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Iran 

1. Introduction      

Scientists are beginning to realize more and more that nature is a great source for inspiration 
in order to develop intelligent systems and algorithms. In the field of Computational 
Intelligence, especially Evolutionary Computation and Swarm-based systems, the degree of 
imitation from nature is surprisingly high and we are at the edge of developing and 
proposing new algorithms and/or systems, which partially or fully follow nature and the 
actions and reactions that happen in a specific natural system or species.  
Among the most recent nature-inspired swarm-based optimization algorithms is the 
Intelligent Water Drops (IWD) algorithm. IWD algorithms imitate some of the processes that 
happen in nature between the water drops of a river and the soil of the river bed. The IWD 
algorithm was first introduced in (Shah-Hosseini, 2007) in which the IWDs are used to solve 
the Travelling Salesman Problem (TSP). The IWD algorithm has also been successfully 
applied to the Multidimensional Knapsack Problem (MKP) (Shah-Hosseini, 2008a), n-queen 
puzzle (Shah-Hosseini, 2008b), and Robot Path Planning (Duan et al., 2008).  
Here, the IWD algorithm and its versions are specified for the TSP, the n-queen puzzle, the 
MKP, and for the first time, the AMT (Automatic Multilevel Thresholding). Some theoretical 
findings have also been reviewed for the IWD algorithm. Next section reviews briefly the 
related works. Section 3 examines natural water drops. Section 4 states about Intelligent 
Water Drops (IWDs). Section 5 specifies the Intelligent Water Drops (IWD) algorithm. Next 
section, reviews the convergence properties of the IWD algorithm. Section 7 includes 
experiments with the IWD and its versions for the four mentioned problems. Final section 
includes the concluding remarks. 

2. Related works 

One of the famous swarm-based optimization algorithms has been invented by simulating 
the behaviour of social ants in a colony. Ants living in a nest are able to survive and develop 
their generations and reproduce in a cooperative way. Moreover, they can find the shortest 
path from their nest to a food source or vice versa. They can build complex nests capable of 
holding hundreds of thousands of ants and lots of other activities that show a high-level of 
intelligence in a colony of ants. Other social insects generally show such complex and 
intelligent behaviours such as bees and termites.  Ant colony optimization (ACO) algorithm O
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(Dorigo & et al., 1991) and Bee Colony Optimization (BCO) algorithm (Sato & Hagiwara, 
1997) are among the swarm-based algorithms imitating social insects for optimization.  
Evolutionary Computation is another system, which has been inspired from observing 
natural selection and reproduction systems in nature. Genetic algorithms (GA) (Holland, 
1975) are among the most famous algorithms in this regard. Evolution Strategy (Rechenberg, 
1973; Schwefel, 1981), Evolutionary Programming (Fogel et al., 1966), and Genetic 
Programming (Koza, 1992) are other Evolutionary-based intelligent algorithms that are 
often used for optimization.  Memetic Algorithms (MA) (Dawkins, 1989; Ong et al., 2006) are 
among the most recent area of research in the field of Evolutionary Computation. Here, a 
meme is the basic unit of culture that can be inherited. An individual is assumed to have 
both genes and memes. Therefore, not only the genes of individuals evolve, but also their 
memes undergo evolution.   
Artificial Immune Systems (AIS) are another example of swarm-based nature inspired 
algorithms, which follow the processes and actions that happen in the immune systems of 
vertebrates. Clonal Selection Algorithms (de Castro & Von Zuben, 2002), Negative Selection 
Algorithms (Forrest, et al., 1994), and Immune Network Algorithms (Timmis et al., 2000) are 
among the most common techniques in the field of AIS.  
Another swarm-based optimization algorithm is the Particle Swarm Optimization (PSO), 
which has been introduced by (Kennedy & Eberhart, 1995).  PSO uses a swarm of particles, 
which each one has position and velocity vectors, and they move near together to find the 
optimal solution for a given problem. Infact, PSO imitates the processes that exist in the 
flocks of birds or a school of fish to find the optimal solution. 
Another swarm-based optimization algorithm is the Electromagnetism-like mechanism 
(EM) (Birbil & Fang, 2003). The EM algorithm uses an attraction-repulsion mechanism based 
on the Coulomb’s law to move some points towards the optimal positions.  

3. Natural water drops 

In nature, flowing water drops are observed mostly in rivers, which form huge moving 
swarms. The paths that a natural river follows have been created by a swarm of water 
drops. For a swarm of water drops, the river in which they flow is the part of the 
environment that has been dramatically changed by the swarm and will also be changed in 
the future. Moreover, the environment itself has substantial effects on the paths that the 
water drops follow. For example, against a swarm of water drops, those parts of the 
environment having hard soils resist more than the parts with soft soils. In fact, a natural 
river is the result of a competition between water drops in a swarm and the environment 
that resists the movement of water drops.  
Based on our observation in nature, most rivers have paths full of twists and turns. Up until 
now, it is believed that water drops in a river have no eyes so that by using those eyes, they 
can find their destination, which is often a lake or sea. If we put ourselves in place of a water 
drop flowing in a river, we would feel that some force pulls us toward itself, which is the 
earth’s gravity. This gravitational force pulls everything toward the center of the earth in a 
straight line. Therefore with no obstacles and barriers, the water drops should follow a 
straight path toward the destination, which is the shortest path from the source of water 
drops to the destination, which is ideally the earth’s center. This gravitational force creates 
acceleration such that water drops gain speed as they come near to the earth’s center. 
However, in reality, due to different kinds of obstacles and constraints in the way of this 
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ideal path, the real path is so different from the ideal path such that lots of twists and turns 
in a river path are seen, and the destination is not the earth’s center but a lake, sea, or even a 
bigger river.  It is often observed that the constructed path seems to be an optimal one in 
terms of the distance from the destination and the constraints of the environment. 
One feature of a water drop flowing in a river is its velocity. It is assumed that each water 
drop of a river can also carry an amount of soil. Therefore, the water drop is able to transfer 
an amount of soil from one place to another place in the front. This soil is usually transferred 
from fast parts of the path to the slow parts. As the fast parts get deeper by being removed 
from soil, they can hold more volume of water and thus may attract more water. The 
removed soils, which are carried in the water drops, are unloaded in slower beds of the 
river.  Assume an imaginary natural water drop is going to flow from one point of a river to 
the next point in the front. Three obvious changes happen during this transition:  

• Velocity of the water drop is increased. 

• Soil of the water drop is increased. 

• Between these two points, soil of the river’s bed is decreased. 
In fact, an amount of soil of the river’s bed is removed by the water drop and this removed 
soil is added to the soil of the water drop. Moreover, the speed of the water drop is 
increased during the transition.  
It was mentioned above that a water drop has also a velocity. This velocity plays an 
important role in removing soil from the beds of rivers. The following property is assumed 
for a flowing water drop: 

• A high speed water drop gathers more soil than a slower water drop.  
Therefore, the water drop with bigger speed removes more soil from the river’s bed than 
another water drop with smaller speed. The soil removal is thus related to the velocities of 
water drops.  
It has been said earlier that when a water drop flows on a part of a river’s bed, it gains 
speed. But this increase in velocity depends on the amount of soil of that part.  This property 
of a water drop is expressed below: 

• The velocity of a water drop increases more on a path with low soil than a path with 
high soil. 

The velocity of the water drop is changed such that on a path with little amount of soil, the 
velocity of the water drop is increased more than a path with a considerable amount of soil. 
Therefore, a path with little soil lets the flowing water drop gather more soil and gain more 
speed whereas the path with large soil resists more against the flowing water drop such that 
it lets the flowing water drop gather less soil and gain less speed. 
Another property of a natural water drop is that when it faces several paths in the front, it 
often chooses the easier path.  Therefore, the following statement may be expressed: 

• A water drop prefers a path with less soil than a path with more soil 
The water drop prefers an easier path to a harder path when it has to choose between 
several branches that exist in the path from the source to destination. The easiness or 
hardness of a path is denoted by the amount of soil on that path. A path with more soil is 
considered a hard path whereas a path with less soil is considered an easy path.   

4. Intelligent Water Drops (IWDs) 

In the previous section, some prominent properties of natural water drops were mentioned. 
Based on the aforementioned statements, an Intelligent Water Drop (IWD) has been 
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suggested (Shah-Hosseini, 2007), which possesses a few remarkable properties of a natural 
water drop. This Intelligent Water Drop, IWD for short, has two important properties:  

• The soil it carries, denoted by soil(IWD). 

• The velocity that it posses, denoted by velocity(IWD). 
For each IWD, the values of both properties, soil(IWD) and velocity(IWD) may change as 
the IWD flows in its environment. From the engineering point of view, an environment 
represents a problem that is desired to be solved. A river of IWDs seeks an optimal path for 
the given problem.  
Each IWD is assumed to flow in its environment from a source to a desired destination. In 

an environment, there are numerous paths from a given source to a desired destination. The 

location of the destination may be unknown. If the location of the desired destination is 

known, the solution to the problem is obtained by finding the best (often the shortest) path 

from the source to the destination. However, there are cases in which the destination is 

unknown. In such cases, the solution is obtained by finding the optimum destination in 

terms of cost or any other desired measure for the given problem. 

An IWD moves in discrete finite-length steps in its environment. From its current location i 

to its next location j, the IWD velocity, velocity (IWD), is increased by an amount Δvelocity 

(IWD), which is nonlinearly proportional to the inverse of the soil between the two locations 

i an j, soil(i , j): 

 
),(

1
)(

jisoil
IWDvelocity NL∝Δ  (1) 

Here, nonlinearly proportionality is denoted by ∝NL . One possible formula is given below in 

which the velocity of the IWD denoted by )(tvel IWD  is updated by the amount of soil 

),( jisoil  between the two locations i and j: 

 
),( . 

)(
2 jisoilcb

a
tvel

vv

vIWD

α+
=Δ  (2) 

Here, the 
va , 

vb , 
vc , and α  are user-selected positive parameters. 

Moreover, the IWD’s soil, soil(IWD), is increased by removing some soil of the path joining 

the two locations i an j. The amount of soil added to the IWD, Δsoil(IWD)= Δsoil(i,j), is 

inversely (and nonlinearly) proportional to the time needed for the IWD to pass from its 

current location to the next location denoted by time(i,j; IWD).  

 
);,(

1
),()(

IWDjitime
jisoilIWDsoil NL∝Δ=Δ  (3) 

One suggestion for the above formula is given below in which );,( IWDveljitime is the time 

taken for the IWD with velocity 
IWDvel to move from location i to j. The soil added to the 

IWD is calculated by  

 ( ) ;,  .
),(

2 IWD
ss

s

veljitimecb

a
jisoil

θ+
=Δ  (4) 
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Where the parameters 
sa , 

sb , 
sc , and θ  are user-selected and should be chosen as positive 

numbers. 
The duration of time for the IWD is calculated by the simple laws of physics for linear 

motion. Thus, the time taken for the IWD to move from location i to j is proportional to the 

velocity of the IWD, velocity (IWD), and inversely proportional to the distance between the 

two locations, d(i,j). More specifically:  

 
)(

1
);,(

IWDvelocity
IWDjitime L∝  (5) 

Where ∝L denotes linear proportionality.  One such formula is given below, which calculates 

the time taken for the IWD to travel from location i to j with velocity 
IWDvel : 

 ( )
IWD

IWD

vel

jiHUD
veljitime

),(
;, =  (6) 

Where a local heuristic function .) , (.HUD has been defined for a given problem to measure 

the undesirability of an IWD to move from one location to the next.  
Some soil is removed from the visited path between locations i and j. The updated soil of the 

path denoted by soil(i,j) is proportional to the amount of soil removed by the IWD flowing 

on the path joining i to j, Δsoil(i,j)= Δsoil(IWD). Specifically: 

 ),(),( jisoiljisoil L Δ∝  (7) 

One such formula has been used for the IWD algorithm such that ),( jisoil  is updated by 

the amount of soil removed by the IWD from the path i to j.  

 ),( . ),( . ),( jisoiljisoiljisoil no Δ−= ρρ  (8) 

Where 
oρ  and 

nρ  are often positive numbers between zero and one. In the original IWD 

algorithm for the TSP (Shah-Hosseini, 2007), 
no ρρ −=1 .  

The soil of the IWD denoted by 
IWDsoil is added by the amount ),( jisoil  as shown below: 

 ),( jisoilsoilsoil IWDIWD Δ+=  (9) 

Another mechanism that exists in the behaviour of an IWD is that it prefers the paths with 

low soils on its beds to the paths with higher soils on its beds. To implement this behaviour 

of path choosing, a uniform random distribution is used among the soils of the available 

paths such that the probability of the IWD to move from location i to j denoted by p(i,j;IWD) 

is inversely proportional to the amount of soils on the available paths.  

 ),();,( jisoilIWDjip L∝  (10) 

The lower the soil of the path between locations i and j, the more chance this path has for 

being selected by the IWD located on i.  One such formula based on Eq. (10) has been used 

in which the probability of choosing location j is given by: 
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( )∑

∉

=
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);,(

IWDvck

kisoilf

jisoilf
IWDjip  (11) 

Where 
)),((

1
)),((

jisoilg
jisoilf

s +
=
ε

. The constant parameter  
sε  is a small positive 

number to prevent a possible division by zero in the function (.)f .  The set )(IWDvc  

denotes the nodes that the IWD should not visit to keep satisfied the constraints of the 
problem.  

The function )),(( jisoilg  is used to shift the ),( jisoil of the path joining nodes i and j 

toward positive values and is computed by 

 
⎪⎩

⎪
⎨
⎧

−

≥
=

∉

∉
elselisoiljisoil

lisoilif jisoil

jisoilg

IWDvcl

l

        )),((min),(

0)),((min       ),(

)),((

)(

vc(IWD)
 (12) 

Where the function min(.) returns the minimum value of its arguments.  
The IWDs work together to find the optimal solution to a given problem. The problem is 
encoded in the environment of the IWDs, and the solution is represented by the path that 
the IWDs have converged to. In the next section, the IWD algorithm is explained. 

5. The Intelligent Water Drops (IWD) algorithm 

The IWD algorithm employs a number of IWDs to find the optimal solutions to a given 

problem. The problem is represented by a graph ( )EN ,  with the node set N and edge set E. 

This graph is the environment for the IWDs and the IWDs flow on the edges of the graph. 

Each IWD begins constructing its solution gradually by traveling between the nodes of the 

graph along the edges until the IWD finally completes its solution denoted by 
IWDT . Each 

solution 
IWDT  is represented by the edges that the IWD has visited. One iteration of the 

IWD algorithm is finished when all IWDs complete their solutions. After each iteration, the 

iteration-best solution 
IBT is found. The iteration-based solution 

IBT  is the best solution 

based on a quality function among all solutions obtained by the IWDs in the current 

iteration. 
IBT is used to update the total-best solution 

TBT . The total-best solution 
TBT  is 

the best solution since the beginning of the IWD algorithm, which has been found in all 

iterations.   

For a given problem, an objective or quality function is needed to measure the fitness of 

solutions. Consider the quality function of a problem to be denoted by (.) q . Then, the 

quality of a solution 
IWDT  found by the IWD is given by )( IWDTq . Therefore, the iteration-

best solution 
IBT  is given by: 

 )(maxarg
    

IWD

IWDsallfor

IB TqT =  (13) 

Where arg(.) returns its argument.  

It should be noted that at the end of each iteration of the algorithm, the total-best solution 
TBT  is updated by the current iteration-best solution 

IBT  as follows: 
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IBTBTB
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Moreover, at the end of each iteration of the IWD algorithm, the amount of soil on the edges 

of the iteration-best solution 
IBT  is reduced based on the goodness (quality) of the solution. 

One such mechanism (Shah-Hosseini, 2007) is used to update the ),( jisoil  of each edge 

),( ji  of the iteration-best solution 
IBT : 

 
IBIWD

IB

IB

IWD Tjisoil
N

jisoiljisoil

∈∀−

=

),(      .  
1)-(

1
  . 

),( .  ),( s

ρ

ρ
 (15) 

Where IWD

IBsoil  represents the soil of the iteration-best IWD. The iteration-best IWD is the 

IWD that has constructed the iteration-best solution 
IBT  at the current iteration. 

IBN  is the 

number of nodes in the solution 
IBT . 

IWDρ  is the global soil updating parameter, which 

should be chosen from [ ]1,0 . 
sρ  is often set as )1( IWDρ+ . 

Then, the algorithm begins another iteration with new IWDs but with the same soils on the 

paths of the graph and the whole process is repeated. The IWD algorithm stops when it 

reaches the maximum number of iterations itermax or the total-best solution 
TBT  achieves the 

expected quality demanded for the given problem. 
The IWD algorithm has two kinds of parameters: 

• Static parameters 

• Dynamic parameters 
Static parameters are those parameters that remain constant during the lifetime of the IWD 
algorithm. That is why they are called “static”. Dynamic parameters are those parameters, 
which are dynamic and they are reinitialized after each iteration of the IWD algorithm.  
The IWD algorithm as expressed in (Shah-Hosseini, 2008b) is specified in the following ten 
steps: 
1. Initialization of static parameters:  

• The graph ( )EN ,  of the problem is given to the algorithm, which contains 
cN  nodes.  

• The quality of the total-best solution 
TBT  is initially set to the worst 

value: −∞=)( TBTq .  

• The maximum number of iterations 
maxiter  is specified by the user and the algorithm 

stops when it reaches 
maxiter .  

• The iteration count 
countiter , which counts the number of iterations, is set to zero. 

• The number of water drops 
IWDN is set to a positive integer value. This number should 

at least be equal to two. However, 
IWDN is usually set to the number of nodes 

cN  of the 

graph.  

• Velocity updating parameters are 
va , 

vb , and 
vc . Here, 1== vv ca  and 01.0=vb   

• Soil updating parameters are 
sa , 

sb , and 
sc . Here,  1== ss ca  and 01.0=sb  

• The local soil updating parameter is
nρ . Here, 9.0=nρ  except for the AMT, which is 

9.0−=nρ . 

• The global soil updating parameter is
IWDρ . Here, 9.0=IWDρ . 
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• The initial soil on each edge of the graph is denoted by the constant InitSoil  such that 

the soil of the edge between every two nodes i and j is set by InitSoiljisoil =),( . 

Here, 10000=InitSoil  

• The initial velocity of each IWD is set to InitVel .  Here, 200=InitVel  except for the 

MKP, which is 4=InitVel . 

• Initialization of dynamic parameters:   

• Every IWD has a visited node list )(IWDVc
, which is initially empty: { }=)(IWDVc

.  

• Each IWD’s velocity is set to InitVel .  

• All IWDs are set to have zero amount of soil.  
2. Spread the IWDs randomly on the nodes of the graph as their first visited nodes.  
3. Update the visited node list of each IWD to include the nodes just visited.  
4. Repeat steps 5.1 to 5.4 for those IWDs with partial solutions. 
5.  

5.1. For the IWD residing in node i, choose the next node j, which doesn’t violate any 

constraints of the problem and is not in the visited node list )(IWDvc  of the IWD, 

using the following probability )( jp IWD

i
: 

 ( )
( )∑

∉

=

)(

),(

),(
)(

IWDvck

IWD

i
kisoilf

jisoilf
jp  (16) 

such that 
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and 
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        )),((min ),(

0)),((min       ),(
)),((

)(

vc(IWD)  (18) 

Then, add the newly visited node j to the list )(IWDvc .  

5.2. For each IWD moving from node i to node j, update its velocity )(tvel IWD  by  

 
),( . 

)()1(
2 jisoilcb

a
tveltvel

vv

vIWDIWD

+
+=+  (19) 

where )1( +tvel IWD is the updated velocity of the IWD.  

5.3. For the IWD moving on the path from node i to j, compute the soil ),( jisoilΔ  that the 

IWD loads from the path by  

 ( ))1(;,  .
),(

2 ++
=Δ

tveljitimecb

a
jisoil

IWD

ss

s  (20) 

such that ( )
)1(

)(
)1(;, 

+
=+

tvel

jHUD
tveljitime

IWD

IWD  where the heuristic undesirability 

)( jHUD  is defined appropriately for the given problem. 
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5.4. Update the soil ),( jisoil  of the path from node i to j traversed by that IWD, and also 

update the soil that the IWD carries 
IWDsoil  by 

 
),(

),( . ),( . )1(),(

jisoilsoilsoil

jisoiljisoiljisoil

IWDIWD

nn

Δ+=

Δ−−= ρρ
 (21) 

6. Find the iteration-best solution 
IBT  from all the solutions 

IWDT  found by the IWDs using  

 )(maxarg IWD

T

IB TqT
IWD∀

=  (22) 

where function (.)q  gives the quality of the solution. 

7. Update the soils on the paths that form the current iteration-best solution 
IBT  by 

 
IBIWD

IB

IB

IWD Tjisoil
N

jisoiljisoil

∈∀−

+=

),(      .  
1)-(

1
  . 

),( . )(1 ),( IWD

ρ

ρ
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where 
IBN  is the number of nodes in solution 

IBT . 

8. Update the total best solution 
TBT  by the current iteration-best solution 

IBT  using  

 

⎩
⎨
⎧ ≥

=
otherwiseT

TqTqifT
T

IB

IBTBTB

TB

                            

)(    )(          
 (24) 

9. Increment the iteration number by 1+= countcount IterIter . Then, go to step 2 if 

maxIterItercount < . 

10. The algorithm stops here with the total-best solution 
TBT . 

The IWD algorithm may be compared to the ant-based optimization algorithms (Bonabeau 
et al., 1999), which is summarized below: 

• Every ant in an Ant Colony Optimization (ACO) algorithm deposits pheromones on 

each edge it visits. In contrast, an IWD changes the amount of soil on edges.  

• In the ACO algorithm, an ant cannot remove pheromones from an edge whereas in the 

IWD algorithm, an IWD can both remove and add soil to an edge.  

• In the IWD algorithm, the changes made on the soil of an edge are not constant and 

they are dependent on the velocity and soil of the IWDs visiting that edge. In contrast, 

in the ACO algorithm, each ant deposits a constant amount of pheromone on the edge.  

• Besides, the IWDs may gain different velocities throughout an iteration of the IWD 

algorithm whereas in ACO algorithms the velocities of the ants are irrelevant. 

6. Convergence properties of the IWD algorithm 

Let the graph ( )EN ,  represents the graph of the given problem. This graph is assumed to 

be a fully connected graph with 
cN  nodes. Let 

IWDN  represents the number of IWDs in the 

IWD algorithm. In the soil updating of the algorithm, two extreme cases are considered:  

www.intechopen.com



 Evolutionary Computation 

 

306 

Case one: Only those terms of the IWD algorithm, which increase soil to an edge (arc) of 

( )EN , , are considered. 

Case two: Only those terms of the IWD algorithm, which decrease soil to an edge (arc) of 

( )EN , , are considered.  

For each case, the worst-case is followed. For case one, the highest possible value of soil that 

an edge can hold after m iterations, )( maxedgesoil , will be (Shah-Hosseini, 2008a): 

 ( )0max )(  )( ISedgesoil m

osρρ=  (25) 

Where the edge is denoted by 
maxedge . 

0IS  is the initial soil of an edge ),( ji , which is 

denoted by InitSoil  in the IWD algorithm. 
0ρ is used in Eq. (8) and 

sρ is used in Eq. (15).  

For case two, the lowest possible value of soil for an edge is computed. That edge is denoted 

by 
maxedge .  Then, after m  iterations, the soil of 

maxedge  is (Shah-Hosseini, 2008a): 

 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

s

s
IWDnIWD

b

a
Nmedgesoil  )( min ρρ  (26) 

Where 
IWDN  is the number of IWDs. Soil updating parameters 

sa and 
sb  are defined in Eq. 

(20). 
IWDρ  is the global soil updating parameter used in Eq. (23). 

nρ is the local soil 

updating parameter used in Eq. (21). 
Based on Eqs. (25) and (26), the following proposition is stated: 

Proposition 6.1. The soil of any edge in the graph ( )EN ,  of a given problem after m  

iterations of the IWD algorithm remains in the interval [ ])(),( maxmin edgesoiledgesoil . 

The probability of finding any feasible solution by an IWD in iteration m  is )1(
)(

−cN

lowestp  

where the probability of any IWD, going from node i to node j, is always bigger than 
lowestp . 

It has been shown (Shah-Hosseini, 2008a) that 
lowestp  is always a positive value. Since there 

are 
IWDN  IWDs, then the probability );( msp  of finding any feasible solution s  by the 

IWDs in iteration m  is: 

 
)1(

)();(
−= cN

lowestIWD pNmsp  (27) 

The probability of finding any feasible solution s  at the end of M  iterations of the 

algorithm is: 

 ( ));(11);(
1

mspMsP
m

M

−Π−=
=

 (28) 

Because 1);(0 ≤< msp , then by making M  large enough, it is concluded that: 

( ) 0);(1   lim
1

=−Π
=∞→

msp
m

M

M

. Therefore, the following proposition is true: 

Proposition 6.2. If );( MsP  represents the probability of finding any feasible solution s  

within M  iterations of the IWD algorithm. As M  gets larger, );( MsP  approaches to one: 

 
1);(lim =

∞→
MsP

M  (29) 
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Knowing the fact that the optimal solution *s  is a feasible solution of the problem, from 

above proposition, the following proposition is concluded. 

Proposition 6.3. The IWD algorithm finds the optimal solution *s  of any given problem 

with probability one if the number of iterations M  is sufficiently large.  

It is noticed that the required M  to find the optimal solution *s  should be decreased by 
careful tuning of parameters of the IWD algorithm for the given problem.  

7. Experimental results 

Every IWD in the IWD algorithm both searches and changes its environment. During this 
search, the IWD incrementally constructs a solution. The problem definition is presented to 
the IWD algorithm in the form of a graph and IWDs visit nodes of the graph by travelling 
on the edges of the graph. A swarm of IWDs flows in the graph often with the guidance of a 
local heuristic in the hope of finding optimal or near optimal solutions. In the following, the 
IWD algorithm is used for four different problems: the TSP, the n-queen puzzle, the MKP, 
and for the first time, the IWD algorithm is used for Automatic Multilevel Thresholding 
(AMT). 

7.1 The Travelling Salesman Problem (TSP) 
In the TSP (travelling salesman problem), a map of cities is given to the salesman and he is 
required to visit every city only once one after the other to complete his tour and return to 
its first city. The goal in the TSP is to find the tour with the minimum total length among all 
such possible tours for the given map.  

A TSP is represented by a graph ( )EN ,  where the node set N  denotes the n cities of the 

TSP and the edge set E  denotes the edges between cities. Here, the graph of the TSP is 

considered a complete graph. Thus, every city has a direct link to another city. It is also 

assumed that the link between each two cities is undirected. So, in summary, the graph of 

the TSP is a complete undirected graph. A solution of the TSP having the graph ( )EN ,  is an 

ordered set of n distinct cities. For such a TSP with n cities, there are ( 1)!/ 2n −  feasible 

solutions in which the global optimum(s) is sought. 

A TSP solution for an n-city problem may be represented by the tour ( )ncccT ,...,, 21= . The 

salesman travels from city 
1c  to 

2c , then from 
2c  to 

3c , and he continues this way until it 

gets to city 
nc . Then, he returns to the first city 

1c , which leads to the tour length  (.)TL , 

defined by:  

 ( ) ( )∑
=

+=
n

i

iin ccdcccTL
1

121 ,  ,...,,   (30) 

such that 
11 ccn =+ , and (.,.)d  is the distance function, which is often the Euclidean 

distance. The goal is to find the optimum tour ( )**

2

*

1 ,...,,* ncccT =   such that for every other 

feasible tour T : 

 )( *)(      : TTLTTLT ≤∀  (31) 

In order to use the IWD algorithm for the TSP, the TSP problem as mentioned above is 

viewed as a complete undirected graph ( )EN , . Each link of the edge set E has an amount 
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of soil. An IWD visits nodes of the graph through the links. The IWD is able to change the 

amount of the soils on the links. Moreover, cities of the TSP are denoted by nodes of the 

graph, which hold the physical positions of cities. An IWD starts its tour from a random 

node and it visits other nodes using the links of the graph until it returns to the first node. 

The IWD changes the soil of each link that it flows on while completing its tour.  
For the TSP, the constraint that each IWD never visits a city twice in its tour must be kept 

satisfied. Therefore, for the IWD, a visited city list )(IWDVc
is employed. This list includes 

the cities visited so far by the IWD. So, the next possible cities for an IWD are selected from 

those cities that are not in the visited list )(IWDVc
 of the IWD. 

One possible local heuristic for the TSP, denoted by ) , ( jiHUDTSP
, has been suggested 

(Shah-Hosseini, 2008a) as follows: 

  )()( ),( jijiHUDTSP cc −=  (32) 

where )(kc  denotes the two dimensional positional vector for the city k . The function  .  

denotes the Euclidean norm. The local heuristic ) , ( jiHUDTSP
 measures the undesirability 

of an IWD to move from city i  to city j . For near cities i  and j , the heuristic measure 

) , ( jiHUD  becomes small whereas for far cities i  and j , the measure ) , ( jiHUD  

becomes big. It is reminded that paths with high levels of undesirability are chosen fewer 

times than paths with low levels of undesirability. In the IWD algorithm, the time taken for 

the IWD to pass from city i  to city j , is proportional to the heuristic ) , ( jiHUDTSP
.   

A modification to the IWD-TSP has been proposed in (Shah-Hosseini, 2008b), which finds 

better tours and hopefully escape local optimums. After a few number of iterations, say 
IN , 

the soils of all paths ),( ji of the graph of the given TSP are reinitialized again with the 

initial soil InitSoil  except the paths of the total-best solution 
TBT  , which are given less soil 

than InitSoil . The soil reinitialization after each 
IN  iterations is expressed in the following 

equation: 

 

⎩
⎨
⎧ ∈Γ

=
otherwiseInitSoil

TjieveryforInitSoil
jisoil

TB

II

                               

),(         
),(

α
 (33) 

where 
Iα  is a small positive number chosen here as 0.1.  

IΓ  denotes a random number, 

which is drawn from a uniform distribution in the interval [ ]1 , 0 . As a result, IWDs prefer 

to choose paths of 
TBT  because less soil on its paths is deposited. Here, 15=IN . 

We may refer to the IWD algorithm for the TSP as the “IWD-TSP” algorithm. Moreover, the 

modified IWD algorithm for the TSP is called the “MIWD-TSP” algorithm. 

The MIWD-TSP algorithm is tested with cities on a circle such that the cities are equally 

placed on the perimeter of the circle (Shah-Hosseini, 2008b). The number of cities is chosen 

from 10 to 100 cities incremented by 10. The results of this experiment are shown in Table 1 

in which the average numbers of iterations to get to the global optimums are depicted. The 

number of IWDs is kept at the constant value 50. As the number of cities increases, the 

average number of iterations to find the global optimum almost monotonically increases.  
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No. of cities on 
the circle 

10 20 30 40 50 60 70 80 90 100 

Ave. iterations 10.4 39.6 78.6 85.5 134.5 181.9 253.1 364.7 387.4 404.5 

Table 1. The average number of iterations to find the global optimum for the TSP where 
cities are equally spaced on the perimeter of a circle. The results are the average numbers of 
iterations of ten runs of the MIWD-TSP algorithm. 

The IWD-TSP algorithm (Shah-Hosseini, 2007) for the TSPs of Table 1 often gets trapped 

into local optimums. As the number of cities of the TSP increases, the average numbers of 

iterations to get to the global optimums become high. For the TSPs with high numbers of 

cities, it is impractical to use the IWD-TSP for them, and the MIWD-TSP is recommended. In 

Fig. 1, such a local optimum is shown for the TSP with 10 cities along the tour obtained by 

the MIWD-TSP algorithm. 

 

                          

Fig. 1. The IWD-TSP converges to a good local optimum in the left image. However, it has a 
small self-crossing in its tour for the TSP with 10 cities. In contrast, by using the MIWD-TSP, 
the self-crossing is removed and it converges to the tour in the right image. 

Four TSPs are taken from the TSPLIB95 (the TSP Library in the Internet) to test the 

performance of the MIWD-TSP algorithm (Shah-Hosseini, 2008b).  The lengths of average 

and best tours in five runs of the MIWD-TSP algorithm are reported in Table 2. For 

comparison, the lengths of best tours of some other nature-inspired algorithms are also 

mentioned in Table 2. The table shows that the tours obtained by the MIWD-TSP algorithm 

are satisfactorily close to the known optimums and are comparable to the other nature-

inspired algorithms.  
 

Method 
MIWD-TSP 

Problem 
Name 

Optimum 
length MMAS BCO EA 

Improved 
ACO Best Average 

eil51 426 426 431.13 --- 428.87 428.98 432.62 
eil76 538 --- --- 544.36 --- 549.96 558.23 
st70 675 --- 678.62 677.10 677.10 677.10 684.08 

kroA100 21282 21282 21441.5 21285.44 --- 21407.57 21904.03 

Table 2. The comparison between the Modified IWD-TSP and four other nature-inspired 
algorithms MMAS (Stutzle & Hoos, 1996), BCO (Teodorovic et al., 2006), EA (Yan et al., 
2005), Improved ACO (Song et al., 2006) for the four TSPs mentioned below. The MIWD-
TSP iterations: 3000 for eil51, 4500 for eil76, and 6000 for st70 and kroA100. 
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The convergence curve for the TSP “eil51” with the MIWD-TSP algorithm is shown in Fig. 2 
in which the tour length of the total-best solution versus iterations is depicted. Here, the 
algorithm converges to the tour of length 428.98, which is shown in the figure.   

Convergence Curve for eil51
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Fig. 2. The MIWD-TSP algorithm converges to the tour length 428.98 for eil51. The 
converged tour is shown on the right side. 

7.2 The n-queen puzzle 

The n-queen puzzle is the problem in which n chess queens must be placed on an n×n 
chessboard such that no two queens attack each other (Watkins, 2004). The n-queen puzzle 
is the generalization of the 8-queen puzzle with eight queens on an 8×8 chessboard. The 8-
quuen puzzle was originally proposed by the chess player “Max Bezzel” in 1848. Many 
mathematicians such as “Gauss” and “Cantor” have worked on the 8-queen puzzle and its 
generalized n-queen puzzle. The first solutions were provided by “Franz Nauck” in 1850. 
He also generalized it to the n-queen puzzle on an n×n chessboard. The 8-queen puzzle has 
92 distinct solutions. If the solutions that differ only by rotations and reflections of the board 
are counted as one, the 8-queen puzzle has 12 unique solutions. Except for n=6, as the n 
increases, the number of unique (or distinct) solutions increases. A solution to the 8-queen 
puzzle is depicted in Fig. 3. 
 

 

Fig. 3. A solution to the 8-queen puzzle on the chessboard. 

One strategy is to put all n queens instantly on the n×n chessboard, which leads to the hug 

search space 
nn2

(wrongly written 
n64  in (Shah-Hosseini, 2008b)). For 8=n , the search 

space contains 
14488 108.2264 ×≅= . To reduce the size of the search space of the n-queen 
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problem, the n queens are placed one by one on the chessboard such that the first queen is 

placed on any row of the first column. Then, the second queen is placed on any row of the 

second column except the row of the first queen. Following this strategy, the ith queen is 

placed on any row of the ith column except those rows that previous queens have occupied. 

This incremental strategy of putting queens on the chessboard reduces the search space to 

!n  where the symbol “!” denotes the factorial.  
In the incremental strategy, if every row of the chessboard is considered a city, then the n-
queen problem may be considered as a TSP. The first row chosen by the first queen is 
considered the first city of the tour. The second row chosen by the second queen is called the 
second city of the tour. Continuing this way, the ith row chosen by the ith queen is 
considered the ith city of the tour. The constraint that no two queens are in the same row is 
viewed as no two cities of the TSP graph are visited by the salesman. In summary, for the n-
queen problem, a complete undirected TSP graph is created.  
In the n-queen puzzle, any feasible solution is also an optimal solution. Any feasible solution 
for an n-queen puzzle is the solution in which no two queens attack each other and that is 
the optimal solution. For this problem, the path to reach the final feasible (optimal) 
solution(s) is not wanted and in fact only the final positions of queens on the chessboard are 
desired.  

The local heuristic undesirability ) , ( jiHUDNQ
, which has been proposed in (Shah-

Hosseini, 2008b) to solve the n-queen puzzle, is stated as follows: 

  
2

    )1(),(
n

jirjiHUDNQ −−+=  (34) 

where ) , ( jiHUDNQ
 is the undesirability of an IWD to go from current row (city) i  to the 

next row (city) j . Symbol |.| denotes the absolute value. The variable r  is a random 

number chosen uniformly from the interval [ ]1 , 0 . The symbol n  denotes the number of 

cities (columns or rows) of the chessboard of size nn× . In the above equation, the heuristic 

favours the distance between the rows of neighbouring columns to be near the length 
2

n
.  

However, it has been observed that the IWD algorithm with the mentioned local heuristic in 
Eq. (34) is usually trapped in the local optima in which only two queens attack each other. 
Sometimes, coming out of such local optima takes considerable iterations of the algorithm. 
For this purpose, a local search algorithm called “N-Queen Local Search” or NQLS has been 
proposed in (Shah-Hosseini, 2008b). This local search algorithm is activated when the 

current iteration-best solution 
IBT  of the IWD algorithm contains only two queens attacking 

each other.  Specifically, the NQLS algorithm is activated when the quality of the iteration-

best solution 
IBT , )( IBTq  ,  becomes -1. The quality of a solution T  denoted by )(Tq  is 

measured by 

 ∑ ∑
−

= +=

−=
1

1 1

),()(
n

i

n

ij

ji ccattackTq  (35) 
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Where 1),( =ji ccattack if queens
ic and

jc attack each other. Otherwise; 0),( =ji ccattack . 

It is reminded that the optimal solution *T  has the highest quality value zero: 0*)( =Tq . 
In the following, the NQLS is expressed in four steps: 

1. Get the iteration-best solution 
IBT with tour ( )IB

n

IBIB ccc ,...,, 21
  and 1)( −=IBTq . 

2. initialize IBTT =0
. 

2.     For 1,...,2,1 −= nk  do the following steps (steps 2.1 to 2.3): 

2.1. Shift the cities in the tour one position to the right such that the last city becomes 

the first city in the tour: )( 1−= kk TshiftT
Right

. 

2.2. If 0)( =kTq , then set 
kTT =0

 and go to step 4. 

2.3. End loop. 

3. For 1,...,2,1 −= nk  do the following steps (steps 3.1 to 3.3): 

3.1. Increment each city’s number (row) by one such that the highest row becomes the 

lowest row in the chessboard: nkTT kk mod)( 1 += − , where mod  is the modulus 

function. Moreover, the increment inside the parenthesis is applied to each city of the 

tour 
1−kT .  

3.2. If 0)( =kTq , then set 
kTT =0

 and go to step 4. 
3.3. End loop. 

4. If 0)( 0 =Tq , then the total-best iteration solution 
TBT  has been obtained and is 

updated by  
0TT TB = ; otherwise, no updating is implemented by this algorithm. 

For simplicity, the IWD algorithm for the n-queen problem using the local search NQLS is 
called “IWD-NQ” algorithm. The IWD-NQ algorithm is tested with ten different n-queens 
puzzle (Shah-Hosseini, 2008b) where n is increased from 10 to 100 with step ten. The 
average number of iterations needed to find the optimal solution for ten runs of each n-
queen puzzle is depicted in Fig. 4. It is reminded that 50 IWDs are used in the experiments. 
It is seen that the number of iterations to find the optimal solution(s) does not necessarily 
depend on the number of queens. For example, the average number of iterations for the 90-
queen problem is bigger than the 100-queen problem. 
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Fig. 4. The average number of iterations to find the global optimums versus the number of 
queens for the n-queen puzzle. The results are the average iterations of ten runs of the IWD-
NQ algorithm. The number of queens changes from 10 to 100. 
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7.3 The multidimensional knapsack problem 

The knapsack problem or KP is to select a subset of items i of the set I, each item i with the 

profit 
ib  and resource (capacity) requirement 

ir  such that they all fit in a knapsack of 

limited capacity and the sum of profits of the selected items is maximized.  

The multidimensional knapsack problem, MKP, is a generalization of the KP. In the MKP, 

there exists multiple knapsacks and thus there are multiple resource constraints. The 

inclusion of an item i  in the m  knapsacks is denoted by setting the variable 
iy  to one, 

otherwise 
iy  is set to zero. Let the variable 

ijr  represents the resource requirement of an 

item i  with respect to the resource constraint (knapsack) j  having the capacity 
ja . In other 

words, 
ijr  represents the amount of capacity that item i  requires from knapsack j . The 

MKP with m  constraints (knapsacks) and n  items wants to maximize the total profit of 

including a subset of the n  items in the knapsacks without surpassing the capacities of the 

knapsacks. For the MKP, in more specific terms: 

 ∑
=

n

i

iiby
1

max  (36) 

subject to the following constraints: 

 mjforayr
n

i

jiij ,...,2,1  
1

=≤∑
=

 (37) 

where { } 1,0 ∈iy  for ni ,...,2,1 = . Here, the profits 
ib  and the resources requirements 

ijr  

are non-negative values. 
The MKP is an NP-hard combinatorial optimization problem with applications such as 
cutting stock problems, processor allocation in distributed systems, cargo loading, capital 
budgeting, and economics. 
Two general approaches maybe used for solving the MKP: the exact algorithms and the 
approximate algorithms. The exact algorithms are useful for solving small to moderate-size 
instances of the MKP such as those based on dynamic programming and those based on the 
branch-and-bound approach. For a more detail review on the MKP, Freville (2004) is 
suggested.  
The approximate algorithms may use nature-inspired approaches to approximately solve 
difficult optimization problems. Nature-inspired algorithms include algorithms such as 
Simulated Annealing (Kirkpatrick et al., 1983), Evolutionary Algorithms like Genetic 
Algorithms, Evolution Strategies, Evolutionary Programming, Ant Colony Optimization, 
Particle Swarm Optimization, Electromagnetism-like optimization, and Intelligent Water 
Drops (IWDs).  

For the MKP, the local heuristic undesirability, denoted by )( jHUDMKP
, is computed by: 

 ∑
=

=
m

k

jk
j

MKP r
mb

jHUD
1

1
)(  (38) 

Where 
jb  denotes the profit of item j  and 

jkr  is the resource requirement for item j  from 

knapsack k . The above equation shows that )( jHUDMKP
 decreases if the profit 

jb  is high 
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whereas )( jHUDMKP
 increases if the resource requirements of item j  are high. As a 

result, the items with less resource requirements and higher profits are more desirable. 

)( jHUDMKP
 represents how undesirable is the action of selecting item j  as the next item 

to be included in the knapsacks. We may refer to the IWD algorithm used for the MKP as 
the IWD-MKP algorithm. 
 

Quality of the IWD-
MKP’s solution 

no. of iterations of 
the IWD-MKP Problem 

Name 

Constraints 

× Variables 

Quality of 
Optimum 
solution Best Average Best Average 

WEING1 2 × 28 141278 141278 141278 59 1243.8 

WEING2 2 × 28 130883 130883 130883 154 618.4 

WEING3 2 × 28 95677 95677 95677 314 609.8 

WEING4 2 × 28 119337 119337 119337 4 48.5 

WEING5 2 × 28 98796 98796 98796 118 698.5 

WEING6 2 × 28 130623 130623 130623 71 970.3 

WEING7 2 × 105 1095445 1094736 1094223 100 100 

WEING8 2 × 105 624319 620872 617897.9 200 200 

Table 3. Eight problems of the OR-Library in file “mknap2.txt”, solved by the IWD-MKP 
algorithm. The global optimal solutions have also been mentioned. 
 

L & 
M 

Fidanova
Quality of the 
IWD-MKP’s 

solutions 

Constraints × 
Variables-

Problem Number

LP 
optimal

best best best average 

5 × 100-00 24585 24381 23984 24295 24175.4 

5 × 100-01 24538 24274 24145 24158 24031.3 

5 × 100-02 23895 23551 23523 23518 23404 

5 × 100-03 23724 23527 22874 23218 23120.9 

5 × 100-04 24223 23991 23751 23802 23737.2 

5 × 100-05 24884 24613 24601 24601 24554 

5 × 100-06 25793 25591 25293 25521 25435.6 

5 × 100-07 23657 23410 23204 23374 23344.9 

5 × 100-08 24445 24204 23762 24148 24047 

5 × 100-09 24635 24411 24255 24366 24317 

Table 4. The MKPs with five constraints and 100 items of the OR-Library in file 
“mknapcb1.txt” solved by 100 iterations of the IWD-MKP algorithm. The results are 
compared with the LP optimal solutions and best solutions of two ant-based algorithms: 
Leguizamon and Michalewicz  (L & M), and Fidanova. 

The IWD-MKP has been used for eight problems (Shah-Hosseini, 2008b) in file 

“mknap2.txt” of the OR-Library (the OR-Library in the Internet). For each MKP, the best and 

the average qualities of ten runs of the IWD-MKP are reported in Table 3. For comparison, 
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the qualities of optimal solutions are also mentioned in the table. The IWD-MKP algorithm 

finds the global optimums for the first six MKPs with two constraints and 28 items. 

However, the qualities of solutions of the problems “WEING7” and “WEING8” with two 

constraints and 105 items obtained by the IWD-MKP are very close to the qualities of 

optimal solutions. It is reminded that 50 IWDs are used in the mentioned experiments. 

The first ten MKP problems in file “mknapcb1” of the OR-Library are solved by the IWD-

MKP and the results of ten runs of the algorithm are shown in Table 4. For comparison, the 

results of the two Ant Colony Optimization-based algorithms of Leguizamon and 

Michalewicz (for short, L & M) (Leguizamon and Michalewicz, 1999) and Fidanova 

(Fidanova, 2002) are mentioned. Moreover, the results obtained by the LP relaxation method 

that exist in the file “mkcbres.txt” of the OR-Library are also included. The solutions of the 

IWD-MKP are often better than the solutions of those obtained by Fidanova.  

7.4 Automatic multilevel thresholding 

Image segmentation is often one of the main tasks in any Computer Vision application. 

Image segmentation is a process in which the whole image is segmented into several regions 

based on similarities and differences that exist between the pixels of the input image. Each 

region should contain an object of the image at hand. Therefore, by doing segmentation, the 

image is divided into several sub-images such that each sub-image represents an object of 

the scene.  

There are several approaches to perform image segmentation (Sezgin & Sankur, 2004). One 

of the widely used techniques for image segmentation is multilevel thresholding. In doing 

multilevel thresholding for image segmentation, it is assumed that each object has a distinct 

continuous area of the image histogram. Therefore, by separating the histogram 

appropriately, the objects of the image are segmented correctly. 

Multilevel thresholding uses a number of thresholds { }Mttt  ..., , , 21
 in the histogram of the 

image ),( yxf  to separate the pixels of the objects in the image. By using the obtained 

thresholds, the original image is multithresholded and the segmented image ( )),( yxfT  is 

created. Specifically: 

( )

⎪
⎪
⎩

⎪
⎪
⎨

⎧

≥

<≤
<

=

MM tyxfifg

tyxftifg

tyxfifg

yxfT

),(                 

.............                      ....

),(           

),(                  

),(
211

10

 

(39) 

Such that 
ig  is the grey-level assigned to all pixels of the region i , which eventually 

represents object i  . As it is seen in the above equation, the 1+M  regions are determined 

by the M thresholds { }Mttt  ..., , , 21
. The value of 

ig  may be chosen to be the mean value of 

gray-levels of the region’s pixels. However, in this paper we use the maximum range of 
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gray-levels, 255, to distribute the gray-levels of regions equally. Specifically, ⎥⎦
⎤

⎢⎣
⎡=

M
igi

255
 .  

such that the function [ ] .  returns the integer value of its argument.  

To multithreshold an image, the number of thresholds should be given in advance to a 
multilevel thresholding algorithm. However, a few algorithms have been designed to 
automatically determine the suitable number of thresholds based on the application at hand 
such as the Growing Time-Adaptive Self-Organizing Map (Shah-Hosseini & Safabakhsh, 
2002). Such algorithms are called automatic multilevel thresholding. In automatic multilevel 
thresholding, the problem becomes harder because the search space increase hugely as the 
number of thresholds increases. For example, if the brightness of each image’s pixel be 

selected from G  different gray levels and the image is thresholded by M  thresholds, then 

the search space will be of size
)!(

!

MG

G

−
. For 256=G  and 30=M , the search space is 

approximately of size 
71103× . It is reminded that in this paper, it is assumed that 

256=G . 

The AMT (Automatic Multilevel Thresholding) problem is converted to a TSP problem such 

that the number of cities is assumed to be 256. Each IWD begins its trip from city zero to city 

255. There are exactly two directed links from city i  to city 1+i , which are named “Above 

Link” and “BelowLink”. When the IWD is in city i , the next city of the IWD is city 1+i .  If 

AboveLink is selected by the IWD in city i , it means that 1+i  is not the next threshold for 

the AMT.  In contrast, if BelowLink is selected by the IWD, it means that the next threshold 

is the value 1+i .   

Here, a local heuristic is not suggested. As a result, the amount of soil that each IWD 

removes from its visiting path , ),( jisoilΔ , is computed by: 

 
1000 .

),(
ss

s

cb

a
jisoil

+
=Δ  (40) 

Where ( ))1(;, 2 +tveljitime IWD  in Eq. (20) has been replaced by the constant amount 

1000 . 

Moreover, the local soil updating parameter 
nρ  in Eq. (21) is chosen as a negative value. For 

the AMT, 9.0−=nρ   

The quality of each solution found by an IWD, denoted by )( IWDTq , is suggested to be a 

generalization of the  Haung’s method (Huang & Wang, 1995) in which a fuzziness measure 

is employed for bilevel thresholding. Here, the Haung’s method is generalized to be used 

for multilevel thresholding. The first step is to define the membership function, which 

returns the degree of membership of any pixel to the class (object) of the image. Again, the 

thresholds obtained by an IWD are represented by the set { }Mttt  ..., , , 21
. The membership 

function )),(( yxIu f
for each pixel ),( yx  of image ) ,. . (I  is defined as follows: 

 
1

1

),(         
255),(1

1
)),(( +

+

≤<
−+

= kk

k

f tyxItif
IyxI

yxIu  (41) 
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Such that 1kI +  denotes the average gray-level in a region of the image with gray-levels 

{ }1 ..., ,2 ,1 +++ kkk ttt . Therefore, 

∑

∑
+

+

+=

+=
+ =

1

1

1

1

1

)(

)(  

k

k

k

k

t

ti

t

ti

k

ip

ipi

I . The function  .    returns the absolute 

value of its argument. The values of the membership function )),(( yxIu f
 vary within the 

interval [ ] 1 ,5.0 . When M is set to one, the formula of Eq. (41) is reduced to the Haung’s 

method for bilevel thresholding. 
Given the membership function, a measure must be introduced to determine the fuzziness 
of the thresholded image with the original one. For this purpose, the idea introduced by 
Yager (Yager, 1979) is employed. The measure of fuzziness is defined as how much the 
fuzzy set and its complement set are indistinct. Having the membership function 

)),(( yxIu f
, the fuzziness measure is defined as: 

 ( )∑
=

−=
255

0

2
1)( 2  

i

ff iuD  (42) 

For a crisp set, the value of 
fD  is 16 whereas for the fuzziest set the value of 

fD  is zero. 

Thus, the IWD algorithm should try to maximize 
fD  by finding the best threshold values 

with the optimum number of thresholds.  It is reminded that the quality of each IWD’s 

solution 
IWDT  , denoted by )( IWDTq , is computed by 

fD  in Eq. (42). 

We may refer to the IWD algorithm used for the AMT as the IWD-AMT algorithm. 

The IWD-AMT is tested with three gray-level images, House, Eagle, and Lena shown in Fig. 

5. For this purpose, 50 IWDs are used and the results are shown in Fig. 6.  
 

         

Fig. 5. The three test gray-level images. From left to right: House, Eagle, and Lena. 

The histogram of the original images and their thresholded images obtained by the IWD-

AMT are shown in Figs. 7-8. The most important features of the images have been preserved 

whereas the numbers of gray-levels have been reduced dramatically. Specifically, the house 

image is reduced to 12 gray-levels, the eagle image is reduced to 18 gray-levels and the Lena 

image is reduced to eight regions.  The experiments show that some regions have very small 
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numbers of pixels. Therefore, it would be useful to remove very small regions by a simple 

postprocessing while keeping the qualities of the thresholded images intact. 
 

        

Fig. 6. The three thresholded images obtained by the proposed IWD-AMT algorithm. From 
left to right: thresholded House with 12 regions, thresholded Eagle with 18 regions, and the 
thresholded Lena with eight regions. 
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Fig. 7. The histograms of the House, the Eagle, and Lena image. 
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Fig. 8. The histograms of the thresholded images of House, Eagle, and Lena. 

8. Conclusion 

Four different problems are used to test the IWD algorithm: the TSP (Travelling Salesman 

Problem), the n-queen puzzle, the MKP (Multidimensional Knapsack Problem), and the 

AMT (Automatic Multilevel Thresholding). The experiments indicate that the IWD 

algorithm is capable to find optimal or near optimal solutions. However, there is an open 

space for modifications in the standard IWD algorithm, embedding other mechanisms that 

exist in natural rivers, inventing better local heuristics that fit better with the given problem, 
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and suggesting new representations of the given problem in form of graphs. The IWD 

algorithm demonstrates that the nature is an excellent guide for designing and inventing 

new nature-inspired optimization algorithms.  
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