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1. Introduction 

There are many studies for generating irreducible polynomials (L. M. Adleman & H. W. 

Lenstra (1986)) − (Ian. F. Blake et al., (1993)). This is because irreducible polynomials play 

critical roles in the cases such as constructing extension field or generating random 

sequence. The problem of generating irreducible polynomial is theoretically interesting and 

have attracted many scientists and engineers. Those previous works are roughly classified 

by the objective: one is arbitrary − degree and the other is efficient for fast arithmetic 

operations in extension field. This paper is related to the former. As an application of the 

proposed method, the authors consider variable key − length public key cryptography (M. 

Scott (2006)). 

Adleman et al. (L. M. Adleman & H. W. Lenstra (1986)) have shown that an irreducible 

polynomial of degree m over Fp with an arbitrary pair of p and m is generated by using a 

Gauss period normal basis (GNB) in  and Shoup shown almost the same idea (V. Shoup 

(1990)). Because, as introduced in Gao's paper (S. Gao (1993)), a GNB in  always exists 

for an arbitrary pair of p and m such that 4p does not divide m(p − 1). However, they do not 

explicitly give a concrete generating algorithm. Of course, their calculation costs are not 

explicitly evaluated. Their methods are based on the minimal polynomial determination and 

efficiently using Newton's formula (R. Lidl & H. Niederreiter (1984)). On the other hand, the 

authors (K. Makita et al., (2005)) have explicitly given efficient generating algorithms in 

which characteristic p = 2 is only dealt with. These algorithms (K. Makita et al., (2005)) 

determine the minimal polynomial of TypeII ONB in  quite fast; however, if TypeII ONB 

does not exist in , it does not work. Thus, our previous works restrict not only degrees 

but also the characteristic to 2. Using Newton's formula and a certain special class of Gauss 

period normal bases in , this paper gives a concrete algorithm that efficiently generates 

an irreducible polynomial of degree m over Fp for an arbitrary pair of m and p > m. When  

p > m, it is automatically satisfied that 4p does not divide m(p − 1). The restriction p > m 
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comes from using Newton's formula. When one uses the distributive law instead, the 

proposed algorithm can avoid the restriction. 

The main idea is as follows. Just like the previous works (L. M. Adleman & H. W. Lenstra 

(1986)), (V. Shoup (1990)), if we have arithmetic operations in , for a proper element α in 

 we can calculate its minimal polynomial Mα(x) with respect to the prime field Fp, where 

a proper element means that it belongs to  but not to its proper subfield. It is well-

known that Mα(x) becomes an irreducible monic polynomial over Fp and the coefficients of 

Mα(x) are systematically calculated from its vector representation by Newton's formula (V. 

Shoup (1990)), (R. Lidl & H. Niederreiter (1984)). In order to carry out multiplications in  

without using an irreducible polynomial of degree m over Fp, this paper uses cyclic vector 

multiplication algorithm (CVMA) (Y. Nogami et al., (2003)). 

As previously described, this paper uses a special class of Gauss period normal bases (GNB). 

The special class normal basis is given from TypeI ONB (Y. Nogami et al., (2003)). In what 

follows, we call it TypeI-X NB (TypeI eXtended normal basis). The authors have proposed a 

multiplication algorithm for TypeI-X NB, it is cyclic vector multiplication algorithm 

(CVMA) (Y. Nogami et al., (2003)). It is noted that CVMA can calculate a multiplication in 

 without explicitly preparing an irreducible polynomial of degree m over Fp as the 

modulus polynomial of . Arithmetic operations in extension field  is defined by an 

irreducible polynomial f(x) over Fp of degree m in which f(x) is often called the modulus 

polynomial of . Using CVMA for TypeI-X NB, this paper shows an efficient algorithm 

for generating an irreducible polynomial of an arbitrary degree m over an arbitrary prime 

field Fp such that p > m. It uses Newton's formula. In other words, this paper explicitly gives 

an efficient algorithm for the ideas introduced by (L. M. Adleman & H. W. Lenstra (1986)), 

(V. Shoup (1990)). After that, this paper shows that the proposed algorithm can quite 

efficiently determine the minimal polynomial of TypeI-X NB in . The proposed 

algorithm has the following features: 1) it efficiently determines the minimal polynomial of 

the special class normal basis (TypeI-X NB), 2) its calculation complexity does not closely 

depend on the size of characteristic p, 3) its calculation cost is clearly given with degree m, 

thus we can estimate how much calculation time the proposed algorithm needs, 4) it can 

generate primitive polynomials if (pm −1) is factorized as the product of prime numbers, and 

5) as compared to distinct degree factorization based irreducibility testing algorithm (J. 

Gathen & D. Panario (2001)) and the case using the distributive law instead of Newton's 

formula, it generates an irreducible polynomial much faster. 

As an application, this paper considers variable key − length public key cryptography in 

which one fixes characteristic p within the word length of the processor concerned and 

varies degree m appropriately. 

Throughout this paper, #SADD, #SMUL and #SINV denote the number of additions, 

multiplications, and that of inversions in Fp, respectively. In this paper, a subtraction in Fp 

is counted up as an addition in Fp. p and m denote characteristic and extension degree, 

respectively, where p is a prime number.  denotes the m-th extension field over Fp and 

 denotes the multiplicative group in . X |Y means that X divides Y. Without any 

additional explanation, lower and upper case letters show elements in prime fields and 
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extension fields, respectively, and a Greek character shows a zero of modulus polynomial. 

Polynomials in this paper are all monic polynomials. 

2. Fundamentals 

In this section, we briefly go over several classes of irreducible polynomials over Fp. 

2.1 Irreducible binomial 

The well-known optimal extension field (OEF) adopts an irreducible binomial as the 
modulus polynomial (D. Bailey & C. Paar (2000)). We can easily prepare an irreducible 
binomial by the following theorem (R. Lidl & H. Niederreiter (1984)). 

Theorem 1 There exist irreducible binomials in the form xm−s, s ∈ Fp if and only if each 

prime factor of m divides p − 1 and 4 | (p − 1) when 4 | m.                                                         ■ 

For example, let m be a prime, if the following relation holds, xm − s becomes irreducible 

over Fp. 

 (1) 

According to Theo.1, in this case p −1 must be divisible by the prime number m. Therefore, 

when m is large, irreducible binomials of degree m over Fp are quite restricted 

corresponding to p. 

2.2 Irreducible trinomial 

Irreducible trinomials have been studied especially for characteristic p = 2. For an arbitrary 

pair of p and m, irreducible trinomials do not always exist (E. Berlekamp (1968)). In 

addition, it is not explicitly known when the following trinomial becomes irreducible over 

Fp. 

 (2) 

In general, in order to generate an irreducible trinomial in the form of Eq.(2), we need 

irreducibility tests with changing the parameters a, b, and n. Therefore, when both p and m 

are large, searching an irreducible trinomial becomes quite time-consuming. 

2.3 Variable transformation 

According to the following theorems (R. Lidl & H. Niederreiter (1984)), (Y. Nogami et al., 
(1999)), we can generate higher degree irreducible polynomials with corresponding variable 
transformations. 

Theorem 2 For an irreducible polynomial f(x) of degree m over Fp, if and only if f(x) satisfies 

 (3) 

for a certain prime number k such that k divides pm − 1, f(xk) becomes irreducible over Fp.    ■ 

Theorem 3 For an irreducible polynomial f(x) of degree m over Fp, if and only if the (m − 1)-

th coefficient is not 0, f(x p − x) becomes irreducible over Fp.                                                         ■ 
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Based on these theorems, we can generate infinite number of irreducible polynomials of 

degree mki (R. Lidl & H. Niederreiter (1984)) and mpi (Y. Nogami et al., (1999)), respectively; 

however, prime degree irreducible polynomials are not generated. In addition, we need a 

certain seed irreducible polynomial f(x). 

2.4 Cyclotomic irreducible polynomial 

According to the next theorem, we can easily obtain all one irreducible polynomial 

(xm+1−1)/(x−1) (T. Sugimura & Y. Suetugu (1991)). The coefficients of (xm+1 − 1)/(x − 1) are all 

one, therefore it is called all one polynomial of degree m. 

Theorem 4 All one polynomial (xm+1 −1)/(x−1) of degree m is irreducible over Fp if and only 

if the following conditions are both satisfied. 

1. m + 1 is a prime number, therefore m is even. 

2. p is a primitive element in Fm+1, where note that m + 1 is a prime number, Fm+1 denotes 

the prime field of order m + 1.                                                                                                    ■ 
Sugimura et al. introduced all varieties of the cyclotomic irreducible polynomials (T. 
Sugimura & Y. Suetugu (1991)); however, as shown in the above theorem, the degree is a 
certain even number. In other words, odd degree irreducible polynomials can not be 
obtained as cyclotomic polynomials. 

2.5 Distinct degree factorization 

We can generate an irreducible polynomial f(x) of a certain prime degree m over Fp by 

randomly preparing a polynomial of degree m over Fp and then testing its irreducibility 

over Fp. For this irreducibility test, we can apply the distinct degree factorization (DDF) (E. 

Berlekamp (1968)). In the case that the degree m is a prime number, DDF checks the 

following relation: 

 (4) 

Noting that this paper mainly deals with characteristic p larger than m, f(x) is irreducible 

over Fp if and only if f(x) satisfies Eq.(4). This calculation requires polynomial 

multiplications and modulo operations, therefore it becomes more time-consuming as 

characteristic p and degree m become larger. Moreover, the possibility that a polynomial f(x) 

of degree m becomes irreducible over Fp is about 1/m. Therefore, when we apply such an 

irreducibility testing algorithm for generating an irreducible polynomial, it becomes a 

probabilistic problem. Since the calculation Eq.(4) needs O(m2.7 log p) multiplications in Fp 

when we apply the well-known Karatsuba method for polynomial multiplications and the 

binary method for the exponentiation (D. Knuth (1981)), generating an irreducible 

polynomial of degree m over Fp needs O(m3.7 log p) multiplications in Fp . Therefore, when 

both p and m are large, it will be a quite time-consuming operation. 

2.6 Recursive generation 

If we have an irreducible polynomial, we can recursively generate a lot of irreducible 
polynomials of the same degree (A. J. Menezes, editor (1993)); however, we need an 
irreducible polynomial as a generator. 
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2.7 Minimal polynomial determination 

If we have the arithmetic operations in , we can generate an irreducible polynomial as 

the minimal polynomial of an arbitrary proper element in . If an element belongs to 

but not to its proper subfield, the element is called proper element in . In general, the 

arithmetic operations are defined by the modulus polynomial that is a certain irreducible 

polynomial of degree m over Fp; however, some extension fields do not explicitly need an 

irreducible polynomial of degree m such as TypeII AOPF (Y. Nogami et al.,(2005)). TypeII 

AOPF adopts TypeII optimal normal basis (ONB). 
The authors (K. Makita et al., (2005)) have proposed efficient algorithms for determining the 
minimal polynomial of TypeII ONB (Y. Nogami et al., (2005)). TypeII ONB only exists in the 
following extension fields . 

Theorem 5 TypeII ONB exists in  if and only if p and m satisfy (1) and either (2a) or (2b): 

1.     2m + 1 is a prime number. 

2.a   p is a primitive element in F2m+1. 

2.b   The order of p mod 2m + 1 is m and 2 | (m − 1).                                                                    ■ 

The algorithms proposed in (K. Makita et al., (2005)), in which the case of p = 2 is only dealt 

with, are quite fast; however, they have the following problems: 

• They determine the minimal polynomial of TypeII ONB in . In other words, if 

TypeII ONB does not exist in , they does not generate an irreducible polynomial of 

degree m over F2 . 

• They do not generate an irreducible polynomial over Fp for an arbitrary pair of p and m. 

Adleman et al. (L. M. Adleman & H. W. Lenstra (1986)) and Shoup (V. Shoup (1990)) have 

introduced that an irreducible polynomial of degree m over Fp with an arbitrary pair of p 

and m can be generated by using a GNB in ; however, they do not give any explicit 

algorithms. Of course, their calculation costs are not explicitly evaluated. Thus, this paper 

explicitly gives an algorithm that generates an irreducible polynomial of degree m over Fp 

by using a GNB in . In addition, the calculation cost is explicitly given. It is applied for 

an arbitrary pair of p and m. 

3. Irreducible polynomial generation 

This section introduces the idea and algorithms. 

3.1 Main idea 

In this section, we introduce a special class of Gauss period normal bases (GNB). The special 

class normal basis is given from TypeI ONB (Y. Nogami et al., (2003)). In this paper, we call 

it TypeI-X NB (TypeI eXtended normal basis). The authors have proposed a multiplication 

algorithm named cyclic vector multiplication algorithm (CVMA) (T. Yoshida et al., (2006)). It 

is also available for TypeI-X NB. It is noted that CVMA calculates a multiplication in  

without explicitly preparing an irreducible polynomial of degree m over Fp as the modulus 

polynomial of . Using CVMA with TypeI-X NB, this paper shows an efficient algorithm 

for generating an irreducible polynomial of an arbitrary degree m over an arbitrary prime 

field Fp. After that, it is shown that the proposed algorithm quite efficiently determines the 

minimal polynomial of TypeI-X NB in . 
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3.2 Minimal polynomial 

Let us briefly go over the fundamentals of minimal polynomial. Let α be a proper element in 

. Then, its minimal polynomial Mα(x) is given as 

                                     
(5a)

       (5b) 

where am−1, … , a1, a0 are in Fp. Mα(x) becomes a monic irreducible polynomial of degree m 

over Fp (R. Lidl & H. Niederreiter (1984)). When the degree m is large, it is too time-

consuming to directly develop Eq.(5a) into Eq.(5b) with the distributive law; however, if m 

is smaller than p, we can systematically obtain each coefficient of Mα(x) by Newton's formula 

as described in the next section. As previously introduced, the restriction thus comes from 

using Newton's formula. 

3.3 Minimal polynomial and Newton’s formula 

First, we define the notation Tr[n](α) as follows. 

Definition 1 For a proper element α in , consider its m conjugates as follows: 

 (6) 

Let 1 ≤n ≤ m, Tr[n](α)  is defined as 

 
(7) 

■ 

According to the Newton's formula (R. Lidl & H. Niederreiter (1984)), (V. Shoup (1990)), 

each coefficient of the minimal polynomial Mα(x) that is defined by Eqs.(5) is systematically 

given by 

 

(8) 

where 1 ≤n ≤ m and Tr[1](αn−i) is the trace of αn−iwith respect to Fp. As shown in Eq.(8), we 

need to calculate n−1. Therefore, the above equation can be applied for the case that p > m. 

Newton's formula needs a lot of trace calculations, for which TypeI-X NB is also efficient 

because it is a normal basis (R. Lidl & H. Niederreiter (1984)). 

3.4 A special class of Gauss period normal bases 

Let us consider a special class of type-h〈k,m〉 Gauss period normal bases as follows (T. 

Yoshida et al., (2006)). 

Let km+1 be prime and suppose that p is a primitive element in Fkm+1. Then, let ω be a 

primitive (km + 1) fist root of unity, ω belongs to . The conjugates of ω form a TypeI 

ONB as follows. 
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 (9) 

Then, consider a special class of GNB as 

 

(10)

In this paper, we call the normal basis Eq.(10) TypeI-X normal basis (TypeI-X NB). A lot of 

studies about GNB have been done (M. Nöcker (2001)), (R. Granger (2005)). Gao (S. Gao 

(1993)) has discussed from the viewpoints of normal basis and self dual normal basis in 

detail. According to Gao's paper (S. Gao (1993)), TypeI-X NB in  always exists for an 

arbitrary pair of p and m such that 4p does not divide m(p −1). The authors also checked it 

experimentally (T. Yoshida et al., (2006)). In the next section, how to carry out a 

multiplication with TypeI-X NB is introduced. 

3.4.1 Multiplication with TypeI-X NB 

A multiplication Z = XY with TypeI-X NB in  is carried out by the algorithm shown in 

Fig 1. It is named cyclic vector multiplication algorithm (CVMA) (Y. Nogami et al., (2003)). 

The authors have improved CVMA several times (T. Yoshida et al., (2006)), (Y. Nogami et 

al., (2005)). In Fig 1. 〈·〉 means · mod km + 1. 
 

                           (End of algorithm) 

Fig. 1. CVMA in  with TypeI-X NB 
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This algorithm needs the following cost: 

                                                   
(11a)

    
(11b) 

The well−known Karatsuba method calculates a polynomial multiplication of degree m with 

O(m1.7) Fp−multiplications (D. Knuth (1981)); however, in this case we need a certain 

modulus polynomial of degree m over Fp. On the other hand, CVMA does not need such an 

irreducible polynomial of degree m over Fp; however, extension degree m is preferred to be 

small. 

3.5 Minimal polynomial determination with CVMA 

Using CVMA, as Sec.3.3 we can determine the minimal polynomialMα(x) of a proper 

element α ∈ . 

a. Calculate αi and then Tr[1](αi), where 1 ≤i ≤m. 

b. Calculate the coefficients ai, 0 ≤i ≤ m − 1. 

Noting that TypeI-X NB Eq.(10) is a normal basis, Tr[1](αi) is calculated by m − 1 additions in 

Fp with the vector coefficients of αi. When a vector is represented with a normal basis, its 

trace is calculated by adding all of the vector coefficients. In addition, whether or not the 

element is a proper element in  is easily checked from its vector coefficients. For an 

arbitrary proper element α, determining its minimal polynomial Mα(x) takes the following 

calculation cost. 
For the operation (a), 

                              
(12a)

       
(12b) 

In detail, for αi, 1 ≤i ≤ m, we need m − 1 multiplications in  with CVMA. Then, for 

Tr[1](αi), we need m − 1 additions in Fp. In total, we need Eqs.(12). For the operation (b), 

                
(13a)

                                                (13b) 

The calculation cost Eqs.(13) is given from Eq.(8). The operations (a) and (b) need O(m3) and 

O(m2) Fp-multiplications, respectively. Thus, the major computation is for the operation (a). 

By the way, since the proposed algorithm is based on the minimal polynomial 

determination, it can be applied for generating a primitive polynomial. In detail, if pm−1, 

that is the order of , is factorized as the product of prime numbers, we can prepare a 
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primitive element in  as a proper element α (R. Lidl & H. Niederreiter (1984)). Then, 

using a primitive element, the proposed algorithm generates a primitive polynomial of 

degree m over Fp. In the next section, applying one of the basis elements shown in Eq.(10) as 

a proper element in , we improve the operation (a). 

3.6 Minimal polynomial of TypeI-X NB 

Using γ defined in Eq.(10), that is a proper element in  and its conjugates form the 

TypeI-X NB Eq.(10), we calculate its minimal polynomial Mγ(x). According to Eq.(8) and 

CVMA Fig 1., the minimal polynomial Mγ(x) is calculated by the algorithm Fig 2. 

In Fig 2., Tr [i] denote Tr[1](γi), 1 ≤i ≤ m, respectively. In addition, x[j], 0 ≤ j ≤ m−1 denote the 

vector coefficients of γi−1, 2 ≤ i ≤ m in each loop from line 7: to line 18:. Since TypeI-X NB is a 

normal basis, traces are efficiently calculated as shown at line 17:. Lines 1:, 2:, and 3: are 

preparations for CVMA in . From line 9: to line 17:, γi−1 × γ, 1 ≤ i ≤ m is calculated by 

modifying CVMA. This calculation is quite simpli_ed because the vector representation of 

the input γ is (1, 0, 0, … , 0). Then, at line 18: Tr[1](γi) is calculated. At line 16:, noting that k 

is small (T. Yoshida et al., (2006)), kq[0] is calculated with k¡1 additions in Fp. Thus, the 

calculation cost for the operation (a) becomes 

   (14a)

 
(14b) 

In the right hand side of Eq.(14b), the five terms correspond to line 11:, 13:, 16:, 17:, and 18:, 

respectively. Thus, the operation (a) does not need any multiplications in Fp, therefore the 

major computation is changed to the operation (b) shown from line 20: to line 26: in Fig 2., 

which needs O(m2) Fp-multiplications. Line 23: corresponds to Eq.(8). In detail, its 

calculation cost is evaluated as Eq.(13). 

As shown in Fig 2., the proposed algorithm needs to calculate the indexes such as 〈1 + 

(pj+mt)〉; however, these indexes can be previously calculated when extension degree m is 

small. Of course, we can directly write down the program with the previously calculated 

indexes, therefore, the calculation cost for these indexes is not taken into account in this 

paper. By the way, according to Gao's paper (S. Gao et al., (2000)), when parameter k is even 

and divisible by p, TypeI-X NB becomes a self dual normal basis and thus Mγ(x) is the 

minimal polynomial of the self dual normal basis in . 

As introduced in Sec.1, we can of course calculateMγ(x) with the distributive law instead of 

Newton's formula as follows. 

 (15)

In order to develop Eq.(15) in this case, we need m(m−1)/2 times. Its calculation cost 

becomes 

                                              (16a)

 
(16b) 
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Thus, it needs O(m3) Fp−additions. It does not need any Fp−multiplications; however, the 

proposed algorithm becomes faster than using the distributive law as extension degree m 

becomes larger. 
 

                         (End of algorithm) 

Fig. 2. Calculation of the minimal polynomial Mγ(x) 
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4. Consideration 

This section shows some experimental results and comparison. 

4.1 Experimental result and comparison 
The authors have simulated the proposed algorithm on Pentium4 (1.7GHz) using C++ 
programming language and NTL (NTL). The authors also simulated the DDF-based 
irreducibility test which is introduced in Sec.2 and the case using the distributive law. 
 

 

Fig. 3. The average computation time for generating an irreducible polynomial with the 

DDF-based irreducibility test and the proposed algorithm with p1. 

Let p1 and p2 be respectively given as follows: 

               (17)

 (18)

• For the proposed algorithm, the authors measured the average computation time for 

generating an irreducible polynomial of degree m over Fp by changing m from 2 to 100 

with p1 and p2. 

• For the DDF-based irreducibility test, inputting randomly generated polynomials of 

degree m over Fp, the authors measured the average computation time for generating 

an irreducible polynomial with p1 and the following prime degrees: 

 
(19)

and then with p2 and the following prime degrees: 

 (20)

Note that the irreducibility test is carried out by Eq.(4) when m is a prime number. 

• For the case using the distributive law, the authors also measured the computation time 

for generating an irreducible polynomial of degree m over Fp by changing m from 2 to 

100 with p1. 
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Fig. 4. The average computation time for generating an irreducible polynomial with the 

DDF-based irreducibility test and the proposed algorithm with p2. 

 

Fig. 5. The Bezier curve for the proposed algorithm in Fig 3. 

 

Fig. 6. The Bezier curve for the proposed algorithm in Fig 4. 

The reason why the authors choose p1 and p2 given above is that the former does not need 

multi−precision arithmetic operations and the latter is sufficient secure size for elliptic curve 
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Fig. 7. The average computation time for generating an irreducible polynomial with the 

distributive law as Eq.(15) and the proposed algorithm with p1. 

cryptography (A. J. Menezes (1993)). Fig 3., Fig 4. and Fig 7. show the result. In Fig 3. and 

Fig 4., for example, when m = 83 with p1, the proposed algorithm took 0.011 seconds with 

the parameter k = 2 and the DDF-based irreducibility test took 117 seconds. The proposed 

algorithm is about 104 times faster. As shown in the graphs, there are a few cases that the 

proposed algorithm is not very fast. For example, when m = 77 and 78 with p1, the proposed 

algorithm took 0.115 and 0.019 seconds, respectively. The latter case is quite faster than the 

former. It is because of the parameter k. In the former case, k was 30, on the other hand, in 

the latter case, k was 4. Thus, the parameter k is preferred to be small. Of course, since the 

calculation cost of the proposed algorithm is clearly given as Eqs.(13) and Eqs.(14), in 

advance we can easily estimate how much calculation time the proposed algorithm needs. 

When the characteristic is p1, the average of k's was 13.6. When the characteristic is p2, the 

average was 12.8. 

Fig 7. shows the comparison of the proposed algorithm and the case using the distributive 

law. For example, when m = 83 with p1, the proposed algorithm took 0.011 seconds and the 

case using the distributive law took 0.496 seconds. The proposed algorithm is about 45 times 

faster. Fig 7. shows that the proposed algorithm is faster than using the distributive law. 

Therefore, using Newton's formula is better; however, it restricts p and m such that p > m. 

As compared to the DDF-based irreducibility test, the proposed algorithm does not depend 

on the size of the characteristic p. It is because the calculation cost of the DDF-based 

irreducibility test depends on the size of p as introduced in Sec.2.5; however, that of the 

proposed algorithm does not. Therefore, as shown in Fig 3. and Fig 4., when p is large, the 

proposed algorithm generates an irreducible polynomial much faster than using the DDF-

based irreducibility test. Fig 5. and Fig 6. are the Bezier curves for the data of the proposed 

algorithm in Fig 3. and Fig 4., respectively. 

5. Conclusion 

This paper has shown an efficient algorithm for generating an irreducible polynomial of an 

arbitrary degree m over an arbitrary prime field Fp such that p > m. 
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