
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322390794?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

7

An Agent-Based Software Framework
for Robotics and Automation Systems

Franco Guidi-Polanco and Claudio Cubillos
Pontificia Universidad Católica de Valparaíso

Chile

1. Introduction

The concept of “reuse” in software engineering is associated to well design, shorter

development times, and easier maintenance of software applications. Today, the bigger

reuse unit is given by software frameworks, which offer ready-to-use architectures and code

implementations. Several frameworks have been proposed and adopted for a wide variety

of traditional application domains (i.e. graphic interfaces, data persistence, web applications,

etc.). The robotics and automation is a complex domain where the orientation to get reusable

software architectural design has became a center of interest just in the last decade, once

complex physiological functions of robots (i.e. sensing, walking, thinking, etc.) have reached

certain degree of maturity.

In the field of robotics and automation, current application scenarios consider distributed

autonomous cooperative systems, especially aimed to support integration of collaborative

societies of devices. Thus, the paradigm is shifted from the single entity that establishes

simple perception-planning-reaction interactions with its environment (i.e. detect signals,

path planning, reach places), to a colony of autonomous members forced to interact among

them in order to accomplish more complex tasks that are unable to be managed solely for

each single one. The concept of “member” is used in this context to encapsulate each

physical device or virtual process recognizable in the society, which pursues its own

individual objectives.

In our vision such systems are conceptualized as a flat interconnection of autonomous and

decentralized virtual and robotics agents, where no control hierarchy is enforced, and where

each partner takes the initiative to reach to a decision. Agents interact in a peer-to-peer

architectural model, and the global behaviour of the system becomes a synergic property of

the interaction of their parts.

This work presents a software framework for building automation systems, which promotes

different reuse levels. The framework offers a general layered architecture driven by the

paradigm of software agent. The framework includes an agent platform that satisfies specific

requirements in software development for communities of robots and automation devices.

In this paper the architecture is described with more detail, and an example of its

application is provided.

Source: Convergence and Hybrid Information Technologies, Book edited by: Marius Crisan,
 ISBN 978-953-307-068-1, pp. 426, March 2010, INTECH, Croatia, downloaded from SCIYO.COM

www.intechopen.com

 Convergence and Hybrid Information Technologies

92

2. Related work

The multi-agent system (MAS) paradigm is being adopted to implement control and

communication in distributed automation and robotic societies. In such systems, the

modelling paradigm is centred in the concept of agent. An agent is a software entity capable

to perceive its environment, to evaluate these perceptions against some given design

objectives, and to perform some activity in order to reach them, interacting with other

similar entities, and acting over its environment. Agents should be designed to exhibit

robust operation, even if they are immersed in an open or unpredictably changing

environment (Weiss 1999).

In recent years the literature offers several examples of multi-agent architectures and

organizations created for domain-specific applications (see (Haibin, 2006), (Dioubate et al.

2008), (Lim et al., 2009), (Rogers et al., 2006) for some examples). These architectures accent

the identification of agent’s roles and responsibilities, and the description of their

interactions and communications. As expected, due to their ad-hoc nature, these

architectures are hardly reusable outside their original domains.

In order to improve the reuse of design, some studies establish the convenience of

identifying and separating domain-specific aspects from those generic aspects that are

common in families of systems. One example is the orientation followed in (Sims et al., 2004)

that proposes the reuse of organizational coordination mechanisms across different problem

domains and environmental situations. Nevertheless, their work just emphasizes

organization and distribution of tasks and goals, while the system’s structure is not deeply

treated.

An important contribution, in accordance with the latter approach, is the holonic paradigm

(Valckenaers et al. 2008). This approach, offers an organizational model highly reusable,

which can be applied at diverse abstraction levels and replicable in different domains

(Jianhui et al., 2004). However, it is a conceptual model that does not specify

implementation of concrete services that can be required and reused when developing such

systems.

On the other hand, models of agent societies and agent platforms implementations play

insufficient attention to the agent’s environment, which is an essential part in robotic

system’s structure. In practice agent architectures fail to adequately identify and consider

its role. As indicated in (Weyns et al., 2005), popular frameworks minimize the environment

reducing it just to a message transport system or to a brokering infrastructure.

In terms of structure and services, the development of generic agent platforms (e.g. Jade

(Bellifemine et al. 1999)) presents concrete architectures with high degree of reusability, but

made-up by low-granularity components (commonly, basic communication and directory

services), that implement commonly agreed abstract models (e.g. FIPA). Also, these

platforms are not designed to satisfy security, connectivity, and scalability requirements

originated in the robotic and automation domain (Guidi_Polanco et al. 2004).

The adoption of agent systems as enabling technologies for the development of distributed

organizations’ infrastructures is currently matter of research. In particular, the agent

technology seems not only to satisfy the demand for high flexibility requested by enterprise-

wide integration (Rimassa, 2004), but also to provide approaches to support autonomous

self-configuration and self-adaptability of their activities in their operational environment.

www.intechopen.com

An Agent-Based Software Framework for Robotics and Automation Systems

93

3. An abstract model for agent-based robotics societies

In the era of Internet, robotic and automation systems are conceived as flat interconnections
of autonomous and decentralized decision making/control modules. In such a system, no
hierarchy in the decision making is enforced, and each partner takes the initiative to reach a
decision. Control modules have decision-making capabilities and coordinate their activities
by exchanging data and events according to a peer-to-peer architectural model and common
protocols (Brugali & Menga, 2002).
We envision the agent paradigm as the software engineering approach to model control
modules in such robotic architectures. The arguments in favour of an agent-oriented
approach in software engineering for modelling a system can be summarized in the three
ideas indicated in (Jennings, 2001): (1) Agent oriented decompositions are an effective way
of partitioning the problem space of a complex system; (2) The key abstractions of the agent-
oriented mindset are natural means of modelling complex systems; and (3) The agent-
oriented philosophy for modelling and managing organizational relationships is
appropriate for dealing with the dependencies and interactions that exist in complex
systems.
Our approach introduces a layered model that identifies and classifies system’s components
(i.e. agents and services) accordingly with different granularities. Those components and
services that share similar levels of reuse from both, the structural and the organizational
point of view, are grouped together. The model is build recognizing at its basis the physical
environment, which is virtualized in superior levels, making explicit the way in which
agents will interact with it.

Fig. 1. The layers in a robotic society

This vision is constructed as the abstract model depicted in Figure 1. The abstract model is
divided by the following five layers:
a. Environment: it is composed by physical objects pertaining or observed in the real world

(e.g. objects in mobile robot’s environment, wired or wireless communication networks,
computational systems in organizations, human operators, etc.), and concepts
conventionally adopted for its characterization (e.g. geographical coordinates obtained
from a GPS service, temperatures, data transmission latency, water flows
measurements, etc.). The physical world is conceptualized as a multidimensional space
surrounding agents accomplishing physical-related tasks.

b. Autonomous Equipments: represent computing-enabled platforms, such as mobile robots,
automated factory machines, or computing devices, which has to be programmed in
order to act proactively in the robotic community. Such systems, can offer a wide range

Environment

Domain-specific multi-agent system-

Autonomous equipments

Agent’s platform

Agent-based architecture

www.intechopen.com

 Convergence and Hybrid Information Technologies

94

of capabilities expressed in terms of CPU, runtime memory, data storage, data
communication, or operating system. These equipments are usually provided with
sensors that allow the perception of surrounding relevant variables, actuators to interact
with the environment (changing their own position, taking objects, etc.), and
communications devices to interchange messages with other equipments. Also, the
autonomous equipments provide the runtime environment for the agents, so they must
satisfy a set of minimum hardware/software requirements imposed by the agent
platform’s software (or in an opposite point of view, the agent platforms must be
designed to be executed in specific categories of devices).

c. Agent platform: corresponds to the software that offers the base classes to build agents,
and to virtualize environment-dependent services (e.g. interfaces to peripheral devices,
motors, databases, network communication, etc.). It also offers the execution
environment that controls the entire agent’s life-cycle, and regulates its interactions
with other agents and resources. As it was stated above, agent platforms must be
designed for their execution in devices with different hardware (e.g. PDAs, mobile
phones, desktop computers) and software capabilities (in terms of operating systems
and programming languages). A known example of agent platform is JADE
(Bellifemine et al., 1999). A comprehensive list of agent platforms can be found in
(AgentLink, 2004).

d. Agent-based architecture: represent a reusable architecture to support the development of

different kinds of agent-based systems. The architecture specifies a set of common

services (e.g. directory facilitator, yellow pages, etc.), and a framework of

communication/content languages (e.g. ACL (Genesereth and Ketchpel, 1994), KQML

(Finin et al., 1993), etc.) and interaction protocols, necessary to achieve interoperability

among agents. The services offered by the architecture can be implemented by service

agents (such as a yellow-pages agent), or as environment-dependent service (e.g access

to some kind of physical device). An example of a particular agent-based architecture is

specified by FIPA standards, which was conceived to obtain interoperability between

different and generic agent systems (e.g. FIPA Request Interaction Protocol (FIPA,

2002)).

e. Domain-specific multi agent system (DSMAS): corresponds to a concrete instance of a
multi-agent system, where domain-dependent agents are designed to represent real-
world services and systems, and interactions among them are well defined. At this
level, agents are often abstractions of real entities pertaining to the application domain.
DSMAS architectures can be reused within the scope of the context they were created
for. A reusable DSMAS architecture constitutes an agent-based framework for the
development of systems within its domain. DSMAS are supported by the services
offered by the agent-based architecture. Examples of DSMAS could be a colony of
exploration robots, an automated work cell, or a domotic network of devices.

The model proposed above has three main characteristics:
- Decouples design responsibilities: the model presents the different aspects related to a

multi-agent architecture in a separated way. Therefore, the design responsibilities can
be clearly identified and assigned to different development projects or teams.

- - Promotes high cohesion within each layer: components within each layer are closely
related from the functional and communicational point of view, in such a way that their
interactions are optimized.

www.intechopen.com

An Agent-Based Software Framework for Robotics and Automation Systems

95

- Clearly emphasizes the environment: traditional agent architectures consider the
environment implicitly, in most cases just as a mere communication supplier. In our
model, the environment is distinguished as a physical and a virtual one.

4. The G++ Agent Platform

We have developed the G++ Agent Platform, our own software infrastructure for agents’
implementation in robotic and automation societies (Guidi-Polanco et al., 2004). In this
section, the architecture of the platform is described.

4.1 Design directions
Our work was motivated by the need for creating and integrating autonomous systems
through geographical scale cooperation networks, so the following directions guided the
design of the G++ Agent Platform:
- Support for heterogeneous execution hosts: the size and weight of computers have become

considerably smaller, and mobile computers have reached the performance only seen
before in desktop computing systems, increasing the range of devices that can be
integrated in a distributed automation society. It can include robots, autonomous
sensors, PDAs, mobile phones, among others.

- Support for physical mobility: some control modules in robotics and automation system
are expected to be able to change its position at geographic scale. For example they can
run in portable devices carried by its users (e.g. PDAs), or they can be part of inherently
mobile systems (e.g. on-board computers in vehicles). This means that connectivity has
to be implemented in most cases through wireless networks, and then associated
problems such as limited bandwidth and continuity of communications, must be
addressed.

- Support for heterogeneous (wireless) networking: wireless communication is supported
currently by a variety of networking technologies, offering diverse conditions, such as
area coverage, bandwidth, cost, or QoS. Even more, not all of the available technologies
are present in all geographical places, or they are not always offered with the same
configuration at the physical layer. The infrastructure for a global automation system
does not have to bet to a convergence in a unique and global-wide technology, but
instead it has to be able to manage heterogeneity.

- Support for heterogeneous systems and resources: the development of large-scale systems
usually requires the integration of new and legacy enterprise resources, such as
database systems or old applications. Two strategies are commonly applied to face this
integration, if rewriting the application is not possible: wrapping the old application
through an extension of its code that allows direct interaction with the external system,
or implementing a transducer, which is an interface that translates the external
messages in a form suitable for the legacy system, and vice-versa.

- Support for geographical-scale distribution: an automation system can integrate systems
located in separate geographical places. Although in these days, such integration is
possible due to the worldwide coverage of the Internet, it is important to deal with
latency times in communications that can be significant in some applications (e.g. direct
teleoperation of a robot).

Under such a scenario, the possibility of letting each agent with all the responsibility for its
integration with the environment (and consequently, with other peers) implied the agent

www.intechopen.com

 Convergence and Hybrid Information Technologies

96

overload and the replication of complex interaction functionalities. Existing platforms are
not suitable to accomplish these requirements.
In the design of the G++ Agent Platform the above requirements are met. Reusability is a
property we seek in this architecture, because it has to be applied in different context of
robotics and automation, for example the operation of a colony of robots, the organization of
virtual teams, or the integration of large-scale inter-factory logistics, among others.
The structure of our agent platform can be appreciated in Figure 2. It is important to state
that the G++ Agent Platform is an agent infrastructure not committed to any standard agent
architecture (e.g. FIPA), even if compatibility with standard specifications can be obtained
adding compatibility modules.

4.2 The architecture of the G++ Agent Platform
The G++ Agent Platform runs over a Java Virtual Machine (JVM) hosted in a computational
device. The execution environment of the G++ agent platform provides connectivity
services, being responsible for the interactions among all agents. It is also responsible for the
virtualization of the physical environment, through the implementation of sensors and
actuators interfaces that agents can access. The platform offers two kinds of execution
environment implementations, the Container and the Legs module.

MobilityPersistence
External agent

management
Other services

Services management

Security management

Agent

management

Agent

Sensors
Management

Actuators
Management

Legs core

Agent

Sensor
Management

Actuators
Management

Agent

management

Container Legs

Java Virtual Machine Java Virtual Machine

Host resources Host Resources

Connectivity

Messaging

Fig. 2. The G++ platform’s architecture.

a. Container
It is the environment for the execution of contained agents. A container runs over a Java
Runtime Environment, which allows the access to the resources offered by the host. The
container presents to the contained agents common services, such as messaging transport,
local event communication, and support for access to external data repositories. Containers
implement connectivity services among them for message interchange, and for agent and
services migration. They also provide connectivity and state monitoring of external agents,
and they instantiate proxies to make transparent the communication between external and
internal agents.
b. Legs module
The platform can integrate agents running outside the container. These agents are called
external agents or stand-alone agents.

www.intechopen.com

An Agent-Based Software Framework for Robotics and Automation Systems

97

The execution of external agents is allowed by Legs (Local External aGent Support)
modules, which are limited execution environments able to host and execute one agent at
time. They provide connectivity to a container, and then, to the entire platform. As
contained agents, external agents can access all the services provided by the underlying
JVM, and some of the communication services offered by the container, but they cannot
access other services, such as the agent mobility. External agents can be useful, for example,
for the implementation of control systems running on-board of mobile devices with limited
capabilities.
The implementation of external agents follows the same structure given for the

implementation of contained agents. In fact, if a contained agent does not use resources

restricted to contained agents, or host’s special resources, it can be transformed in an

external agent just launching it from a LEGS module.

In the following subsections, main aspects of the platform are described.

4.2.1 The communication infrastructure

Since early stages of the design, this agent platform has been envisioned as the cornerstone
of the distributed architecture for automation systems. In particular, under our conception
this environment not only corresponds to the space where agents can perform their duties
(as all platforms do), it is also aimed to provide a reliable communication infrastructure that
agents can (and should) exploit to interact among themselves in a distributed application.
As result, the G++ Agent Platform is able to offer an implementation of a robotic and
automation system that will delegate to the own agent’s container the conduction of the
major communication traffic. So agents can communicate among themselves asking their
own container to deliver the message to its destination. Messages are delivered following
the best effort policy (i.e. no unnecessary delays are introduced in their expedition), but it is
not guaranteed their reception in the right order. This can happen for two main reasons: 1)
the latency of the Internet, plus costs incurred in retransmissions of packets naturally tends
to increase the time required to transmit a message over long distances, and 2) the
interconnections between containers define the paths that messages have to follow from the
source to the target, each node acting as a router (the processing time on each container has
to be added to the network delays described above). The platform, however, can guarantee
the delivery of messages, detecting and informing the sender when they are not arrived
within the pre-established time. A time window and a timestamp message field are used in
the message for this scope. The time window value can also be infinite, which means no
time window is specified. The message timestamp can also be useful to the message
receiver, to determine the exact sequence of messages.
The timestamp is a key data to support the quality of the messaging service, but its

generation is not easy because requires the adoption of a global time, shared among

containers.

4.2.2 Virtual mobility

Virtual Mobility allows agents to be suspended, transported and restored in diverse
containers. Mobility can be decided autonomously by the agent, in terms of the moment and
destination in which it will be done, or can be enforced by the agent’s owner, or by another
agent. Mobility is implemented through the serialization of the state of the agent, the
transport together with the code (if necessary), and the de-serialization at the destination

www.intechopen.com

 Convergence and Hybrid Information Technologies

98

container. The platform does not provides support for the serialization of the stack of calling
methods, so when this procedure is activated, the agent has to be suspended.
When an agent is moved from its home container to a foreign container, its original agent
management system together with the mobility service is responsible to keep trace of the
new position of the agent. In such a way, it is possible to implement automatic roaming in
the communication to the agent.

4.2.3 Interaction with the environment
The structure of an agent considers a subsystem responsible for achieving information from
its environment, where the environment can be virtual, composed by software processes or
systems running in a computing device, or physical, as the real world is. For example, a
virtual agent can be able to listen to keystrokes, listen to messages sent by other agents,
receive network information, or perceive events from the operating system; a robotic agent
can be enabled with sonars, infrared range sensors, accelerometers or gyroscopes to perceive
the physical environment and its own relationship with it.
On the other hand, agents must be able to act over its environment in order to achieve their
goals. The actions can result in a virtual effect, such as the creation of files, the
communication of messages to other agents, or physical, as commands over the engine in a
wheel-enabled robot.
Sensors and actuators are closely related to the environment because their functionality
depends directly on the aspects that they have to detect. In this way, sensors and actuators
are device-dependent. However, enabling software agents with specific sensors and
actuators can limit their mobility in virtual spaces. The G++ Agent Platform manages
sensors and actuators through interface objects that can be attached to agents in runtime.
This allows a migrating agent to get access to the specific sensors and actuators offered in
each container/platform. This flexibility is obtained providing a common interface for all
sensors and actuators that the agent must use to interact with. Also is supported the
definition of descriptors to recognize sensors and actuators that the agent could access.
The independence between the agent implementation and its environment makes it possible
to follow an evolutionary approach in the development of software agents. In fact, as it is
stated in (Arsten et. Al, 1996) complex systems often require development of prototypes and
the simulation of the execution. Portability of agents allows new agents to be tested in
simulation environments before they are deployed in the real world (e.g. a mobile robot
controller). On the other hand, the model well suits for agents based on learning
architectures or requiring initial training (such as those based on neural networks), because
they can be conditioned for final execution in a simulated environment.

4.2.4 Security

The platform security is focused in the protection of the hosting platform (the container and
its agents) from the attacks of potentially malicious visiting agents. The protection of the
host is mainly based on trust, and this allows the adoption of a partially open distributed
platform. It is open because it is possible to add new containers to the network, and each
container can admit external agents, coming from other containers of the network. However,
this openness is partial, because only authorized containers are accepted to join the network,
and, potentially, only authorized agents are allowed to visit each host. This approach
supposes the container to provide at least two security services, authentication and
authorization. Both services are supported by a public key infrastructure (PKI).

www.intechopen.com

An Agent-Based Software Framework for Robotics and Automation Systems

99

5. The Agent-Based architecture for automation and robotics

In this section is described the agent-based software architecture for automation and
robotics systems. The architecture follows the abstract model described in Section 3. It
provides a set of agent-based meta-services to support advanced communication of the
domain-specific systems built on top of it.
This agent-based architecture introduces a communication standard and a set of services to
build global automation systems in different domains. The former defines the languages
that will be used for exchange of information between entities participating in automation
systems. The latter, the set of services that are available for supporting their activity. Three
services are offered at this level:
a. Messaging: it provides persistence and reliability in direct messaging between senders

and well-defined receivers. It is based on based on persistent messages queues, which
allows time-decoupled communications among participants

b. Event distribution: it implements the asynchronous publish/subscribe communication
model. Each container provides local event publication and notification services. The
architecture for global automation systems includes agents for the management of
distributed subscriptions and notifications.

c. Service brokering: it supports dynamic reconfiguration of the relationships between
service providers and consumers. Each container provides local event publication and
notification services. The architecture for global automation systems includes agents for
the management of distributed subscriptions and notifications (that is, among different
service points).

The design of the services has explicitly considered the problem of distribution, particularly

the unreliability of network connections, which makes indistinguishable crashed

components from slow components. This problem, common to all implemented services,

was addresses through a mechanism of registration and renewal of the registration with the

service provider, that interested users must perform during their lifecycle.

5.1 Messaging service

The messaging service implements reliable messaging delivery among agents, based on

Messenger agents that extend basic communication capabilities of the G++ Agent Platform.

The implementation of the messaging services requires providing each container of the

agent society with a messenger agent that interfaces communicating agents with the service.

Communicating agents that require to be supported by this service are requested to register

themselves with the messenger agent, which maintains a list of agents that are subscribed

for the service. Thus, the messenger agent only accepts messages having as target a

registered agent, and rejects other messages. Each registration has as parameter the duration

of the registration, which represents for how long the agent is interested in being supported

by the messaging service. Therefore, the messaging service will be active for each specific

communicating agent accordingly to the duration indicated in the registration, but in any

moment registrations can be renewed for new periods. The messenger agent accepts

messages sent by local agents (i.e. agents pertaining to the same container of the messenger),

and delivers them to other agents residing in remote containers. It offers two modalities for

delivery: normal delivery, that means the sender only receives an acknowledgement from

the local messenger agent indicating that the message has been received by the messaging

www.intechopen.com

 Convergence and Hybrid Information Technologies

100

service, and notified delivery, that allows the sender to receive a notification when the

message has finally reached the receiver.

The messaging service is performed through different interaction protocols that regulate the
possible conversations between senders and receivers of messages and the messenger
agents. Such protocols are:
a. Subscription request: performs the registration of an agent with the local messenger for a

given period of time.
b. Subscription renewal: allows an agent the renewal of a subscription with the messenger

for a new period.
c. Subscription cancel: an agent subscribed with a messenger can cancel its subscription in

any moment, sending a cancel request message.
d. Activate delivery: after registration, an agent can request the activation of the message

delivery, sending an activate delivery message to the messenger, so queued messages
will be delivered to the requesting agent, and further messages received by the
messenger will be delivered instantaneously.

e. Suspend delivery: an agent can request suspension of delivery of incoming messages at
any moment, which means that the messenger agent will stop delivering messages
addressed to that agent through it.

f. Send message: it is used to transmit a message to a receiver agent using the messaging
service supported by messenger agents.

g. Message Transfer: it is used by two messengers when exchanging queues of messages.
h. Message delivery: this protocol regulates the conversation between a regular agent

subscribed to the messaging service and the related messenger agent that has messages
to deliver to the former.

5.2 Event distribution service

The communication among components is one of the important problems faced in the

development of distributed systems. This is a characteristic of the architectural style of an

application, and it can be implemented adopting two approaches (Moro & Natali, 2002):

request/response and publish/subscribe.

The request/response paradigm, is widely adopted in traditional client/server distributed

systems such as Web-based applications. However, it results not always adequate,

particularly when applications need to continuously collect data generated from large-scale

distributed sources, because the network could be overloaded with a high traffic of request

and responses. Moreover, if the application includes components running on mobile

systems, implementing complete cycles of polling could spend unnecessarily the limited

power resource of the device, or could increase the expenses associated to communication

traffic.

On the other hand, the publish/subscribe paradigm is claimed to provide the loosely
coupled form of interaction required in large-scale systems (Eugster et al., 2003). In this
model, components acting as subscribers have the ability to express their interest in some
typologies of messages. Thus, they are subsequently notified when publishers generate the
messages that match their interest. Using this approach, the communication between
publishers and subscribers becomes loosely coupled because both participants do not need
to know anything about each other. Communication services implemented over this
architecture are usually known as event services.

www.intechopen.com

An Agent-Based Software Framework for Robotics and Automation Systems

101

The core of the event management in our architecture is the EventBroker agent, responsible

for collecting subscriptions and sending events to the registered subscribers. Subscribers

register their interest on events sending a subscribe message to the EventBroker agent,

without the need to know the effective sources of these events. This subscription

information remains stored in the EventBroker, and it is not forwarded to publishers. The

event service also provides an unsubscribe operation that terminates a subscription. The

subscription contains the following information: (1) typology of event of interest; (2)

optionally the source of interest; and (3) duration of the subscription.

5.3 Service brokering service

Collaboration among distributed and autonomous control modules is the final objective of

our robotics and automation platform. Thus, the whole structure of the framework is built

around the idea of a reliable infrastructure for service integration. In part, this can be

understood as the objective of classical networking infrastructures, such as DCOM, RMI or

CORBA, which is the problem of finding and invoking remote services. However, our

architecture does not oversimplify the relationships between the network and the

applications, as the cited technologies do. The latter means that the network is seen as a not

completely transparent environment, that is, mainly subject to a lack of reliability, with

latency and limited bandwidth, in a mutable topology. Our framework explicitly considers

that control modules can crash and the system should be aware of such services that become

no longer available.

The services brokering service is aimed to establish relationships among the three entities

called client, server and service. The service represents the object of interest that justifies the

interaction between the other participants. Services are offered by agents or systems that

play the role of servers, which are also responsible for providing, and if it is necessary, for

scheduling the accesses to the resources need to perform the service. For example, in an

image capture and transmission service, the robotic telecamera agent (server) is responsible

for providing and managing the access to the telecamera requested to give the service. In

our model, a server is completely free to offer whatever configuration of services, this means

that a server can offer only one typology of service, or a wide variety of them. For a specific

typology of service, a server could offer concurrently only one instance of service, that is, it

can serve just client at time, or it can perform multiples executions simultaneously,

depending on the specific implementation and the possibility to share the involved

resources (such as external devices, CPU, memory, etc). Any server that joins the system and

intends to let clients use its services, must clearly declare this intention by making a long

term commitment to taking on a well-defined class of future requests. This declaration is

called an advertisement and contains a specification of the server capability with respect to

the type of request it can accept.

The ServiceBroker is the agent of our architectural model that manages a database of

advertisements, i.e. it knows the name and location of registered servers, their capabilities,

the service interfaces, and the supported communication protocols. When a client agent

needs a service that implements a specific interface with specific capabilities, it queries the

ServiceBroker for the name of all the available servers in the system that provides that

capability. Clients are not supposed to have knowledge about the location of the services

www.intechopen.com

 Convergence and Hybrid Information Technologies

102

they require, they only have to know the name of the ServiceBroker, and direct their

requests to it.

The GAP framework adopts the Extensible Markup Language (XML) as the content
language to specify capabilities and preferences and to exchange information among
distributed control modules over the platform. Description of services expressed in XML
documents are exchanged during interactions among interacting agents. The messages that
interchange the ServiceBroker with other agents are:
a. Service advertisement: it is sent by a server to the ServiceBroker describing the service it

want to publish and how long it will be available.
b. Service request: contains a description that the client sends to the broker, regarding the

characteristics of a requested service.
c. Broker response: it corresponds to the answer that the broker returns when dealing with

a request coming from a client, indicating references to the services that can satisfy it.
d. Service advertisement renewal: allows a server to renew for another period its registration

in the ServiceBroker.
e. Advertisement cancellation: it is sent by a server to the ServiceBroker that wants to cancel

a previous service advertisement.

6. An example of domain-specific multi agent system

For the domain-specific application example, let us consider a colony of mobile robots that
have to explore a surface, and cooperate synchronously collecting certain objects, that must
be carried to the robots’ base. This colony requires the participation of different kinds of
autonomous devices:
- Explorers, which are autonomous mobile robots provided with telecameras and

grippers, that recognize objects to be collected, and carry them to the nearest transport
robot.

- Transport robots: they are autonomous mobile robots that receive the objects collected
by explorers and transport them in batches to the colony nest.

- Coordinator: is the autonomous system that receives communication from carriers and
coordinates the operation of explorer and transport robots. It operates in a fixed
computing device, which is located outside the exploring area, and connected through
satellite to the Communicator robot.

- Communicator: is a mobile device that acts as a gateway between the Coordinator and
the robots located in the surface to explore.

- Colony Nest: is the computing device that runs messaging and brokering services of the
nest.

In this system all the members run a container where operates the agent that implements the
own control module. At startup, the containers pertaining to all devices in the surface to
explore establish communication among themselves, using a peer-to-peer discovering
protocol. Then they register their service capabilities in the ServiceBroker running in the
Colony Nest device.
The coordinator, remotely located, creates a data channel with the Colony Nest, using a
known IP direction to locate it. Thus, the coordinator asks the service broker located in the
Colony Nest for the suitable robotics devices to accomplish the task. From the answer
provided by the service broker, the coordinator selects a Communicator device, some
explorers and transport robots.

www.intechopen.com

An Agent-Based Software Framework for Robotics and Automation Systems

103

Explorer
Communicator

Transport

Objects

Coordinator

Colonynest

Fig. 2. A colony of explorers.

The Coordinator transmits the mission to each robotic device. The explorers move across the

surface detecting objects to be collected, and transmit their positions to the Coordinator.

With this information, the coordinator assigns routes to the transport robots, in order to pick

up the objects collected by the explorers. If an explorer or transport robot goes out of the

communication range, it starts a “turn back home” procedure in order to reestablish

communication. If messages had been sent to that robot during the “blackout”, they are kept

in the messages queue of the MessagingService and transmitted when the device is “visible”

again.

The Coordinator could be subscribed in the event broker to listen for certain events, such as

mechanical failures. Thus, if a failure message is received, the coordinator can take measures

like a replacement for the defective robot.

In the following subsections, the system is described using the model presented in this

chapter.

6.1 Environment and autonomous equipments (levels 1 and 2)

The environment is mainly composed by the physical surface that have to be explored, the

objects that have to be collected, the obstacles in the route of each robot, etc. Also, available

communication networks or global positioning systems that can be accessed by devices are

considered part of the environment. In terms of autonomous equipments we have all the

devices participating in the colony, including the Coordinator and the Colony Nest devices.

Robots are mobile vehicles enabled with sensors (cameras, GPS, encoders, etc.), actuators

(engines, grippers, etc.) and communication interfaces (Wi-Fi, satellite, etc.) that must be

available for local control modules (robot controllers).

www.intechopen.com

 Convergence and Hybrid Information Technologies

104

6.2 The agent platform (level 3)

The G++ Agent Platform is used to provide the underlying software infrastructure for the

implementation control modules. Each device must provide a Java Runtime Environment

where a G++ Container will run. Also, in each robotic device the agent platform must have

access to the API (application programming interface) of the available sensors and actuators,

in order to build the access to physical components of the robots. The access to the

communication stack is obtained, in general cases, through the standard TCP/IP interface

provided by the device’s operating system.

6.3 Agent-based architecture (level 4)

The agent based-architecture is made-up by all the components required to achieve

interoperability among the different participants. For example, the ServiceBroker agent,

which is responsible for maintaining the network location (IP address) of each robotic

device, and the list of services that them are capable to provide. Another agent that

participates in the architecture is the MessengerAgent that supports message queues for

reliable delivery of message to mobile robots.

6.4 The domain-specific multi-agent system (level 5)

Each participant in the colony is conceptualized as a software agent, programmed to
accomplish its own mission. The implementation requires providing every one of the
devices with an agent/control. The control modules can be implemented using different
artificial intelligence model. At this level must be also programmed the standard interfaces
to the sensors and actuators, and registered locally as service objects in the device’s
container.

7. Conclusion

In this work we have described our framework for the implementation of distributed
robotics and automation systems. Its design was driven by the interest to obtain a decoupled
and scalable infrastructure in different application scenarios. This approach emphasizes
software engineering aspects of agency, which is a differentiating point when comparing it
with other architectures, whose functionalities are more focused in distributed artificial
intelligence.
Currently we are developing some case of studies that can help us to test the framework in
systems offering different complexity levels.

8. References

Aarsten, A.; Brugali, D. & Menga G. (1996). Designing Concurrent and Distributed Control

Systems: an Approach Based on Design Patterns. Communications of the ACM,

Vol.39, No. 10 (October 1996), pp. 50-58.

AgentLink (2002). Software Products for MultiAgent Systems. Technical Report. Europe’s

Network of Excellence for Agent-Based Computing.

Bellifemine, F.; Poggi, A. & Rimassa, G. (1999). Jade, a FIPA-Compliant Agent Framework.

Proceedings of the 4th Int. Conference on Practical Applications of Intelligent Agents and

Multi-Agent Technology, 1999.

www.intechopen.com

An Agent-Based Software Framework for Robotics and Automation Systems

105

Eugster, P.Th.; Felber, P.A., Guerraoui R. & Kermarrec A.M. (2003). “The Many Faces

of Publish/Subscribe”. ACM Computing Surveys, Vol. 35, No. 2 (June 2003), p. 114-

131.

Finin T.; McKay, D.; Fritzson, R. & McEntire, R. (1993) KQML: An Information and

Knowledge Exchange Protocol.Proceedings of the Int. Conference on Building and

Sharing of Very Large-Scale Kniowledge Bases, December 1993.

FIPA (2002). FIPA ACL Message Structure Specification. Standard N. SC00061G, December

2002.

Genesereth M.R. & Ketchpel, S.P. Software Agents. Communications of the ACM, Vol 37, No.

7, 1994, p. 48-53.

Haibin Z. (2006). A Role-Based Approach to Robot Agent Team Design. Proceedings of the

IEEE International Conference on Systems, Man and Cybernetics SMC, 2006. Vol.6

pp.4861-4866, October 2006.

Jennings N.R. (2001). An Agent-Based Approach for Building Complex Software Systems“.

Communications of the ACM, Vol 55 No. 4 (April 2001), p. 35-41.

Jianhui, L.; Kesheng, W.; Hang, G. & Ligang, Q. (2004). An OOT-supported

migration approach to holonic robot assembly cell. Proceedings of the 8th Int.

Conference on Computer Supported Cooperative Work in Design, 2004. Vol.2

pp. 498-501.

Lim, C.S.; Mamat, R. & Braunl, T. (2009) Market-based approach for multi-team robot

cooperation. 4th International Conference on Autonomous Robots and Agents, ICARA

2009, pp.62-67, Feb. 2009.

Mamady, D.; Tan, G.; & Toure M. L. (2008). An artificial immune system based multi-agent

model and its application to robot cooperation problem. Proceedings of the 7th

World Congress on Intelligent Control and Automation, WCICA 2008, pp.3033-3039,

June 2008

Moro G. & Natali A. (2002). On the Event Coordination in Multi-Component Systems.

Proceedings of SEKE 2002, Ischia, Italy.

Odell J.; Van Dyke Parunak H. & Bauer B. (2000) Extending UML for Agents. Proceedings of

the Agent-Oriented Information Systems Workshop at the 17th National Conference on

Artificial Intelligence 2000.

Rogers, T.E.; Sekmen, A.S. & Peng, J. (2006) Attention Mechanisms for Social

Engagements of Robots with Multiple People. The 15th IEEE International

Symposium on Robot and Human Interactive Communication, ROMAN 2006, pp.605-

610, Sept. 2006.

Sims, M.; Corkill, D. & Lesser, V. (2004). Separating Domain and Coordination in Multi-

Agent Organizational Design and Instantiation, Proceedings of the International

Conference on Intelligent Agent Technology, IAT 2004.

Valckenaers, P.; Van Brussel, H. & Holvoet, T. (2008). Fundamentals of Holonic Systems and

Their Implications for Self-Adaptive and Self-Organizing Systems. Proceedings of the

Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems

Workshops, SASOW 2008., pp.168-173, Oct. 2008

Weiss, G. (1999) Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence.

MIT Press, Cambridge, Massachusetts, 1999

www.intechopen.com

 Convergence and Hybrid Information Technologies

106

Weyns, D.; Schumacher, M.; Ricci, A., Viroli M., & Holvoet T. ‘Environments for multiagent

systems, State-of-the-art and research challenges’. In Lecture Notes in Computer

Science, vol 3374 (2005), Berlin, Heidelberg, Germany.

www.intechopen.com

Convergence and Hybrid Information Technologies

Edited by Marius Crisan

ISBN 978-953-307-068-1

Hard cover, 426 pages

Publisher InTech

Published online 01, March, 2010

Published in print edition March, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Starting a journey on the new path of converging information technologies is the aim of the present book.

Extended on 27 chapters, the book provides the reader with some leading-edge research results regarding

algorithms and information models, software frameworks, multimedia, information security, communication

networks, and applications. Information technologies are only at the dawn of a massive transformation and

adaptation to the complex demands of the new upcoming information society. It is not possible to achieve a

thorough view of the field in one book. Nonetheless, the editor hopes that the book can at least offer the first

step into the convergence domain of information technologies, and the reader will find it instructive and

stimulating.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Franco Guidi-Polanco and Claudio Cubillos (2010). An Agent-Based Software Framework for Robotics and

Automation Systems, Convergence and Hybrid Information Technologies, Marius Crisan (Ed.), ISBN: 978-953-

307-068-1, InTech, Available from: http://www.intechopen.com/books/convergence-and-hybrid-information-

technologies/an-agent-based-software-framework-for-robotics-and-automation-systems

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

