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1. Introduction    

Adaptive memory programming approaches have proven effective in finding high quality 
solutions to many real world intractable problems. Therefore, over the years, researches 
have attempted to combine the best features from different adaptive memory approaches to 
derive more powerful hybrid heuristics (Onwubolu, 2002). Combining the best features of 
different heuristics will give a new heuristic that is superior to the individual systems from 
which these features are derived.  
Differential evolution (DE) algorithm (Price, 1999) is an evolutionary approach which does 
not inhibit any adaptive memory features. It is however a very powerful and robust 
heuristic for continuous optimization. Continuous optimization is a very important aspect of 
optimization; however a heuristics application to permutative optimization is imperative if 
it is to be generic. Permutative optimization encompasses many aspects of engineering. In 
practical settings, it is common to observe features which are discrete, such as the different 
discrete nut and bolt sizes, fixed number of machines in a manufacturing plant or discrete 
number of buses in a fixed route. All these problems are practical and challenging, which 
utilize discrete values. The purpose of this paper is then to introduce an enhanced different 
evolution algorithm for discrete optimization which is hybridized by the adaptive memory 
heuristic of scatter search (SS) (Glover, 1998). 
SS is a highly effective heuristic which is the superset of tabu search (TS) (Glover, 1998). It 

has been successfully applied to many permutative optimization problems. The objective of 

the proposed hybrid optimization approach is then to isolate its highly effective 

intensification and diversification routines and embed it in the EDE structure. The result is a 

highly evolved hybrid enhanced differential evolution scatter search (HEDE-SS) heuristic. 

The hybrid optimization scheme is applied to two difficult permutative optimization 

problems of quadratic assignment problem (QAP) and the flow shop scheduling problem 

(FSS). The results generated by the hybrid scheme are then compared with the heuristics of 

EDE and SS in order to show that the hybrid scheme is an improvement over the original 

heuristics. Additionally, the results of the hybrid scheme is compared with the optimal 

results from the operations research (OR) library and with the results obtained by other 

heuristics for the same problem instances from the literature. O
pe

n 
A

cc
es

s 
D

at
ab

as
e 

w
w

w
.in

te
ch

w
eb

.o
rg

Source: Evolutionary Computation, Book edited by: Wellington Pinheiro dos Santos,  
 ISBN 978-953-307-008-7, pp. 572, October 2009, I-Tech, Vienna, Austria

www.intechopen.com



 Evolutionary Computation 

 

274 

This chapter is divided into the following sections; section two presents the two different 
discrete optimization problems, section three introduces the EDE, SS and the developed 
hybrid approach, section four gives the experimentation and analysis and section five 
concludes the research. 

2. Permutative optimization 

2.1 Quadratic assignment problem 

The QAP is a combinatorial optimization problem stated for the first time by Koopmans and 
Beckman (1957) and is widely regarded as one of the most difficult problem in this class. 
The approach is to have two matrices of size n x m given as: 

 ( )  ijA a=  (1) 

 ( )  ijB b=  (2) 

 The objective is then to find the permutation   which minimizes 

 
( )

( ) ( ) ( )
1 1

min   =  
n n

ij jin
i j

f a bπ ππ
π

∈∏
= =
∑ ∑  (3) 

where  ( )n∏  is a set of permutations of n elements. QAP is considered a NP hard problem 

(Shani & Gonzalez, 1976) and problem sizes of larger than 20 are considered intractable.   
Many application have been identified for QAP, which include amongst others, the 
allocation of plants to candidate locations; layout of plants; backboard wiring problem; 
design of control panels and typewriter keyboards; balancing turbine runners; ordering of 
interrelated data on a magnetic tape; processor-to-processor assignment in a distributed 
processing environment; placement problem in VLSI design; analyzing chemical reactions 
for organic compounds; and ranking of archaeological data. The details and references for 
these and additional applications can be found in Burkard (1991) and Malucelli (1993). 
Two approaches have been identified to solve QAP; exact and heuristic algorithms. Exact 

algorithms for QAP include approaches based on dynamic programming by Christofides 

and Benavent (1989); cutting planes by Bazaraa and Sherali (1980); and branch and bound 

by Lawler (1963) and Pardalos and Crouse (1989). Among these, the branch and bound 

algorithms obtain the best solution, but are unable to solve problems of size larger than  

n = 20.  

For larger sized problems, heuristic approaches have been developed. Some of the most 

notable are: simulated annealing by Connolly (1990), tabu searches of Taillard (1991), Battiti 

and Tecchiolli (1994) and Sondergeld and Voβ (1996), the hybrid genetic-tabu searches of 

Fleurent and Ferland (1994) and more recently the ant colony approach by Gambardella, 

Taillard and Dorigo (1999). 

2.2 Flow shop scheduling 

In many manufacturing and assembly facilities a number of operations have to be done on 
every job. Often, these operations have to be done on all jobs in the same order, which 
implies that the jobs have to follow the same route. The machines are assumed to be set up 
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and the environment is referred to as flow shop (Pinedo, 1995).  The flow shop can be 
formatted generally by the sequencing on n jobs on m machines under the precedence 
condition. The general constraints that are assessed for a flow shop system is the time 
required to finish all jobs or makespan, minimizing of average flow time, and the 
maximizing the number of tardy jobs. 
When searching for an optimal schedule for an instance of the Fm||Cmax problem, the 
question can arise weather it suffices merely to determine a permutation in which the job 
traverses the entire system, or more logically to check the possibility for one job to bypass 
another while waiting in queue for a engaged machine. Changing the sequence of jobs 
waiting in a queue between two machines may, at times, result in a smaller makespan. 
Where the number of jobs is small, finding the optimal sequence of jobs which results in the 
minimal makespan is relatively easy. But more often the number of jobs to be processed is 
large, which leads to big-O order of n! Consequently, some type of algorithm is essential in 
these large problems in order to avoid combinatorial explosion (Onwubolu, 2002).  
The minimization of completion time for a flow shop schedule is equivalent to minimizing  

the objective function ℑ . 

 ,

1

n

m j

j

C
=

ℑ =∑   (4) 

where 
,m j

C  is the completion time of job j . To calculate 
,m j

C  the recursive procedure is 

followed for any thi  machine thj  job as follows: 

 ( )1, , 1, ,
,max

i j i ji j i j
C CC P− −= +   (5) 

Where, 
1,1
C k=  (any given value) and 

, 1,

1

;

j

i j k
k

C C
=

=∑ ; 
, ,1

1

i

i j k
k

C C
=

=∑  where i is the machine 

number, j is the job in sequence and 
,i j
P  is the processing time of job j on machine i.   

3. A hybrid approach to discrete optimization 

3.1 Enhanced differential evolution 

Developed by Price and Storn (2001), differential evolution (DE) algorithm is a very robust 
and efficient approach to solve continuous optimization problems. A discrete optimization 
approach for DE was initially explored by Davendra (2001) and since then by many other 
researchers (see for details Onwubolu (2001), Onwubolu (2004) and Lampinen and Storn 
(2004)). The EDE approach by Davendra and Onwubolu (2009) is used as the DE approach 
for this hybrid system.  
Onwubolu and Davendra (2004) developed the approach of a discrete DE, which utilized 
the highly effective approach of Forward Transformation and Backward Transformation by 
Onwubolu (2001) in the conversion of a discrete solution into a continuous solution and vice 
versa, for the operation of the DE internal mutation schema. This approach was highly 
effective in solving the scheduling problem of flow shop (FSS). EDE was proposed as an 
enhancement of the discrete DE in order to improve the quality of the solutions perturbed 
by DE (Davendra & Onwuolu, 2009).  
The basic outline of EDE is given in Figure 1. 
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• Initial Phase 
1. Population Generation: An initial number of discrete trial solutions are generated 

for the initial population. 

• Conversion 
2. Forward Transformation: This conversion scheme transforms the parent solution 

into the required continuous solution. 
3. DE Strategy: The DE strategy transforms the parent solution into the child 

solution using its inbuilt crossover and mutation schemas. 
4. Backward Transformation: This conversion schema transforms the continuous 

child solution into a discrete solution. 

• Mutation 
5. Relative Mutation Schema: Formulates the child solution into the discrete solution 

of unique values. 

• Improvement Strategy 
6. Mutation: Standard mutation is applied to obtain a better solution. 
7. Insertion: Uses a two-point cascade to obtain a better solution. 
8. Repeat: Execute steps 2-7 until reaching a specified cutoff limit on the total 

number of iterations. 

• Local Search 
9. Local Search: Is initiated if stagnation occurs 

Fig. 1. EDE outline 

3.2 Scatter search 
Scatter search (SS) and its generalized form path relinking (PR) are heuristics which are 
build on the principles of surrogate constraint design (Glover, 1977). In particular they are 
designed to capture information not contained separately in the original solutions, and take 
advantage of auxiliary heuristic solution methods to evaluate the combinations produced 
and generate new solutions.  
The two principles that govern SS are; 

(1)     Intensification  
(2)     Diversification 

Intensification refers to the role of isolating the best performing solutions from the 
populations in order to obtain a group of good solutions. Diversification in turn isolates the 
solutions which are the furthest from the best solutions and combined them with the best 
solutions. This new pool of solutions is the reference set where crossover occurs in order to 
create solutions from new solution regions by the combination of the intensified solutions 
and diversified solutions. Intensification and diversification are commonly termed as 
adaptive memory programming.  
Many applications of discrete programming have emerged from SS. Some of these are: 
Vehicle Routing (Taillard, 1996), Quadratic Assignment (Cung et al, 1997), Job Shop 
Scheduling (Yamada & Nakano, 1996), Flow Shop Scheduling (Yamada & Reeves, 1997) and 
Linear Ordering (Laguna, et al., 1997). 

3.3 Hybrid approach 
EDE is a highly randomized algorithm (Davendra, 2003), which utilizes a high number of 
randomly generated values for its operation. SS on the other hand is one of the new 
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optimization algorithms which have adaptive memory programming, enabling it to retain 
its long term memory in order to find good search space (Glover, 1998). This hybrid 
approach brings together the highly effective intensification and diversification aspects of SS 
(Glover, 1998) into the operational domain of EDE.   
Figure 2 gives the outline for the hybrid structure. 
 

 
Fig. 2. Hybrid EDE/SS outline 

3.3.1 Initialization 

The first process in the hybrid EDE SS (HEDE-SS) is the initialization of the population and the 
operational parameters. HEDE-SS has several operational parameters as given in Table 1. 

The lower ( )lo

jx  bound and the upper ( )hi

jx bound specify the range of the solution. The size of 

the population NP is usually in the range of 100 to 500 solutions. The size of each solution D 

is dependent on the problem size at hand. EDE has two tuning parameters of CR and F 

which are also initialized; [ ]0,1CR∈  and ( )0,1F∈ + . The Strategy number refers to the type 
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of DE crossover employed for the problem. The Mutation refers to the type of Relative 

Mutation schema used for the discrete solution. The RefSet size is the number of solutions 

that are combined for the intensification and diversification. 
 

Parameter Syntax Range Description 

Population size NP NP ≥ 4 The population size for HEDE-
SS 

Solution size D D ≥ 4 The size of each solution 

Lower bound ( )lo

jx  ( ) 1lo

jx ≥  The lower bound of the solution 

Upper bound ( )hi

jx  ( )hi

jx = D The upper bound of the 
solution 

Crossover 
constant 

CR [ ]0,1CR∈  The crossover used for DE 
perturb 

Scaling factor F ( )0,1F ∈ +  Scaling factor for perturb 

Strategy number Strategy { }1,2,...,10Str∈ The strategy to employ 

Relative mutation Mutatio
n 

{ }1,2,3Mut∈  Mutation to employ 

Reference Set RefSet RefSet ≥ 4 Size of RefSet for SS 

Generations 
maxG  

maxG = 500 Number of generations of EDE 

Table 1. Operational parameters for HEDE-SS 

The solution created is discrete and given as: 

 

(6)

Each solution created is random, and multiple identical solutions can exist within an EDE 
population as long as it is discrete. 

3.3.2 Conversion 

The conversion routine is used to transform each discrete solution into a continuous 
solution since the canonical form of DE only operates in the continuous domain. These 
solutions after DE internal crossover are retransformed into a discrete solution. The two 
conversion schemas were developed by Onwubolu (2001). For implementation details 
please see Onwubolu and Davendra (2004), Onwubolu (2004), Davendra (2001) and 
Davendra (2003). 
The forward transformation is given as: 

 , ,j i j ix x ′=   (7) 

where ,j ix  represents a discrete solution and ,j ix ′  represents a continuous solution.  
Price and Storn (2001) described ten different working crossover schemas for DE. Each 
schema developed has a different approach to optimization through the crossover utilized. 
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The ten strategies are divided into two groups of different crossover schemas; exponential 
and binomial. 
Exponential refers to the fact that crossover will only occur in one loop until it is within the 

CR bound. The first occurrence of a random number selected between 0 and 1, going beyond 

the parameter set by CR stops the crossover schema and all the values remaining are left 

intact. 

Binomial on the other hand states that crossover will occur on each of the values whenever a 
randomly generated number between 0 and 1, is within the CR bound. 
The ten different strategies are given in Table 2. 
 

Convention (DE/x/y/z)* Representation 

DE/best/1/exp ( )1 2i best r ru x F x x= + −i  

DE/rand/1/exp ( )1 2 3i r r ru x F x x= + −i  

DE/rand-to-best/1/exp ( ) ( )1 2i i best i r ru x F x x F x x= + − + −i i  

DE/best/2/exp ( )1 2 3 4i best r r r ru x F x x x x= + − − −i  

DE/rand/2/exp ( )5 1 2 3 4i r r r r ru x F x x x x= + − − −i  

DE/best/1/bin ( )1 2i best r ru x F x x= + −i  

DE/rand/1/bin ( )1 2 3i r r ru x F x x= + −i  

DE/rand-to-best/1/bin ( ) ( )1 2i i best i r ru x F x x F x x= + − + −i i  

DE/best/2/bin ( )1 2 3 4i best r r r ru x F x x x x= + − − −i  

DE/rand/2/bin ( )5 1 2 3 4i r r r r ru x F x x x x= + − − −i  

Table 2. DE Crossover schemas 
* x – type of solution used for crossover, y – number of solutions used, z – type of crossover 
used.  

Each problem class has to be tuned as to what are its optimal operating parameters. 
Once the DE internal crossover schemas have operated, the backward transformation changes 

the values generated into discrete values. The backward transformation is the reverse of the 

forward transformation and is given as: 

 , ,j i j ix x′ =  (8) 

3.3.3 Relative mutation 

The solution obtained from the backward transformation is not always discrete. In Onwubolu 

and Davendra (2004) up to 80 per cent of all solutions generated were infeasible. A new 

approach has been developed in order to retain discrete solutions after transformation. Two 

types of infeasible solution may exist: 

(1)     Out-of-bound values 
(2)     Repetitive values 
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Out-of-bound values are easily handled by HEDE-SS. All bound offending values are 
simply dragged to the bound they violate. 

 

( ) ( )

,

, ( ) ( )

,

  if  

  if  

lo lo

j j i j

j i hi hi

j j i j

x x x
x

x x x

⎧ <⎪= ⎨
>⎪⎩

  (9) 

In order to remove repetition from the solution, three relative mutation schemas have been 
developed; front mutation (FM), back mutation (BM) and random mutation (RM). 

3.3.3.1 Front Mutation  

Front mutation (FM) is the schema which transforms the solution into a discrete solution 
through the ascending order of index. The solution is firstly sorted into feasible and 
infeasible values starting from index one. This implies that the value which occurs first in 
the solution is considered feasible, whereas its next occurrence is infeasible. 

 
{ }
{ }

1, 1,, ,

,

1, 1,, ,

,...,   if  

,...,   if  

i j ij i j i

j i

i j ij i j i

x xx x
x

x xx x

−

−

⎧ ∉⎪= ⎨
∈⎪⎩ #

  (10) 

In FM all infeasible values are replaced with feasible values starting from index one. A 
random value is generated between the lower and upper bound for each infeasible value, 
and checked to see whether it already exists in the solution. If repetition is detected, then 
another random value is generated. 

 
[ ]

{ }1, ,

1,

,...,      where 

rand

rand

i D irand

x rnd D
x

x xx

⎧ =⎪= ⎨
∉⎪⎩

 (11) 

Each infeasible value within the solution is thus replaced and the solution in now discrete. 
FM converts any integer solution into a discrete solution, however a forward bias is shown. 
FM converts from the front, starting with index one of the solutions. A reverse mutation 
process is also developed termed the back mutation. 

3.3.3.2 Back Mutation  

Back mutation (BM) is a mutation schema which is the complete opposite of the FM. In BM, 
all the values in the solutions are sorted from the back of the solution starting with the index 
D. The value occurring last within the solution is considered feasible whereas its earlier 
placement is considered infeasible. 

 
{ }
{ }

1, ,, ,

,

1, ,, ,

,...,   if  

,...,   if  

j i D ij i j i

j i

j i D ij i j i

x xx x
x

x xx x

+

+

⎧ ∉⎪= ⎨
∈⎪⎩ #

  (12) 

As in FM, for each infeasible value, a random number between the lower and upper bounds 
is obtained and checked against all the values in the solution. If it is unique then it replaces 
the infeasible value starting from index D. 
BM is the opposite of FM; however a reverse bias now exists. A bias is not favorable since it 
limits the search space of a population, and again does not represent a realizable system. 
The third mutation schema random mutation is totally random, with both its sorting and 
replacement. 
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3.3.3.3 Random Mutation 

Random mutation (RM) is a total random based mutation schema. There exists no bias in this 
schema as it does with FM and BM. The first process in this schema is to create a random 
array which contains the indexes for the solution to be checked for repetition.  

 

{ }
( ) ( )

1 1 2 3  = , , ,...,

         where        

            1,2,....,

D

lo hi

y y y y

x y x

j D

ℜ

≥ ≤
=

f f
 (13) 

The value 1y  points to the first value to be checked, and so on until all values within the 

solutions are checked for repetition.  

 
{ }
{ }

1 1

1 1

, ,, ,

,

, ,, ,

,...,   if  

,...,   if  

jj j

j

jj j

y i y iy i y i

y i

y i y iy i y i

x xx x
x

x xx x

−

−

⎧ ∉⎪= ⎨
∈⎪⎩ #

  (14) 

Repetitive values are now isolated, however their replacement is yet to be determined. 
Another random array is now created which will index the infeasible values in their order of 
replacement. 

 

{ }
( ) ( )

2 1 2 3  = , , ,...,

         where        

            1,2,....,

D

lo hi

z z z z

x z x

j D

ℜ

≥ ≤
=

f f
  (15) 

The value in the solution pointed by the index 1z  is checked for repetition. If repetition is 

indicated from the previous step, then the repetitive value in replaced by a unique random 

value as given in equation 13. Using the index array 2ℜ , all the values in the solution which 

are infeasible are replaced with feasible values. 
RM is truly random, from the point of selection of infeasible values to its replacement. The 
random arrays enforce random initiation of infeasible values and its replacement. All three 
mutation schemas; FM, BM and RM are able to convert an integer solution into a discrete 
solution. 

3.3.4 Improvement strategies 
Each discrete solution obtained is improved by the two improvement routines of mutation 
and insertion. Mutation is referenced from GA, where it has been highly successful in finding 
local optimal solutions (Goldberg, 1989). Mutation refers to the application of a single swap 
of values in a solution, in order to exploit better search space. In order for mutation to 
operate two random numbers are generated. 

 
[ ]1 2

1 2

,    1,

             where as 

r r rand D

r r

∈

≠
 (16) 

These random numbers are the indexes of the positions of the two values in the solution 

which are to be swapped. The value in the solution 
1 ,r ix  indexed by 1r  is swapped by the 

value 
2 ,r ix  indexed by 2r . The new solution is evaluated with the objective function. Only if a 
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better objective function is achieved, then the new solution is retained, else the reverse 

process occurs to obtain the original solution. 

 
( ) ( )   if      <  

    

i i i

i

i

x f x f x
x

x otherwise

′′ ′′⎧⎪= ⎨
⎪⎩

  (17) 

The inclusion of mutation introduces some probability of local improvement of a solution.  

Insertion also works along the same lines as mutation. Insertion is the cascade of values 

between two randomly generated positions in the solution. Insertion is regarded as more 

robust than mutation since a number of values are involved in its operation. As in mutation, 

two random values are generated given by equation 18. The value in the solution 
2 ,r ix  

indexed by 2r , is removed and all the values from the value 
1 ,r ix  indexed by 1r  till 

2 1,r ix −  are 

shifted one index up. The value 
2 ,r ix  is inserted in the place indexed by 1r . The new solution 

is evaluated with the objective function. Only if a better objective function is achieved, then 

the new solution is retained, else the reverse process occurs to obtain the original solution. 

3.3.5 Local search 

Stagnation is common amongst population based heuristics. The population converges to 
local optima and is unable to find new search regions in order to find the global optima. In 
order to help a heuristic just out of the local optima, a local search (LS) routine is embedded 
in the heuristic. LS is a brute force approach to find a better solution. It is also time and 
memory expensive. In order to minimize time, a non improving population of ten 
generations, is classified as stagnation. LS operates on the “best” solution in the population, 
since the best solution has the highest probability of being in the vicinity of a better solution. 
The LS employed in HEDE-SS is the 2-Opt algorithm by Onwubolu (2002). 

3.3.6 Permutative population 
A second population is created in order for the intensification and the diversification strategies 
to operate. As stipulated by Glover (1998), for a heuristic to employ memory adaptive 
programming, each solution in the population should be unique. The “best” solution in the 
population is isolated and another population is created using the best solution as the 
permutation base given by: 

 ( ) ( ) ( ) ( )( )P h : , : 1 ,..., :1P h h P h h P h= −   (18) 

The size of the population h is dependent on the size of the solution D and the index h D≤  
specified. For details see Glover (1998). 

3.3.7 Reference set  
The reference set is generated by two aspects of the population; intensified solutions and 
diversified solution. The size of the reference set refset is defined at the beginning. It is usual 
to have half the solutions in the population as intensified and the rest as diversified. 
Intensified solutions are obtained by evaluating the population and removing the specified 
refset/2 best solutions from the population into the refset.  

Campos et al. (2001) outlined how the diverse solutions are obtained from a population. The 

way diverse solutions are computed is through the computation of the minimum distances 

www.intechopen.com



Hybrid Differential Evolution – Scatter Search Algorithm for Permutative Optimization  

 

283 

of each solution in the population to the solutions in refset. Then the solution with the 

maximum of these minimum distances is selected. Population solutions are included in 

refset according to the maxmin criterion which maximizes the minimum distance of each 

candidate solution to all the solutions currently in the reference set. The method starts with 

refset= Best and at each step refset is extended with a solution jP  from the populationℑ  to be 

refset = refset { }jP∪  , and consequently ℑ  is reduced to ℑ  = ℑ { }jP  . Then the distance of 

solution P to every solution currently in the reference set is computed to make possible the 

selection of a new population solution according to the maxmin criterion. More formally, the 

selection of a population solution is given by  

 jP = { }
1,..,

arg max min : 1,..,ij
i refset

jζ
=

= ℑ   (19)   

where ζ is the diversity measure which is the distance between solutions iP  and jP , which 

differ from each other by the number of edges which follows as: 

 ( )ij i jP Pζ = ∪ ( )i jP P∩   (20) 

For details see Campos et al. (2001). 

3.3.8 Combine solutions  

The combination method is a key element in scatter search implementation (Campos et al., 

2001). For the combination method in HEDE-SS, the GA two-point crossover schema is used. 

The crossover is similar to the mutation used in EDE. Two random values are generated 

which are mutually exclusive and also not equal to any of the bounds.  

 
[ ]1 2

1 2

,    2, 1

             where as 

r r rand D

r r

∈ −

≠
  (21) 

Two distinct solutions 1P  and 2P  from the refset are selected starting from the first two 

solutions and using the two random values 1r  and 2r  as indexes to the solutions, the regions 

between the two bounds in the two solutions are swapped as follows: 

{ }1 11 12 1, ,..., nP x x x=  Solution 1 

{ }2 21 22 2, ,..., nP x x x=  Solution 2 

 

Using the two random numbers as indexes the two solutions are now represented as: 

1 2

1 11 12 13 14 15 16 1, , | , , , | ,..., n
r r

P x x x x x x x
⎧ ⎫= ⎨ ⎬
⎩ ⎭

 

1 2

2 21 22 23 24 25 26 2, , | , , , | ,..., n
r r

P x x x x x x x
⎧ ⎫= ⎨ ⎬
⎩ ⎭

  

The swap between the regions denoted by the two random numbers in now represented as: 
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1 2

1 11 12 23 24 25 16 1, , | , , , | ,..., n
r r

P x x x x x x x
⎧ ⎫= ⎨ ⎬
⎩ ⎭

 

1 2

2 21 22 13 14 15 26 2, , | , , , | ,..., n
r r

P x x x x x x x
⎧ ⎫= ⎨ ⎬
⎩ ⎭

 

The resulting solutions are not discrete and the RM schema is used to transform the solution 
into a discrete form. 
The LS schema is applied to each new solution as part of the improvement routine of HEDE-
SS. The new solution is evaluated and compared to the worst solution in the refset. If the 
new solution improves on the worst solution, it then replaces the worst solution in the refset. 
The whole process iterates with solutions selected from the solutions iteratively. On each 
iteration from the first solution to the last, the amount of addition to the refset of new 
improved solution is recorded. If no new solution is recorded in any iteration, then the refset 
has reached a point of stagnation, and the best value in the refset is printed as the best 
solution for the HEDE-SS.  

3.4 Hybrid pseudo-code 

A pseudo code representation of hybrid is given in order for the reader to understand how 
all the different routines are combined together.  
 

/* Initial parameters are first obtained */ 

GET NP, D, maxG , CR, F, Strategy Number, Mutation Type, 
( )lo

jx  
( )hi

jx and refset 

 

/* Operational parameters are initialized */ 

SET minx , best_sol, ObjFun, ObjDist, RefSet 
 

/* Create the initial population of solutions */ 
FOR (i = 1 to i ≤ NP) 
 FOR (j = 1 to j ≤ D)    

                               GET     

                ENDFOR 
ENDFOR 
 

/* Find the best solution and solution cost */ 

minx  = ix             /* The best solution is initialized as the first solution of the population */ 

best_sol = 1             /* The best solution index is set to one for the initial solution. */ 
 

FOR (i = 1 to i ≤ NP) 

                 IF ( ( )if x  < ( )minf x )        /* If the current solution has a less functional value 

                                 SET minx  = ix            than minx , it replace minx  as the best and the  

                             SET best_sol = i         index is appropriately updated. */ 
                 ENDIF 
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ENDFOR 
 

/* Iterate through the generations */ 

FOR (k=1; k ≤ maxG ) 
 

/* Iterate through the solutions */ 
 FOR (i = 1 to i ≤ NP) 
 

/* Apply Forward Transformation to each value in the solution */ 
  FOR (j = 1 to j ≤ D) 

   SET ( ),, 1 j ij i
xx α′ = − + i  /* α  is a constant */ 

  ENDFOR 
 

/* The objective function of the parent  solution is calculated */ 

  SET Parent_ObjFun = ( )if x  

/* Select two random solutions from the population other than the current one ix ′  */ 

  GET 
[ ]

1 2

1 2

 1,
,  

     where as 

rand NP
r r

r r i

⎧∈⎪
⎨

≠ ≠⎪⎩
 

/* Perform D binomial trials, change at least one parameter of the trial solution ix
′  and           

perform mutation */ 

  GET [ ]1,t rand D=    /* A random starting point is obtained */ 

   FOR (z =1 to z ≤ D) 
 

/* If a randomly generated value is less than CR or the counter is within the specified limit */ 

    IF (( [ ]0,1rand  < CR) OR (z = D-1)) THEN 

 

/* DE’s internal mutation schema operates */ 
 

( ) ( )1 2i i best i r ru x F x x F x x′ ′ ′ ′= + − + −i i  

 

/* If condition is not correct the original solution is retained for the new generation */ 
    ELSE 

     SET i iu x′=  

    ENDIFELSE 
 

/* Increment the counter t */ 

   1t z= +  

   ENDFOR 
 

/* Apply Backward Transformation to each value in the solution to obtain the original */ 
  FOR (j = 1 to j ≤ D) 

   SET ( ), ,1j i j i
x x β′= + i  /* β  is a constant */  

  ENDFOR 
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/* Check if the solution is feasible or not */ 
  FOR (j = 1 to j ≤ D) 
 

/* If infeasible solutions are found */    

                                            IF ( { }1, 2, 2, ,, ,
, , ,..., /i i i D ij i j i

x x x xx x∈  OR ( ) ( )
,

hi lo
j ix x x> <  )  

 

/* Relative Mutation Schema first drags all out of bound values to the bound it violates */ 
                                                                FOR (j = 1 to j ≤ D) 

     SET

( ) ( )

,

, ( ) ( )

,

  if  

  if  

lo lo

j j i j

j i hi hi

j j i j

x x x
x

x x x

⎧ <⎪= ⎨
>⎪⎩

   

                                                                 ENDFOR 
 

/* Front mutation is chosen to show how the solution is made discrete */ 
                                                                 FOR (j = 1 to j ≤ D) 
 

/* If a value within the solution is found to be repetitive, a unique random value is created to replace 
it */ 

      IF ( { }1, 2, 2, ,, ,
, , ,..., /i i i D ij i j i

x x x xx x∈ ) 

                                                                               GET [ ]
{ }1, ,

1,

,...,      where 

rand

rand

i D irand

x rnd D
x

x xx

⎧ =⎪= ⎨
∉⎪⎩

 

                                                                                SET ,j i randx x=  

     ENDIF 
                                               ENDFOR 
   ENDIF 
 ENDFOR 
 

/* Standard mutation is applied to the solution in the hope of getting a better solution*/ 

  GET [ ]
1 2

1 2

 1,
,        

     where as 

rand D
r r

r r

⎧∈⎪
⎨

≠⎪⎩
 

  
{ }
{ }

1 2

2 1

1, , , ,

1, , , ,

,.., ,.., ,.., 

,.., ,.., ,..,

i r i r i D ii

i r i r i D ii

x x x xu

x x x xu

=

′′ =
 

 

/* If the objective function of the new solution is better than the original solution, the new solution is 
retained in the population */ 

  IF( ( ) ( )  < i if x f x′′ ) 

   SET i ix x′′=  

  ENDIF 
 

/* Insertion is applied to the solution in the hope of getting a better solution*/ 

  GET [ ]
1 2

1 2 1 2

 1,
,        

     where    and   

rand D
r r

r r r r

⎧∈⎪
⎨

≠ <⎪⎩
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{ }
{ }

1 2

2 1 1 2 1

1, , , ,

1, , , 1, , ,

,.., ,.., ,.., 

,.., , , ,.., ,..,

i r i r i D ii

i r i r i r i r i D ii

x x x xu

x x x x x xu
−+

=

′′ =
 

 

/* If the objective function of the new solution is better than the original solution, the new solution is 
retained in the population */ 

  IF( ( ) ( )  < i if u f u′′ ) 

   SET i iu u′′=  

  ENDIF 
 

/* The objective function of the solution is calculated */ 

  SET Child_ObjFun = ( )if u  

 

/* If the child improves on the parent, then the child is included in the population */ 
  IF (Child_ObjFun < Parent_ObjFun) 

   SET i ix u=  
 

/* The new solution is also compared against the best solution*/ 

   IF( ( )if u  < ( )minf x ) 

    SET min ix u=  

    SET best_sol = i 
   ENDIF 
  ENDIF 
 ENDFOR 
ENDFOR 
 

/* Using the best solution minx , generate a permutative population */ 

SET 2h D=  

WHILE(h >1) 
 SET s = h 

 SET 
0

s rh D
r

r

+ ≤⎧
∈⎨ >⎩

 

  WHILE(s >1) 

   ( ) ( )P h:s , , 2 ,...,s s h s h s rh= + + +  

   1s s= −  

  ENDWHILE 
 

/* All the sub solutions are appended together for the full solution. 

 ( ) ( ) ( ) ( )( )P h : , : 1 ,..., :1P h h P h h P h= −  

 1h h= −  

ENDWHILE 
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/* Evaluate the population and store the objective function. */ 
FOR(i=1 to i < h) 

 SET 
iObjFun = ( )if P  

ENDFOR 
 

/* Remove the best refset/2 solutions from the population and store in refset.*/ 
FOR(i=1 to i < refset/2) 

 SET best = 
1ObjFun  

 FOR(j=1 to j < h) 

  IF(
jObjFun ≤best) 

   SETbest =
jObjFun  

  ENDIF 
 ENDFOR 
 

/* Remove the solution indexed from the population into the refset. */ 

                MOVE
best iP refset→  

                SET 1h h= −    

ENDFOR 
 

/* Remove the diverse refset/2 solutions from the population and store in refset.*/ 
FOR(i= refset/2 to i < refset) 
 FOR(j=1 to j < i) 
 

/* Calculate the distance from each solution in refset to the population. */ 
                               FOR(k=1 to k < h) 

   GET ( )distance

 
j k

evaluate refset P→   

  ENDFOR 
 

/* Store the maximum of the distance for a particular solution in refset. */ 

  
jObjDist = max( )evaluate   

 ENDFOR 
 

/* Select the minimum of the values in ObjDist and move the corresponding solution to refset. */ 

  MOVE
min( )jObjDist iP refset→  

ENDFOR 
 

/* Combine each of the solutions in refset with each other to obtain better solutions. */ 
FOR(i=1 to i < refset-1) 
 FOR(j=i +1 to j < refset) 

  GET  
[ ]1 2

1 2

,    2, 1

             where as 

r r rand D

r r

∈ −

≠
 

  FOR(k= 1r  to k≤ 1r ) 
 

/* Swap the values between the two solutions */ 
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   ref set
i,k

↔
swap

ref set
j,k

 

  ENDFOR 
 

/* A relative mutation schema is applied to the solutions to make it discrete. The pseudo code for it is 
described in the first section */ 
 

/* Local search is applied to the solution to improve it. */ 

 
 Local Search

i irefset refset′→ , 
 Local Search

j jrefset refset′→  

 

/* If this solution improves on the worst solution in Refset, it then replaces that solution in refset. */ 

 IF( ( ) ( )_refset sizerefsetf frefset′ < ) 

  MOVE
_refset sizerefset refset′ →  

 ENDIF 
ENDFOR 
 

/* Output the best solution from the refset as the best solution in the heuristic. */ 

PRINT 
bestrefset  

4. Experimentation and validation 

The validation of this hybrid approach is conducted on the two demanding problems of 
QAP and FSS. Each experiment is conducted in two phases. The first phase is to 
experimentally obtain the operating parameters of HEDE-SS. The second phase is the 
comparison of the hybrid with other established heuristics reported in the literature. 

4.1 QAP 
The problem instances selected for the QAP are from the Operation Research (OR) library 
and reported in Gambardella et al. (1999). There are two separate problem modules; regular 
and irregular. The difference between regular and irregular problems is based on the flow-
dominance (fd), which is used to differentiate among the classes of QAP instances. It is 
defined as a coefficient of variation of the flow matrix entries multiplied by 100. That is:  

 = 100 /fd σ μ   (22) 

where: 

 
2

1 1

1
 = 

n n

ij

i j

b
n

μ
= =

•∑∑  (23) 

 ( )2
1 1

1
 = 

1

n n

ij

i j

b
n

σ μ
= =

• −
− ∑∑   (24) 

4.1.1 Irregular problems  
Irregular problems have a flow-dominance statistics larger than 1.2 (Taillard, 1995). Most of 
the problems come from practical applications or have been randomly generated with non-
uniform laws, imitating the distributions observed on real world problems.  
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The operational parameters of EDE, found through extensive experimentation are given in 
Table 3 along with the size of the refset and the relative mutation schema selected which is 
RM. 
 

Parameter Strategy CR F NP maxG  RefSet Mut 

Values 1 0.9 0.3 500 500 30 3 

Table 3. HEDE-SS QAP operational values. 

Eighteen problem instances are evaluated of four different types; bur, chr, els, kra and tai. 
Comparisons were made with other heuristics of the tabu searches of Battiti and Tecchiolli 
(RTS), Taillard (TT) and the genetic hybrid method of Fleurent and Ferland (GH). A 
simulated annealing due to Connolly (SA) that is cited as a good implementation by 
Burkard and Celia was also included.  Finally the work covered by Gambardella, Thaillard 
and Dorigo with Ant Colony (HAS-QAP) is compared as the best results for these instances 
of QAP. 

Table 4 compares all the methods on long execution of maxG =500.  
 

Instance 
flow 
dom

n Optimal TT RTS SA GH 
HAS-
QAP 

HEDE-
SS 

bur26a 2.75 26 5246670 0.208 - 0.1411 0.0120 0 0 

bur26b 2.75 26 3817852 0.441 - 0.1828 0.0219 0 0 

bur26c 2.29 26 5426795 0.170 - 0.0742 0 0 0 

bur26d 2.29 26 3821225 0.249 - 0.0056 0.002 0 0 

bur26e 2.55 26 5386879 0.076 - 0.1238 0 0 0 

bur26f 2.55 26 3782044 0.369 - 0.1579 0 0 0 

bur26g 2.84 26 10117172 0.078 - 0.1688 0 0 0 

bur26h 2.84 26 7098658 0.349 - 0.1268 0.0003 0 0 

chr25a 4.15 26 3796 15.969 16.844 12.497 2.6923 3.0822 0.023 

els19 5.16 19 17212548 21.261 6.714 18.5385 0 0 0 

kra30a 1.46 30 88900 2.666 2.155 1.4657 0.1338 0.6299 0 

kra30b 1.46 30 91420 0.478 1.061 1.065 0.0536 0.0711 0 

tai20b 3.24 20 122455319 6.700 - 14.392 0 0.0905 0 

tai25b 3.03 25 344355646 11.486 - 8.831 0 0 0 

tai30b 3.18 30 637117113 13.284 - 13.515 0.0003 0 0 

tai35b 3.05 35 283315445 10.165 - 6.935 0.1067 0.0256 0 

tai40b 3.13 40 637250948 9.612 - 5.430 0.2109 0 0 

tai50b 3.10 50 458821517 7.602 - 4.351 0.2124 0.1916 0 

Table 4. HEDE-SS comparison with other heuristics for irregular problems. 
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The average quality of the solutions produced by the methods is shown, measured in per 
cent above the best solution value known from the OR Library. The best results obtained are 
indicated in boldface. From Table 4 it is shown that methods involving tabu search and 
simulated annealing are not well adapted for irregular problems. The well performing 
heuristics are able to produce solutions with at less than 1% with the same computing 
power and time. For the bur... problem instances the HAS-QAP heuristic shows optimal 
results, however HEDE-SS outperforms HAS-QAP by obtaining the optimal results. The 
most challenging problem instance is chr25a. All heuristics apart from HEDE-SS obtain very 
poor results, especially HAS-QAP getting over 3 over cent to the optimal. HEDE-SS 
outperforms all other heuristic by getting 0.023 per cent to the optimal. The kra… problem 
instances are also dominated by EDE, which obtains the optimal result and outperforms all 
other heuristics. For the tai problems, HEDE-SS obtains the optimal result for all problem 
instances while HAS-QAP fails to obtain consistent results. 

4.1.2 Regular problems 
Regular problems also know as unstructured problems are identified as having the flow-
dominance statistics less than 1.2 (Taillard, 1995). These instances are randomly generated, 
and have good solutions spread over the whole solution set.  
A comparison with the established algorithms from the literature is also done for the regular 
problems. The same heuristics as for irregular problems are retained for the comparison as 
shown in Table 5. 
 

Instance 
flow 
dom

n Optimal TT RTS SA GH 
HAS-
QAP 

HEDE-
SS 

nug20 0.99 20 2570 0 0.911 0.070 0 0 0 

nug30 1.09 30 6124 0.032 0.872 0.121 0.007 0.098 0 

sko42 1.06 42 15812 0.039 1.116 0.114 0.003 0.076 0 

sko49 1.07 49 23386 0.062 0.978 0.133 0.040 0.141 0 

sko56 1.09 56 34458 0.080 1.082 0.110 0.060 0.101 0 

tai20a 0.61 20 703482 0.211 0.246 0.716 0.628 0.675 0 

tai25a 0.60 25 1167256 0.510 0.345 1.002 0.629 1.189 0 

tai30a 0.59 30 1818146 0.340 0.286 0.907 0.439 1.311 0 

tai35a 0.58 35 2422002 0.757 0.355 1.345 0.698 1.762 0 

tai40a 0.60 40 3139370 1.006 0.623 1.307 0.884 1.989 0 

tai50a 0.60 50 4941410 1.145 0.834 1.539 1.049 2.800 0 

wil50 0.64 50 48816 0.041 0.504 0.061 0.032 0.061 0 

Table 5. HEDE-SS comparison with other heuristics for regular problems. 

HEDE-SS obtains the optimal result for all instances. The performance of HAS-QAP, which 

was the closest heuristic in irregular problems, has decreased in regular problems. The 

results obtained by HAS-QAP for nug and sko are within tolerable limits, however for tai 

problem instances the results are in excess of 1 per cent to the optimal. HEDE-SS manages to 
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obtain optimal results for the nug, sko, tai problem instances. The only serious competition is 

seen from GH, which on average outperforms HAS-QAP for the nug and sko problem 

instances and RTS which performs best for tai problem instances. The conclusion that can be 

drawn is that no one heuristic performs optimally for all problem instances tested apart 

from HEDE-SS, which outperforms all other tested heuristics for the regular problems. By 

the performance of the compared heuristics it can be observed that regular problems are 

more difficult to solve than irregular problem, yet HEDE-SS manages to perform 

exceptionally well for both (Davendra & Onwubolu, 2007). 

4.2 FSS results 

The flow shop experimentation was conducted with the Thaillard benchmark problem sets 

(Taillard, 1993).  These sets of problems have been extensively evaluated: see Nowicki et al 

(1996), Reeves et al (1998). This benchmark set contains 120 particularly hard instances of 12 

different sizes, selected from a large number of randomly generated problems. Of these 100 

problem instances were evaluated by HEDE-SS and compared with published work. These 

instances are: jobs – machines (n x m); 20 x 5, 20 x 10, 20 x 20, 50 x 5, 50 x 10, 50 x 20, 100 x 5, 

100 x 10, 100 x 20, 200 x 10, a sample of 10 instances for each set  was provided in the OR 

Library.  

A maximum of ten iterations was done for each problem instance. The population was kept 

at 500, and 500 generations were specified for EDE, and the RefSet was kept at 30 for the SS 

heuristic as shown in Table 6. 
 

Parameter Strategy CR F NP maxG  RefSet Mut 

Values 7 0.9 0.4 500 500 30 3 

Table 6. HEDE-SS FSS operational values. 

The results represented in Table 7 are as quality solutions with the percentage relative 

increase in makespan with respect to the upper bound provided by Thaillard (1993). To be 

specific the formulation is given as: 

 
( ) 100

avg

H U

U

×−Δ =   (25) 

where H denotes the value of the makespan that is produced by the EDE algorithm and U is 
the upper bound or the lower bound as computed. 
The results are compared with those produced by Particle Swarm Optimization (PSOspv) 
(Tasgetiren et al, 2004), DE (DEspv), DE with local search (DEspv+exchange) as in Tasgetiren 
et al (2004) and Enhansed DE (EDE) of Davendra and Onwubolu (2009). 
As seen in Table 7, HEDE-SS compares very well with other algorithms. HEDE-SS 

outperforms PSO  and DEspv. The only serious competition comes from the new variant of 

DEspv+exchange.. HEDE-SS outperforms DEspv+exchange in all but two data sets of 50x20 

and 100x20.   

The main indicator of the effectiveness of HEDE-SS is its comparison with EDE. The hybrid 

system is better performing than the canonical approach. SS enhances the application of 

EDE and thus the hybrid approach can be viewed a s superior heuristic. 
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 PSOspv DEspv DEspv+exchange EDE HEDE-SS 

 Δavg Δstd Δavg Δstd Δavg Δstd Δavg Δstd Δavg Δstd 

20x5 1.71 1.25 2.25 1.37 0.69 0.64 0.98 0.66 0.54 0.51 

20x10 3.28 1.19 3.71 1.24 2.01 0.93 1.81 0.77 1.51 0.64 

20x20 2.84 1.15 3.03 0.98 1.85 0.87 1.75 0.57 1.62 0.59 

50x5 1.15 0.70 0.88 0.52 0.41 0.37 0.40 0.36 0.32 0.21 

50x10 4.83 1.16 4.12 1.10 2.41 0.90 3.18 0.94 2.21 1.32 

50x20 6.68 1.35 5.56 1.22 3.59 0.78 4.05 0.65 3.79 0.81 

100x5 0.59 0.34 0.44 0.29 0.21 0.21 0.41 0.29 0.21 0.33 

100x10 3.26 1.04 2.28 0.75 1.41 0.57 1.46 0.36 1.33 0.42 

100x20 7.19 0.99 6.78 1.12 3.11 0.55 3.61 0.36 3.12 0.56 

200x10 2.47 0.71 1.88 0.69 1.06 0.35 0.95 0.18 0.88 0.29 

Table 7. HEDE-SS Taillard problem performance comparisons 

5. Conclusion 

The hybrid approach of HEDE-SS is highly effective in permutative optimization. This 

conclusion is reached through the experimentation that has been conducted in order to 

validate this new approach. Optimal results have been achieved by the HEDE-SS on all but 

one instance of QAP both regular and irregular problem, and on that instance of chr25, 

HEDE-SS outperforms all other listed heuristics.  

In FSS problem instances, the hybrid approach is also a strong performer. It easliy improves 

the results of EDE and other varients of DE and PSO.  

Overall, hybridization can be seen as the next evolution of meta-heuristics. With improving 

hardware technologies, it thus becomes viable to have multiple heuristics combined for 

better performace. The main concept of using two unique paradigm based systems such as 

DE and SS is justified as both complement each other and improve the results.   
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