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1. Introduction 

Recently, pairing-based cryptographic applications such as ID-based cryptography (D. 

Boneh et al. (2001)) and group signature authentication (T. Nakanishi & N. Funabiki (2005)) 

have received much attentions. In order to make these applications practical, pairing 

calculation needs to be efficiently carried out. For this purpose, several efficient pairings 

such as Tate (H. Cohen & G. Frey (2005)), Ate (F. Hess et al. (2006)), twisted Ate (S. Matsuda 

et al. (2007)), and subfield–twisted Ate (A. J. Devegili et al. (2007)), (M. Akane et al. (2007)) 

have been proposed. Consider an elliptic curve E: y 2 = x 3 + ax + b, a, b, ∈ Fp and let its order 

#E (Fp) be a prime number r for simplicity. Then, let the embedding degree be k, r divides  

pk − 1 but not divide pi − 1, 1 ≤ i < k. Moreover, r2 divides #E ( ) and thus pairing is 

considered on r-torsion group of E ( ). 

Tate, Ate, and twisted Ate pairings can be roughly classiffied by the inputs for Miller's 

algorithm (F. Hess et al. (2006)). In general, as the inputs, Miller's algorithm needs two 

rational points and the number of calculation loops. Tate pairing τ (·, ·) uses rational points 

P ∈ E (Fp ) and Q ∈ E (  )/rE ( ), and the number of loops of Miller's algorithm is ⎣log2 

r⎦. Tate pairing mainly uses P for elliptic curve additions and line calculations in the loops. 

Q is used only for assignment calculations. The output of Miller's algorithm is denoted by  

fr,P
 (Q). Ate pairing α(·, ·) uses rational points P ∈ E (Fp ) and Q ∈ E [r] ∩ Ker(φ − [p]), but the 

number of loops is ⎣log2(t − 1)⎦, where φ is Frobenius map for rational point, E [r] is the 

subgroup of rational points of order r, and t is the Frobenius trace of E(Fp), that is #E (Fp) = r 

= p+1−t. The number of loops is about half of that of Tate pairing; however, Ate pairing 

mainly uses Q elliptic curve additions and line calculations in the loops. The output of 

Miller's algorithm is denoted by ft-1,Q(P) and thus plain Ate pairing is slower than Tate 

pairing. 

In the case that the embedding degree k is equal to 2e, 3e, 4e, 6e, where e is a positive 

integer, it is known that an isomorphic map exists between a certain subgroup of E( ) and 

subfield–twisted curve ( ). Let E : y 2 = x 3 +b, b ∈ Fp be Barreto-Naehrig curve whose 

embedding degree is 12, Devegili et al. (A. J. Devegili et al. (2007)) accelerated Ate pairing 

by using subfield–twisted BN curve ( ) and OEF (optimal extension field) technique  

(D. Bailey & C. Paar (2000)), where the twisted BN curve is given by : y 2 = x 3 + bv -1 and  

v is a quadratic and cubic non residue in subfield . Denoting the isomorphic map  

Source: Convergence and Hybrid Information Technologies, Book edited by: Marius Crisan,  
 ISBN 978-953-307-068-1, pp. 426, March 2010, INTECH, Croatia, downloaded from SCIYO.COM
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from ( ) to the corresponding subgroup of E( ) by ψ6, it calculates 

 for which subfield– twisted 

curve  ( ) and  are efficiently used. In this case, since the twist degree d = k=e is 6, it 

is called sextic twist. 
In this paper, first let us suppose 

 (1a)

 (1b) 

where E is a pairing-friendly curve of embedding degree k = 2e, 3e, 4e, 6e. Let  be degree 

d = k/e twisted curve over . Then, one can consider an isomorphic map between E( ) 

and ( ). Denoting it from ( ) to E( ) by ψd, consider  and 

. Using  and , this paper proposes a new Ate pairing that 

calculates 

 (2) 

namely cross twisted (Xt) Ate pairing. Compared to plain Ate pairing and the previous work 

(A. J. Devegili et al. (2007)), Xt-Ate pairing can substantially use arithmetic operations in 

subfield , thus it leads to quite efficient implementation of Ate pairing. After that, this 

paper shows a simulation result by using BN curve and sextic twist. When order r is a 254-bit 

prime number, it is shown that Xt-Ate pairing with BN curve is carried out within 14.0 milli-

seconds for which the authors uses Pentium4 (3.6GHz), C language, and GNU MP library 

(GNU MP). Compared to the previous subfield–twisted Ate pairing (A. J. Devegili et al. 

(2007)), Xt-Ate pairing made the algorithmic implementation and cost evaluation much 

clearer. 

Throughout this paper, p and k denote characteristic and embedding degree, respectively. 

 denotes k -th extension field over Fp and  denotes the multiplicative group in  .  

X │Y and X ^ Y mean that X divides and does not divide Y, respectively. 

2. Fundamentals 

In this section, let us briefly go over some fundamentals of elliptic curve, twist technique, 
Ate pairing, and Miller's algorithm. 

2.1 Elliptic curve 

Let Fp be prime field and E be an elliptic curve over Fp defined as 

 (3) 

E (Fp) that is a set of rational points on the curve, including the infinity point O, forms an 

additive Abelien group. Let #E (Fp) be its order, consider a large prime r that divides #E (Fp). 

The smallest positive integer k such that r divides pk − 1 is especially called embedding degree. 

One can consider pairings such as Tate and Ate pairings over E ( ). #E (Fp) is usually given 

as 
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 (4) 

where t is the Frobenius trace of E (Fp ). 

2.2 Twist technique 

When embedding degree k is equal to 2e, where e is a positive integer, from Eq.(3) the 

following quadratic-twisted elliptic curve  is given. 

 (5) 

where v is a quadratic non residue in . Then, between ( ) and E ( ), the following 

isomorphism is given. 

 

(6) 

In this case,  is called quadratic–twisted curve. 

In the same, when embedding degree k satisfies the following conditions, we can 

respectively consider the twisted curves. 

• k = 3e (cubic twist) 

 (7a)

 (7b) 

where v is a cubic non residue in  and 3│(p − 1). 

 

(7c)

• k = 4e (quatic twist) 

 (8a)

 (8b) 

where v is a quadratic non residue in  and 4│(p − 1). 

 

(8c)

• k = 6e (sextic twist) 

 (9a)

 (9b) 

where v is a quadratic and cubic non residue in  and 3│(p − 1). 
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(9c)

When one uses Barreto-Naehrig curve that is a class of pairing–friendly curve, one can apply 

any quadratic, cubic, quatic, or sextic twist because its embedding degree is equal to 12. As 

described in the following sections, sextic twist is the most efficient for pairing calculation. 

Eqs.(6), (7c), (8c), and (9c) are summarized as 

 

(10)

Thus, when twist degree d is even, x-coordinate x  belongs to proper subfield  
because ∈ . In addition, when d = 2 or 4, the coefficient of x of the twisted curve  

can be written as  

2.3 Ate pairing 

Let P ∈ G1 and Q ∈ G2, Ate pairing α is defined as a bilinear map: 

 
(11)

where G1 and G2 are denoted by 

 (12a)

 (12b) 

E[r] denotes a subgroup of order r in E( ) and [i] denotes i times scalar multiplication for a 

rational point. φ denotes Frobenius endomorphism, i.e., 

 (13)

where x and y are x-coordinate and y-coordinate of a rational point, respectively. In general, 

A = ft-1,Q
 (P) is calculated by Miller's algorithm (H. Cohen & G. Frey (2005)) and then so-

called final exponentiation   follows. 

2.4 Miller’s Algorithm 

Several improvements for Miller's algorithm have been given. Barreto et al. proposed BKLS 

algorithm. Algorithm 1. shows the calculation flow of the BKLS algorithm for fs,Q
 (P). It 

consists of functions shown in Table 1. 

In this algorithm, main computation part is Step 4, Step 5, Step 7 and Step 8. In this paper, 

let Step 4 and Step5 be main routine, and let Step 7 and Step 8 be sub routine. In the case of 

Ate pairing, P (xP, yP ) ∈ G1, Q (xQ, yQ) ∈ G2, s = t − 1, and then fs,Q
 (P) becomes an element in 

. 

As shown in the algorithm, elliptic curve addition and doubling that use rational points in  

E ( ) needs arithmetic operations in . If it has subfield–twisted curve such as Eq.(5), it can 
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be efficiently reduced to subfield arithmetic operations by isomorphic maps such as Eq.(6). 

Thus, twist degree d is preferred to be large such as 6, that is sextic twist. When the d is even 

number, the denominator calculations in Algorithm 1. can be ignored. 
 

 
 

 

Table 1. Notations in Algorithm 1. 

3. Main proposal 

In this section, a new fast pairing, namely cross twisted (Xt-) Ate pairing, is proposed. 

3.1 Xt–Ate pairing 

Supposing that the pairing-friendly curve E has a degree d = k/e twist and  be a d-th 

twisted curve such as Eq.(5). From the discussion in Sec.2.3, Ate pairing α is given as 

 

(14)

On the ohter hand, Xt-Ate pairing is proposed as 

 

(15)
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where P’ is a point of  and  is a point of  

Here, it is most importatnt thisng that the next equation is hold, 

 (16)

The main feature of Xt-Ate pairing is that the isomorphic map  is to P as P’ =  (P). In 

other words, P ∈ E (Fp) is extended to P’ ∈ ( ) and Q ∈ E ( ) is compressed to  

 ∈  ( ). Thus, the authors named it cross twisted (Xt-) Ate pairing. Fig 1. shows the key 

map of Xt-Ate pairing with  In spite of the inputted points P’ and  on the 

twisted curvce, the miller loop s is given by t − 1, where t is the trace of E (Fp). The following 

three lemmas lead to Eq.(16). 
Lemma 1. 

 (17)

Proof: From the definition of embedding degree, 

 (18)
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Fig. 1. Xt-Ate pairing with  and  

Then, we have 

 

(19)

Since d│(p − 1) and gcd(d, r)=1, this lemma is shown.                                                                   ■ 
Lemma 2. 

 (20)

 (21)

Proof: Using ,  ∈  such that T = ψd
 ( ) and Q = ψd ( ), the slopes λT,T and λT,Q are 

written as 

 

(22a)
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(22b) 

Thus, regardless of whether or not T = Q, we have 

 (23)

Then, we have 

 

(24)

Since v ∈ , the following equation holds. 

 
(25)

Therefore, according to Lemma 1,  of Eq.(24) becomes 1 at final exponentiation of Xt-Ate 
pairing. Thus, this lemma is shown.                                                                                                  ■ 
Lemma 3. 

 (26)

Proof: Since the following equation holds, 

 

(27)

Note v ∈ , we have 

 
(28)

Therefore, according to Lemma 1, of Eq.(27) becomes 1 at final exponentiation of Xt-Ate 
pairing. Thus, this lemma is shown.                                                                                                  ■ 
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Ft-1,Q
 (P) is calculated with lT,T (P), lT,Q

 (P), and lT,O(P). Therefore, according to Lemma 2 and 

Lemma 3, Eq.(16) is shown. 

3.2 Calculation procedure 

Suppose the following d-th twisted curve  over . 

 (29)

Noting that , Xt-Ate pairing is computed by 

Algorithm 2.. In practice, the main routine (Step 4&5 in Algorithm 2) and the sub routine (Step 
7&8 in Algorithm 2) are computed as follows. First, compute 

 
(30a)

 
(30b) 

 

 
 
Regardless of whether or not  = , we have 

 (31a)

 (31b) 

and the next line calculations are computed as 

 (32a)
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 (32b) 

Every calculation excluding the one multiplication shown in Eq.(32a) are carried out in 

subfield . Thus, most of this algorithm is efficiently carried out by subfield arithmetic 

opearations in . Note that the Eq.(32a) needs the multiplication between elements in  
and  When the twist degree d is even number, it has a little advantage. Of 

course, when the d is even, as previously introduced, the calculation of Eq.(32b) can be 

ignored. The main rutine and the sub routine of Xt-Ate pairing can be written as the following 

algorithms. 
 

 

3.3 Cost evaluation 
We evaluate the calculation cost of Xt-Ate pairing. In order to simplify the cost evaluation, 
we only take the calculation costs for multiplication, squaring, and inversion in finite field 
into account. Notations in Table 2. are used. 

Let the calculation costs of main routine and sub routine in Algorithm 2 be TMAIN and TSUB, 

respectively. When the number of the calculation loops of Miller's algorithm is ⎣log2 s⎦, Xt-

Ate pairing excluding the final exponentiation needs the following cost. 

 (33)
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−1's in the above equation denote that it is no needed to calculate for the most significant bit. 

When d is even such as 2, 4, and 6, TMAIN and TSUB are given as 

 
(34)

When d = 3, since the vertical line calculation is needed, they becomes 

 
(35)

Following the cost evaluation manner of (S. Matsuda et al. (2007)), (F. Hess et al. (2006)), 

 be 3i5jMe, Mi,j = (j/i)Mi, and Si = Mi for simplicity. Then, we have Table 3. Suppose 

that Hw(s) ≈ ⎣log2 s⎦/2, M5e = 15Me, and roughly Ii = 7Mi, we have Table 4. 
 

 

Table 2. Notations for cost evaluation 

 

 

Table 3. Calculation costs of TMAIN and TSUB for Xt-Ate pairing 

 

 

Table 4. Calculation costs of Xt-Ate pairing 

4. Efficiency of Xt-Ate pairing 

This section shows the efficiency of Xt-Ate pairing. 

4.1 Comparison of pairings 
Table 5. shows the comparison of the input parameters of Miller's algorithm between 
various pairings. 
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Table 5. Input parameters of fs,A(B) 

Consider the inputs for Miller's algorithm calculating fs,A(B) with s,A, and B. In detail, the 

number of calculation loops of Miller's algorithm is given by ⎣log2 s⎦, the point A is used for 

a lot of calculations, and the point B has little effect on the efficiency. Therefore, plain Tate 

pairing uses A 2 E (Fp). Twisted Ate pairing (S. Matsuda et al. (2007)) uses (t−1)k/d
 (mod r) as 

s. For cyclotomic families such as Barreto-Naehrig curve, (t−1)e (mod r) is smaller than t−1 in 

general. Thus, twisted Ate pairing is more efficient than plain Tate pairing. 

Ate pairing made the number of the calculation loops of Miller's algorithm, that is t−1, 

smaller than that of Tate pairing but it uses A ∈ E ( ). Thus, plain Ate pairing is not 

superior to Tate pairing. However, Ate pairing generally uses A ∈ ( ) instead of that 

in E ( ). 

Xt-Ate pairing is more efficient than the Ate pairing. It uses , where  

G1 ⊆ E (Fp). Xt-Ate pairing does not calculates lT,Q(P) by eq.(37) and it calculates  

by eq.(32a) for Miller's algorithm since every calculation is carried out over twisted curve . 

It is noted that Xt-Ate pairing uses  and ; however, for pairing–based cryptographic 

applications such that a lot of scalar multiplications are needed, G1 ⊆E (Fp) and  should be 

used for them. Appropriately using isomorphic map ψd and , not only Xt-Ate pairing 

but also scalar multiplications will be efficiently carried out. 

As the most recent works, Vercauteren (F. Vercauteren (2008)), Lee et al. (E. Lee et al. (2008)), 

and the authors (Y. Nogami et al. (2008)) have proposed efficient Ate pairings, namely 

optimal pairing, R–Ate pairing, Xate pairing, respectively. They have reduced the number of 

the calculation loops of Miller's algorithm less than t − 1. For their works, cross–twist 

technique can be efficiently applied. 

4.2 Xt-Ate pairing for BN curve 

In order to show the efficiency of Xt-Ate pairing, this subsection considers Barreto-Naehrig 

(BN) curve (P. S. L. M. Barreto & M. Naehrig (2006)) of 254-bit prime order with k = 12 and  

d = 6. Since sextic twist is efficiently applied, embedding degree 12 is one of the most 

competitive research targets. As a typical feature of BN curve, characteristic p, order r, and 

Frobenius trace t are given by using an integer variable χ as 

 (36a)

 (36b) 

 (36c)
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For BN curve, Devegili et al. (A. J. Devegili et al. (2007)) proposed an improved Ate pairing 

whose Miller's algorithm calculates elliptic curve operations of  ∈ ( ). Then,  is 

isomorphic to G2 with ψ6 defined by Eq.(9c), for every loop of Miller's algorithm, it needs to 

calculate lT,Q
 (P) as follows: 

 
(37)

This calculation needs 3 times Fp multiplications. On the other hand, Xt-Ate pairing needs 9 

times Fp mutiplications to calculate . Thus, in this view point, Devegili et. al. work 

is more efficient than Xt-Ate pairing. 

Though the Devegili et. al. work restricts the parameters of pairing friendly curve. As also 

introduced in (A. J. Devegili et al. (2007)), (Y. Sakemi et al. (2008)), (M. Akane et al. (2007)), χ 
of small Hamming weight is efficient for not only Miller's algorithm but also final 

exponentiation. Table 6. shows all χ's of Hamming weight 3 that gives 254-bit prime order 

BN curve. Note that, in this case, there are no χ's of Hamming weight 2 such that order r 

becomes 254-bit prime number. 
 

 

Table 6. χ of small Hamming weight that gives 254-bit prime order BN curve 

5. Simulation 

This section shows a simulation result of Xt-Ate pairing. 

5.1 Parameters of pairing-friendly curve 

In this simulation, the authors used the following χ and BN curve, 

 (38)

 (39)

then r = #E(Fp ) becomes 254-bit prime number and the order of  becomes 3048-bit 

number. 

5.2 Representation of extension field 
This simulation First, the authors prepared  with type-〈1, 4〉 Gauss period normal basis 

(GNB) (H. Cohen & G. Frey (2005)) and also  with type-〈2, 3〉 GNB. Then, the authors 

prepared  as tower field by towering 〈2, 3〉 GNB over  (Y. Nogami & Y. 

Morikawa (2003)). For multiplication with GNB, the authors implemented our previous 
work cyclic vector multiplication algorithm (CVMA) (H. Kato et al. (2007)). For example, 
CVMA calculates a multiplication in  by 
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(40)

For inversions in extension field and prime field, the authors implemented Itoh-Tsujii 
inversion algorithm (T. Itoh & S. Tsujii (1988)) and binary extended Euclidean algorithm (D. 
Knuth (1981)), respectively. Since GNB is normal basis, one can easily prepare arithmetic 
operations in subfields   Table 7. shows the timing of each operation. 

 

 
 

Table 7. Timings of each arithmetic operation 

5.3 Final exponentiation 
Using several Frobenius mappings, the final exponentiation is carried out as Algorithm 3. 

(A. J. Devegili et al. (2007)), where we note that the exponent (p12 − 1)/r is factorized as 

 
(41)

's shown in Algorithm 3. are given by Frobenius mappings. In the case of BN curve of 

embedding degree 12, referring to (A. J. Devegili et al. (2007)), final exponentiation is carried 

out by Algorithm 3. Note that Frobenius maps such as  in Algorithm 3. do not need any 

arithmetic operations because GNB is normal basis. 

From Algorithm 3., it is found that the exponentiations of χ and χ2 needs hard 

exponentiations such as binary method (square and multiply method). The calculation cost 

of an exponentiation closely depends on the binary representation of the exponent. 
The calculation cost of final exponentiation Algorithm 3. is evaluated as 

 
(42)
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Substituting S12 = 0:9M12 and I12 = 4M12 that is base on the simulation result Table 7., we  

have 

 (43)

 
 

 
 

5.4 Simulation result 
Table 8. shows the simulation result. Xt-Ate pairing of 254-bit and 3048-bit security levels is 

carried out within 14.0 milli-seconds. Thus, it is shown that cross twist technique is quite 

efficient for Ate pairing. The authors simulated Xt-Ate pairing using Eq.(38) with the 

computational environment Table 9. 

6. Conclusion 

In this paper, supposing 

 (44a)

 (44b) 

where E was a pairing-friendly curve of embedding degree k = 2e, 3e, 4e, 6e, then denoting 

the isomorphic map from , we considered  and 

. Using  ∈  and P’ ∈ , this paper proposed a new Ate pairing that 

calculates 

 (45)
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namely cross twisted (Xt) Ate pairing. Compared to plain Ate pairing and Devegili's work, 

Xt-Ate pairing could substantially use arithmetic operations in subfield , thus it lead to 

quite efficient implementation of Ate pairing. Then, this paper showed a simulation result 

by using BN curve and sextic twist. When order r was a 254-bit prime number, it was shown 

that Xt-Ate pairing with BN curve was carried out within 14.0 milli-seconds for which the 

authors used Pentium4 (3.6GHz), C language, GNU MP library. 

 
 

 
 
 

Table 8. Timings of operations with 254-bit prime order BN curve 

 
 

 
 
 

Table 9. Computational environment 
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stimulating.
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