified Laplacians. The fourth step is to sort the eigenfunctions in descending order
respectively to obtain the one-to-one state mappings which map states in the source task to
the corresponding ones in the target task. The fifth step is to map the values of states in the
source task to the corresponding ones in the target task. The last step applies only for the
case with different state sizes. If the number of states in the target task is bigger than in the
source task, some states do not obtain the mapping states in the step 4. Therefore, the
extrapolated method is used to estimate their value in terms of the negative eigenfunction in
the target task and the value function in the source task. If the number of states in the target
task is smaller than in the source task, all states in the target task can find the mapping states
in the source task and some states in the source task are useless.

1. Perform N -steps random walk to obtain M trials on a source task and a target task

respectively.
2. Construct the normalized modified Laplacians SL '~ , TL '~ by the directed graphs SG ,

TG , which are obtained by the trials.
3. Solve the eigenproblems of SL~ , TL~ to obtain the negative eigenfunctions with respect

the first nonzero eigenvalue Sv1 , Tv1 .
4. Sort the negative eigenfunctions Sv1 , Tv1 in descending order respectively to obtain the

one-to-one state mappings.
5. Map the values of the source value function to the values of the corresponding states

in the target task.
6. (optional) If the number of states in the target task is bigger than that in the source

task, an extrapolated method is used to estimate the rest of states.
Fig. 9. The transfer method

www.intechopen.com

Autonomous Agents38

4. Experiments

4.1 Setting
These experiments investigate the effects of the simpler transfer method and the transfer
methods by three transfer types. The transition model is shown in Fig. 10. It means that
when an agent takes an action in a state, the consequence is not deterministic. For example,
if an agent goes forward in a state, the possible next states can be the forward state, the left
state and the right state. Notice that the symbol R denotes a terminal state with reward 1
and any state transitions could not reach the terminal state with a penalty 04.0 . We
compare the results by an  -greedy TD learning agent which means that the agent takes an
action which is not according to the policy with probability  . We set 1.0 , the learning
rate 1.0 and the discount factor 9.0 .

0.8

0.1 0.1

0.8

0.1 0.1

Fig. 10. The transition model in the experiments

The goal of these experiments is to understand the performance and the accelerated effects.
To calculate the steps we assume that the upper left corner is the start state. In the domain
transfer cases, we compare the steps of reaching the reward of a random policy, the simple
transferred policy, the transferred policy and the optimal one as the performance
evaluations. In the task transfer cases, we compare the steps of reaching the reward of a
random policy and the transferred policy to evaluate the performance. In addition, to show
the accelerated effects, we compare the convergence using a random initial policy and the
transferred initial policy for all cases.

4.2 Scaling Domain Transfer
To investigate the performance of the simple transferred policy we separate the scaling
domain transfer into two cases: the up-scaling case and the down-scaling case. The topology
of the task is the same as Fig. 2(a). In the up-scaling case, we choose the 6x6 grid world as a
source task and 8x8, 10x10, 12x12, 14x14, 16x16, 18x18, and 20x20 grid world as target tasks.
In down-scaling case, we choose the 20x20 grid world as a source task and 6x6, 8x8, 10x10,
12x12, 14x14, 16x16, and 18x18 grid world as target tasks. The results are shown in Fig. 11,
where the simple transferred policy is derived from the simple transfer method and the
transferred policy is derived from the transfer method. We could discover that regardless of
the size is changed in a target task, the simple transferred policy still performs very close to
the optimal policy and the transferred policy doe not always perform well. Therefore, we
investigate the accelerated effect of the transfer method with different topologies in the up-
scaling case as shown in Fig. 2(a) and Fig. 7(a). The results are shown in Fig. 12. We could
discover that different topologies have different effects and the transfer method is not
always good for the scaling domain transfer.

0

1000

2000

3000

4000

5000

0 100 200 300 400

size of states

nu
m
be
r
of
 s
te
ps

random
simple
transferred
optimal

0

1000

2000

3000

4000

5000

050100150200250300350

size of states

nu
m
be
r
of
 s
te
ps

random
simple
transferred
optimal

 (a) the up-scaling case (b) the down-scaling case

Fig. 11. The performance of transferred policies in the scaling domain transfer

1
1001
2001
3001
4001
5001
6001
7001
8001
9001

1 11 21 31 41 51 61 71 81 91

number of episodes

n
um

b
er
 o
f
st
ep
s

8x8 random

8x8 transferred

16x16 random

16x16 transferred

20x20 random

20x20 transferred

1
1001
2001
3001
4001
5001
6001
7001
8001
9001

1 11 21 31 41 51 61 71 81 91

number of episodes

nu
m
be
r
o
f
st
ep
s

8x8 random

8x8 transferred

16x16 random

16x16 transferred

20x20 random

20x20 transferred

 (a) corresponding to Fig. 2(a) (b) corresponding to Fig. 7(a)

Fig. 12. The accelerated effect of the transfer method in the scaling domain transfer

4.3 Topological Domain Transfer
The source task is shown in Fig. 2(a) and the target tasks are shown in Fig. 13. Fig. 13(a)
represents that the door is separated into two doors and the distances between each door
and the center is equal to a unit. Fig. 13(b) represents that the size of the door is increased.
We investigate the topological domain transfer in different sizes as follows: 6x6, 8x8, 10x10,
12x12, 14x14, 16x16, 18x18, 20x20. The performance of the transferred policies is shown in
Fig. 14. We could discover that different transfer methods are good for different topological
domain transfer tasks. Although sometimes the transferred policy is not as good as the
optimal policy, if the convergence is good enough, it is still a pretty good transfer. That is
one of reasons why we take the accelerated effect into consideration. Another reason is that
even though a policy is acceptable so far, it is possible to have a bad performance in a bigger
task. The accelerated effect of the transfer method is shown in Fig. 15. We discover that the
convergence of the transferred policy is faster than the random policy in both cases.

www.intechopen.com

Graph Laplacian Based Transfer Learning Methods in Reinforcement Learning 39

4. Experiments

4.1 Setting
These experiments investigate the effects of the simpler transfer method and the transfer
methods by three transfer types. The transition model is shown in Fig. 10. It means that
when an agent takes an action in a state, the consequence is not deterministic. For example,
if an agent goes forward in a state, the possible next states can be the forward state, the left
state and the right state. Notice that the symbol R denotes a terminal state with reward 1
and any state transitions could not reach the terminal state with a penalty 04.0 . We
compare the results by an  -greedy TD learning agent which means that the agent takes an
action which is not according to the policy with probability  . We set 1.0 , the learning
rate 1.0 and the discount factor 9.0 .

0.8

0.1 0.1

0.8

0.1 0.1

Fig. 10. The transition model in the experiments

The goal of these experiments is to understand the performance and the accelerated effects.
To calculate the steps we assume that the upper left corner is the start state. In the domain
transfer cases, we compare the steps of reaching the reward of a random policy, the simple
transferred policy, the transferred policy and the optimal one as the performance
evaluations. In the task transfer cases, we compare the steps of reaching the reward of a
random policy and the transferred policy to evaluate the performance. In addition, to show
the accelerated effects, we compare the convergence using a random initial policy and the
transferred initial policy for all cases.

4.2 Scaling Domain Transfer
To investigate the performance of the simple transferred policy we separate the scaling
domain transfer into two cases: the up-scaling case and the down-scaling case. The topology
of the task is the same as Fig. 2(a). In the up-scaling case, we choose the 6x6 grid world as a
source task and 8x8, 10x10, 12x12, 14x14, 16x16, 18x18, and 20x20 grid world as target tasks.
In down-scaling case, we choose the 20x20 grid world as a source task and 6x6, 8x8, 10x10,
12x12, 14x14, 16x16, and 18x18 grid world as target tasks. The results are shown in Fig. 11,
where the simple transferred policy is derived from the simple transfer method and the
transferred policy is derived from the transfer method. We could discover that regardless of
the size is changed in a target task, the simple transferred policy still performs very close to
the optimal policy and the transferred policy doe not always perform well. Therefore, we
investigate the accelerated effect of the transfer method with different topologies in the up-
scaling case as shown in Fig. 2(a) and Fig. 7(a). The results are shown in Fig. 12. We could
discover that different topologies have different effects and the transfer method is not
always good for the scaling domain transfer.

0

1000

2000

3000

4000

5000

0 100 200 300 400

size of states

nu
m
be
r
of
 s
te
ps

random
simple
transferred
optimal

0

1000

2000

3000

4000

5000

050100150200250300350

size of states

nu
m
be
r
of
 s
te
ps

random
simple
transferred
optimal

 (a) the up-scaling case (b) the down-scaling case

Fig. 11. The performance of transferred policies in the scaling domain transfer

1
1001
2001
3001
4001
5001
6001
7001
8001
9001

1 11 21 31 41 51 61 71 81 91

number of episodes

n
um

b
er
 o
f
st
ep
s

8x8 random

8x8 transferred

16x16 random

16x16 transferred

20x20 random

20x20 transferred

1
1001
2001
3001
4001
5001
6001
7001
8001
9001

1 11 21 31 41 51 61 71 81 91

number of episodes

nu
m
be
r
o
f
st
ep
s

8x8 random

8x8 transferred

16x16 random

16x16 transferred

20x20 random

20x20 transferred

 (a) corresponding to Fig. 2(a) (b) corresponding to Fig. 7(a)

Fig. 12. The accelerated effect of the transfer method in the scaling domain transfer

4.3 Topological Domain Transfer
The source task is shown in Fig. 2(a) and the target tasks are shown in Fig. 13. Fig. 13(a)
represents that the door is separated into two doors and the distances between each door
and the center is equal to a unit. Fig. 13(b) represents that the size of the door is increased.
We investigate the topological domain transfer in different sizes as follows: 6x6, 8x8, 10x10,
12x12, 14x14, 16x16, 18x18, 20x20. The performance of the transferred policies is shown in
Fig. 14. We could discover that different transfer methods are good for different topological
domain transfer tasks. Although sometimes the transferred policy is not as good as the
optimal policy, if the convergence is good enough, it is still a pretty good transfer. That is
one of reasons why we take the accelerated effect into consideration. Another reason is that
even though a policy is acceptable so far, it is possible to have a bad performance in a bigger
task. The accelerated effect of the transfer method is shown in Fig. 15. We discover that the
convergence of the transferred policy is faster than the random policy in both cases.

www.intechopen.com

Autonomous Agents40

RR

RR

(a) (b)
Fig. 13. The target tasks of the topological domain transfer

0

1000

2000

3000

4000

5000

0 100 200 300 400

size of states

nu
m
be
r
of
 s
te
ps

random
simple
transferred
optimal

0

1000

2000

3000

4000

5000

0 100 200 300 400

size of states

nu
m
be
r
of
 s
te
ps

random
simple
transferred
optimal

Fig. 14. The performance of transferred policies in the topological domain transfer

1
1001
2001
3001
4001
5001
6001
7001
8001
9001

1 11 21 31 41 51 61 71 81 91

number of episode

nu
m
be

r
of
 s
te
ps

8x8 random
8x8 transferred
16x16 random
16x16 transferred
20x20 random
20x20 transferred

1
1001
2001
3001
4001
5001
6001
7001
8001
9001

1 11 21 31 41 51 61 71 81 91

number of episode

nu
m
b
er
 o
f
st
ep

s

8x8 random
8x8 transferred
16x16 random
16x16 transferred
20x20 random
20x20 transferred

Fig. 15. The accelerated effect of the transfer method in the topological domain transfer

4.4 Task Transfer
So far, we compare only the simple transfer method and the transfer method in the domain
transfer cases. In this section, we investigate the transfer method in the task transfer. The
reason why we do not discuss the simple transfer method is that it could not use in the task
transfer because it does not take the reward into consideration. The source task and the
target tasks are shown in Fig. 16. Fig. 16(a) represents the source task and the Fig. 16(b), (c),
(d), (e) represent the target tasks with different rewards. Notice that we investigate the task
transfer in a fixed size 10x10 because we think the task transfer is independent to the size.

The performance of the transfer method is shown in Fig. 17. We could discover that the
transferred policy is much better than the random policy. The accelerated effect of the
transferred method is shown in Fig. 18. The convergence is obviously much faster than the
random policy. In other words, the transfer method could accelerate learning in the task
transfer cases.

RR

RR

(a) (b)

RR

 RR

RR

(c) (d) (e)

Fig. 16. The source and target tasks of the task transfer

0

100

200

300

400

500

(a) (b) (c) (d)

nu
m

be
r o

f s
te

ps

random
transferred

Fig. 17. The performance of the transfer method in the task transfer

www.intechopen.com

Graph Laplacian Based Transfer Learning Methods in Reinforcement Learning 41

RR

RR

(a) (b)
Fig. 13. The target tasks of the topological domain transfer

0

1000

2000

3000

4000

5000

0 100 200 300 400

size of states

nu
m
be
r
of
 s
te
ps

random
simple
transferred
optimal

0

1000

2000

3000

4000

5000

0 100 200 300 400

size of states

nu
m
be
r
of
 s
te
ps

random
simple
transferred
optimal

Fig. 14. The performance of transferred policies in the topological domain transfer

1
1001
2001
3001
4001
5001
6001
7001
8001
9001

1 11 21 31 41 51 61 71 81 91

number of episode

nu
m
be

r
of
 s
te
ps

8x8 random
8x8 transferred
16x16 random
16x16 transferred
20x20 random
20x20 transferred

1
1001
2001
3001
4001
5001
6001
7001
8001
9001

1 11 21 31 41 51 61 71 81 91

number of episode

nu
m
b
er
 o
f
st
ep

s

8x8 random
8x8 transferred
16x16 random
16x16 transferred
20x20 random
20x20 transferred

Fig. 15. The accelerated effect of the transfer method in the topological domain transfer

4.4 Task Transfer
So far, we compare only the simple transfer method and the transfer method in the domain
transfer cases. In this section, we investigate the transfer method in the task transfer. The
reason why we do not discuss the simple transfer method is that it could not use in the task
transfer because it does not take the reward into consideration. The source task and the
target tasks are shown in Fig. 16. Fig. 16(a) represents the source task and the Fig. 16(b), (c),
(d), (e) represent the target tasks with different rewards. Notice that we investigate the task
transfer in a fixed size 10x10 because we think the task transfer is independent to the size.

The performance of the transfer method is shown in Fig. 17. We could discover that the
transferred policy is much better than the random policy. The accelerated effect of the
transferred method is shown in Fig. 18. The convergence is obviously much faster than the
random policy. In other words, the transfer method could accelerate learning in the task
transfer cases.

RR

RR

(a) (b)

RR

 RR

RR

(c) (d) (e)

Fig. 16. The source and target tasks of the task transfer

0

100

200

300

400

500

(a) (b) (c) (d)

nu
m

be
r o

f s
te

ps

random
transferred

Fig. 17. The performance of the transfer method in the task transfer

www.intechopen.com

Autonomous Agents42

1
1001
2001
3001
4001
5001
6001
7001
8001
9001

1 11 21 31 41 51 61 71 81 91

number of episode

nu
m
be

r
of
 s
te
ps

random (b)

transferred (b)

random (c)

transferred (c)

1
1001
2001
3001
4001
5001
6001
7001
8001
9001

1 11 21 31 41 51 61 71 81 91

number of episode

nu
m
be

r
of
 s
te
ps

random (d)

transferred (d)

random (e)

transferred (e)

Fig. 18. The accelerated effect of the transfer method in the task transfer

4.5 Synthetic Transfer
In this section, we synthesize the scaling domain transfer, the topological domain transfer
and the task transfer to be a synthetic transfer. The synthetic transfer is like transferring a
maze to another. The source task and the target tasks are shown in Fig. 19. Notice that these
three tasks are randomly generated with the condition that each state could reach the
terminal state. The accelerated effects of the transfer method are shown in Fig. 20. The
results show that the transfer method is not only used in one of transfer types, but also in
the synthetic case. That is the reason why we discuss the transfer method rather than the
simple transfer method.

RR

RR

RR

 (a) (b) (c)
Fig. 19. The source task (a) and the target tasks (b) and (c) of the synthetic transfer

1
1001
2001
3001
4001
5001
6001
7001
8001
9001

1 201 401 601 801 1001 1201 1401 1601 1801

number of episodes

nu
m
be
r
of
 s
te
ps

random

transferred

1
1001
2001
3001
4001
5001
6001
7001
8001
9001

1 201 401 601 801 1001 1201 1401 1601 1801

number of episodes

n
um

be
r
of
 s
te
ps

random

transferred

Fig. 20. The accelerated effect of the transfer method in the synthetic transfer

5. Discussions

The theoretical analysis of the simple transfer method is based on the spectral analysis on
graph Laplacian. Low-order basis functions of graph Laplacian tend to represent more
features of the value functions and high-order basis functions tend to represent fewer
features. If low-order basis functions of two tasks are similar, the simple transfer method
performs well. In other words, similar tasks tend to keep similar structures in low-order
basis functions so transferring weights from one task to another could acquire a good
approximate policy. The experimental results show that if two tasks are similar, the
transferred policy of the simple transfer method could be very close to the optimal one.
However, even though the simple transfer method seems to be good in the domain transfer
cases, it could not be used in the task transfer. Furthermore, it still needs more theoretical
analysis as to determine if topological similarity is close enough to apply the simple transfer
method that ensures the simple transferred policy to be close to the optimal one.
The transfer method could be used in three transfer types: the scaling domain transfer, the
topological domain transfer and the task transfer. However, the transfer method is not
always better than the simple transfer method. The experimental results show that the
transferred policy of the transfer method converges earlier than the random policy. In other
words, the evidence demonstrates the accelerated effect of the transfer method. The reason
why the transfer method could work in the task transfer is taking rewards into consideration
on the modified graph Laplacian. However, how to evaluate the accelerated effect of the
transfer method in more objective manner is a challenge because different tasks tend to have
different effects.
In this chapter, we have proposed the transfer method based on the topology of state
transitions for reinforcement learning. It could be used in three transfer types: the scaling
domain transfer, the topological domain transfer and the task transfer. Because the transfer
method is transferring the state-value function, we need a perfect transition model to obtain
the policy. However, to obtain the perfect transition model sometimes is not easy so
extending this idea to the action-value function might be an approach to avoid this problem.
Because the transfer method only deals with the discrete tasks, mapping continuous tasks to
discrete tasks might be an approach to deal with the transfer in continuous tasks.

6. References

Chung, F. R. K. (1997). Spectral graph theory, American Mathematical Society.
Hessling, A. v., & Goel, A. K. (2005). Abstracting reusable cases from reinforcement

learning. Proceedings of the Sixth International Conference on Case-Based Reasoning
Workshop.

Kimberly, F., & Mahadevan, S. (2006). Proto-transfer learning in Markov decision processes
using spectral methods. Proceedings of the Twenty-Third International Conference on
Machine Learning Workshop on Structural Knowledge Transfer for Machine Learning.

Liu, Y., & Stone, P. (2006). Value-function-based transfer for reinforcement learning using
structure mapping. Proceedings of the Twenty-First National Conference on Artificial
Intelligence.

Mahadevan, S. (2005). Proto-value functions: Developmental reinforcement learning.
Proceedings of the Twenty-Second International Conference on Machine Learning.

www.intechopen.com

Graph Laplacian Based Transfer Learning Methods in Reinforcement Learning 43

1
1001
2001
3001
4001
5001
6001
7001
8001
9001

1 11 21 31 41 51 61 71 81 91

number of episode

nu
m
be

r
of
 s
te
ps

random (b)

transferred (b)

random (c)

transferred (c)

1
1001
2001
3001
4001
5001
6001
7001
8001
9001

1 11 21 31 41 51 61 71 81 91

number of episode

nu
m
be

r
of
 s
te
ps

random (d)

transferred (d)

random (e)

transferred (e)

Fig. 18. The accelerated effect of the transfer method in the task transfer

4.5 Synthetic Transfer
In this section, we synthesize the scaling domain transfer, the topological domain transfer
and the task transfer to be a synthetic transfer. The synthetic transfer is like transferring a
maze to another. The source task and the target tasks are shown in Fig. 19. Notice that these
three tasks are randomly generated with the condition that each state could reach the
terminal state. The accelerated effects of the transfer method are shown in Fig. 20. The
results show that the transfer method is not only used in one of transfer types, but also in
the synthetic case. That is the reason why we discuss the transfer method rather than the
simple transfer method.

RR

RR

RR

 (a) (b) (c)
Fig. 19. The source task (a) and the target tasks (b) and (c) of the synthetic transfer

1
1001
2001
3001
4001
5001
6001
7001
8001
9001

1 201 401 601 801 1001 1201 1401 1601 1801

number of episodes

nu
m
be
r
of
 s
te
ps

random

transferred

1
1001
2001
3001
4001
5001
6001
7001
8001
9001

1 201 401 601 801 1001 1201 1401 1601 1801

number of episodes

n
um

be
r
of
 s
te
ps

random

transferred

Fig. 20. The accelerated effect of the transfer method in the synthetic transfer

5. Discussions

The theoretical analysis of the simple transfer method is based on the spectral analysis on
graph Laplacian. Low-order basis functions of graph Laplacian tend to represent more
features of the value functions and high-order basis functions tend to represent fewer
features. If low-order basis functions of two tasks are similar, the simple transfer method
performs well. In other words, similar tasks tend to keep similar structures in low-order
basis functions so transferring weights from one task to another could acquire a good
approximate policy. The experimental results show that if two tasks are similar, the
transferred policy of the simple transfer method could be very close to the optimal one.
However, even though the simple transfer method seems to be good in the domain transfer
cases, it could not be used in the task transfer. Furthermore, it still needs more theoretical
analysis as to determine if topological similarity is close enough to apply the simple transfer
method that ensures the simple transferred policy to be close to the optimal one.
The transfer method could be used in three transfer types: the scaling domain transfer, the
topological domain transfer and the task transfer. However, the transfer method is not
always better than the simple transfer method. The experimental results show that the
transferred policy of the transfer method converges earlier than the random policy. In other
words, the evidence demonstrates the accelerated effect of the transfer method. The reason
why the transfer method could work in the task transfer is taking rewards into consideration
on the modified graph Laplacian. However, how to evaluate the accelerated effect of the
transfer method in more objective manner is a challenge because different tasks tend to have
different effects.
In this chapter, we have proposed the transfer method based on the topology of state
transitions for reinforcement learning. It could be used in three transfer types: the scaling
domain transfer, the topological domain transfer and the task transfer. Because the transfer
method is transferring the state-value function, we need a perfect transition model to obtain
the policy. However, to obtain the perfect transition model sometimes is not easy so
extending this idea to the action-value function might be an approach to avoid this problem.
Because the transfer method only deals with the discrete tasks, mapping continuous tasks to
discrete tasks might be an approach to deal with the transfer in continuous tasks.

6. References

Chung, F. R. K. (1997). Spectral graph theory, American Mathematical Society.
Hessling, A. v., & Goel, A. K. (2005). Abstracting reusable cases from reinforcement

learning. Proceedings of the Sixth International Conference on Case-Based Reasoning
Workshop.

Kimberly, F., & Mahadevan, S. (2006). Proto-transfer learning in Markov decision processes
using spectral methods. Proceedings of the Twenty-Third International Conference on
Machine Learning Workshop on Structural Knowledge Transfer for Machine Learning.

Liu, Y., & Stone, P. (2006). Value-function-based transfer for reinforcement learning using
structure mapping. Proceedings of the Twenty-First National Conference on Artificial
Intelligence.

Mahadevan, S. (2005). Proto-value functions: Developmental reinforcement learning.
Proceedings of the Twenty-Second International Conference on Machine Learning.

www.intechopen.com

Autonomous Agents44

Mahadevan, S., & Maggioni, M. (2006). Proto-value functions: A Laplacian framework for
learning representation and control in Markov decision processes. Technical Report.

Mahadevan, S., & Maggioni, M. (2007). Proto-value functions: A Laplacian framework for
learning representation and control in Markov decision processes. Journal of
Machine Learning Research, 8, 2169-2231.

Puterman, M. L. (2005). Markov decision processes discrete stochastic dynamic programming,
Wiley.

Russell, S., & Norvig, P. (2003). Artificial intelligence a modern approach, Prentice Hall.
Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning an introduction, MIT press.
Taylor, M. E., & Stone, P. (2007). Cross-domain transfer for reinforcement learning.

Proceedings of the Twenty-Fourth International Conference on Machine Learning.
Taylor, M. E.; Stone, P., & Liu, Y. (2005). Value functions for RL-based behavior transfer: A

comparative study. Proceedings of the Twentieth National Conference on Artificial
Intelligence.

Taylor, M. E.; Whiteson, S., & Stone, P. (2007). Transfer via inter-task mappings in policy
search reinforcement learning. Proceedings of the Sixth International Conference on
Autonomous Agents and Multiagent Systems.

www.intechopen.com

Autonomous Agents

Edited by Vedran Kordic

ISBN 978-953-307-089-6

Hard cover, 130 pages

Publisher InTech

Published online 01, June, 2010

Published in print edition June, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Multi agent systems involve a team of agents working together socially to accomplish a task. An agent can be

social in many ways. One is when an agent helps others in solving complex problems. The field of multi agent

systems investigates the process underlying distributed problem solving and designs some protocols and

mechanisms involved in this process. This book presents a combination of different research issues which are

pursued by researchers in the domain of multi agent systems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Yi-Ting Tsao, Ke-Ting Xiao, Von-Wun Soo and Chung-Cheng Chiu (2010). Graph Laplacian Based Transfer

Learning Methods in Reinforcement Learning, Autonomous Agents, Vedran Kordic (Ed.), ISBN: 978-953-307-

089-6, InTech, Available from: http://www.intechopen.com/books/autonomous-agents/graph-laplacian-based-

transfer-learning-methods-in-reinforcement-learning

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

