
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

CORE Metadata, citation and similar papers at core.ac.uk

Provided by IntechOpen

https://core.ac.uk/display/322390723?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

21

Applications of Neural-Based Agents
in Computer Game Design

Joseph Qualls and David J. Russomanno
University of Memphis

United States

1. Introduction

Most agents in computer games are designed using classical symbolic artificial intelligence

(AI) techniques. The AI techniques include production rules for very large branching and

conditional statements, as well as search techniques, including branch-and-bound, heuristic

search, and A* (Russel & Norvig, 2003). Planning techniques, such as STRIPS (Stanford

Research Institute Problem Solver) (Fikes & Nilsson, 1971) and hierarchical task network

(HTN) (Erol, 1996) planning are common. Also, situational case-based reasoning, finite-state

machines, classical expert systems, Bayesian networks, and other forms of logic, including

predicate calculus and its derivatives, such as description logics (Baader et al., 2003), form

the foundation of many game agents that leverage AI techniques.

The game agents are typically created with a priori knowledge bases of game states and state
transitions, including mappings of the world environment and the game agent’s reactions to
the environment and vice versa (Dybsand, 2000; Zaroinski, 2001; Watt & Policarpo, 2001).
Fig. 1. shows an editor for the open source game Yo Frankie! This game uses the engine by
the Blender Institute, which provides the functionality to apply AI techniques to game
engine design through an interactive editor (Lioret, 2008).
There are numerous other computer games that use classical AI techniques, including Star

Craft, Unreal Tournament 3, and FEAR. In general, these games use agents as tactical

enemies or support characters, such as partners that interact with other agents, humans, and

the environment. Since these games execute in real-time, all of the agents must have

extremely fast response times. AI techniques used in games include common-sense

reasoning, speech processing, plan recognition, spatial and temporal reasoning, high-level

perception, counter planning, teamwork, path planning, as well as other techniques (Larid

& Lent, 2000). One specific example is FEAR and its use of Goal Oriented Action Planning or

GOAP (Orkin, 2004; Orkin, 2005), which is a form of STRIPS. FEAR uses GOAP to create

complex behaviors while relying on classical AI techniques. This approach allows for

decoupling goals and actions, layering behaviors, and dynamic problem solving. Classical

symbolic AI techniques have been used with varying degrees of success, but many

challenges have risen as a result of increased demand on the game agents by human

opponents and increasingly complex game environments, even when games, such as FEAR,

leveraged classical AI techniques to a great extent. O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.in

te
ch

w
eb

.o
rg

Source: Evolutionary Computation, Book edited by: Wellington Pinheiro dos Santos,
 ISBN 978-953-307-008-7, pp. 572, October 2009, I-Tech, Vienna, Austria

www.intechopen.com

 Evolutionary Computation

386

Fig. 1. Blender game engine editor from the open source game Yo Frankie!

Attempting to determine a priori every game state that the agent will face is a daunting task.
Even for relatively simple games, over 20,000 possible states exist (Schaefer, 2002), which
limits the applicability of some techniques. Classical AI techniques can become very
complex to create, maintain, and scale as the possible game states become more complex
(Larid & Lent, 2000). In many cases, since it is not feasible to plan for every event in a game,
the agents have a very limited perception of the game. This limited perception of the game
world creates two key problems. First, as the game environment or the human player’s
tactics change over time, the agents have difficulty adapting to the new environment or
tactics. Without the ability to form new tactics to respond to major changes in the player’s
tactics or environment, the agent’s performance will significantly degrade over time.
Second, as the human players gain experience with the game, they can begin to predict the
actions of the agents. Thus, the humans’ knowledge about the game continues to improve
through learning by playing, but the game agents do not learn through their experience of
playing the game. These two shortcomings are common with the application of many of the
classical symbolic AI techniques in game design today, which results in a game that loses
challenge over time.
Neural networks have the ability to overcome some of the shortcomings associated with the
application of many of the classical AI techniques in computer game agent design (Haykin,
1999). Neural networks have many advantages, including being self adaptive in that they
adapt well to computer game environments that change in real-time. Neural networks can
improve performance via off-line and on-line training. In other words, the game agents can

www.intechopen.com

Applications of Neural-Based Agents in Computer Game Design

387

be trained once before being deployed in a game or the learning algorithm can be applied in
real-time for continuous improvement while the game is played. Also, for neural-based
agents, the corresponding source code tends to be small and generic allowing for code reuse
through libraries since the essence of most neural networks consist of a series of inputs sent
across an analog weight matrix that capture states and world environments to determine
their outputs. Such designs allow easy computation and incorporation of data processing
techniques, such as multi-threading and parallel processing, which is a requirement for
today’s high-performance games. With these benefits, neural-based agents gain the
capability of adapting to changing tactics by humans or other game agents and may acquire
the ability to learn and generate new tactics while playing the computer game, similar to the
capability of many human players. Since the neural-based agents are adapting to the game
conditions and generating new tactics, the game remains challenging for a longer time than
games that use only classical AI techniques.
Incorporating neural networks in game designs also has problems, such as the difficulty in

obtaining training data and unexpected emergent behavior in which the computer game

does not function as intended by the designer. In general, obtaining training data is very

critical to neural network development. In the computer game domain, there are two

common approaches that can be used. First, data can be recorded as a human plays in the

role of the game agent and this data can then be used to train the neural network. Another

approach is to use an evolutionary process, such as genetic algorithms, to train the neural

network by seeding the network and allowing for mutations and a cost function that

terminates underperforming neural networks (Miikkulainen et al., 2006). Unexpected

emergent behavior can be corrected by having a performance function or a teacher that

evaluates the actions and corrects the agent. If the human player begins to lose consistently,

the performance function can be adjusted so that the game agent performs at the

appropriate level corresponding to the human player.

The remainder of this chapter will focus on four main topics. First, the background of
various methods to apply neural networks in computer games will be explained along with
several examples for commercial and academic computer games. Second, a strategy will be
presented that will facilitate more efficient development of neural networks in computer
games. Third, the complete development of a neural network for the Defend and Gather
game will be described along with the network topologies used for the neural-based agents
and the evaluation process used to analyze the overall performance of the agents. Although
aspects of neural networks in the Defend and Gather game were previously described by
Qualls et al., 2007, that work-in-progress conference paper does not contain the context and
detail of this chapter. Finally, the future for neural networks in computer games will be
explored along with recommendations for subsequent work.

2. Neural gaming background

2.1 Example game applications
Neural networks can be used in a variety of different ways in computer games. They can be

used to control one game agent, several game agents, or several neural networks can be

used to control a single game agent. A game agent can be a non-player character or it can be

used to represent the game environment. With this in mind, a neural network can be used to

control and represent just about any facet of a computer game. This section will discuss

www.intechopen.com

 Evolutionary Computation

388

several areas in which neural networks can be applied to computer games along with

several examples of neural networks being used in computer games.

Path navigation is one of the most common uses of neural networks. A neural-based agent
can adapt to an ever changing environment and more importantly, learn the human player’s
path to make the game more challenging over time. Neural networks can also be used to
control ecology for the game. This neural-based ecology may be used to just populate an
environment, or it could be used to control mutations based on a player’s action, such as
making animals more friendly or scared of the player. Animation is another promising area
for neural networks. As computer games become more powerful, game designers demand
more realistic animations. As the number of complex objects increase in games, attempting
to create animations for every scenario can be impossible. For example, a neural network
could be used to teach a neural-based agent some task, such as teaching a dog to walk. The
neural-based agent could then learn to adapt to walking over a rocky environment or over
an icy lake. Finally, advanced reasoning can be used by neural networks for dialog choices
and strategies for defeating humans and other agent players, as well as other tasks. One
example is two neural-based game agents may need to learn to work together to complete a
game, which is the focus of Section 4 of this chapter.

2.2 Example games in academic and commercial markets
Neural networks have been around for quite some time but it has only been since the 1990s
that there have been attempts at integrating neural networks within computer games. One
of the first available commercial games that used neural networks was Creatures. The
agents in Creatures used neural networks for learning and sensory motor control in
conjunction with artificial biochemistries. Together, the neural network and artificial
biochemistries are genetically specified to allow for evolution through reproduction. The
neural networks are made up of 1000 neurons grouped into nine lobes interconnected with
5000 synapses. The neural-based agents learn by a reinforcement signal from the human
player. The human player provides feedback by stroking or slapping the agent for positive
or negative learning (Grand & Cliff, 1998).
In 2001, CodeMasters created the Colin McRae Rally 2.0 (CMR) racing game for the Sony
PlayStation One. The CMR game used neural-based agents to control the opponent race cars
as they drove around the track. The neural-based agents learned to drive all of the tracks in
the game while learning how to maneuver around other race cars on the tracks. To obtain
data to train the neural networks, the developers played the game and recorded their laps
around the race tracks. This recorded data consisted of drivers’ reactions to other cars and
the average driving line around the track. The neural networks were then trained off-line
with the recorded data and the resulting neural network was integrated within the agents to
control the opponent race cars (Mathews, 2000).
Other games included Black and White and Democracy 2. Black and White Versions 1 and 2
used neural networks with reinforcement learning to allow a creature (neural-based agent)
to learn from a player’s actions. For instance, the creature may need to learn that it needs to
destroy a structure before it sends in another army to destroy the opponent. Democracy 2,
which is a political simulation game, uses a highly complex neural network that simulates
desires, loyalties, and motivations of game agents that make up countries on a planet
(Barnes, 2002).
There are many different examples of neural networks being used in computer games in the
academic domain. The NERO (Neuro-Evolving Robotic Operatives) and GAR (Galactic

www.intechopen.com

Applications of Neural-Based Agents in Computer Game Design

389

Arms Race) games, which use the NEAT (Neuroevolution of Augmenting topologies)
algorithm, along with NeuroInvaders and Agogino’s Game are discussed in this chapter. All
of these example games use genetic algorithms or some form of evolution to train their
neural networks (Agogino et al., 2000; Briggs, 2004; Stanley, 2005a; Stanley, 2005b; Stanley
2006; Hastings, 2007).
First, Agogino’s Game was based on Warcraft II by Blizzard Entertainment. This game
contains a human-controlled player and neural-based peons. The objective of the game is for
the peons to find a resource point without being killed by the human player. The peons use
genetic algorithms to evolve feed-forward networks in real-time. As time progresses, the
peons become more adapt at finding resource points and avoiding the human player. The
peons accomplish this task by evaluating the risk of choosing between a resource point that
is near a human player or a resource point that is farther away, but unguarded (Agogino et
al., 2000).
Second, the game NeuroInvaders allows human opponents and neural-based agents to play
against each other in a death match. The agents must seek out and shoot the human player
to win and vice versa. The agents use a spiking neural network containing eight neurons.
For example, if the agent’s FIRE neuron activates then the agent will fire its laser or if the
RIGHT neuron fires then the agent will turn right, etc. The neural network of each game
agent starts with random weights and delays. When the agent dies, a mutation created by
adding random Gaussians to the weights and delays is added to the original weight matrix
of the dead neural-based agent and integrated within a new neural-based agent that is still
alive. All of these mutations occur in real-time using genetic algorithms while the game is
being played (Briggs, 2004).
The NERO and GAR games both use the rtNEAT (real-time NEAT) algorithm and the
cgNEAT (content generation NEAT) algorithm developed at the University of Texas. The
NEAT algorithm is similar to other evolving neural networks but it has a key difference in
that it can modify and increase the neural network’s complexities along with its weights.
The rtNEAT game is a real-time version of NEAT that gains a computation performance
boost by putting a time limit on the life span of a neural-based agent and then evaluating its
performance. If the neural-based agent is performing well then it is kept in the game. If its
performance does not meet certain criteria, it is then discarded and it starts over. The
cgNEAT algorithm is based on the idea that neural networks can generate more interesting
content for the player, which results in an overall more enjoyable player experience (Stanley,
2005a; Stanley, 2005b; Stanley, 2006; Hastings, 2007).
The game NERO is essentially a real-time strategy game in which an agent must navigate an
environment and defend itself against other game agents with the same goal. In NERO there
are two phases of play for the human player. In the first phase, the human player acts as a
teacher and creates exercises for the neural-based agents to go through and then the player
can dictate fitness-based performance parameters by examining how well the agents move
around walls or hit targets. In the second phase, the player can place its trained neural-
based agents against other players’ trained agents to determine which agent performs the
best (Stanley, 2005a).
A second game based on NEAT called GAR is very different from NERO. The NERO game
has the player actively involved in the neural network development, while GAR’s neural
network runs primarily behind the scenes. The GAR game uses cgNEAT to generate new
types of weapons for the player to use in the game. These new weapons are generated by
creating variants of weapons that a player is using within the game. In short, the neural

www.intechopen.com

 Evolutionary Computation

390

network in this case is generating interactive content for the player to use based on the
player’s preferences (Hastings, 2007). This last example shows that neural networks can be
used in very interesting ways that may not necessarily fit the stereotypical functions of a
game agent.

3. Strategies and techniques for neural networks in games

The most significant barrier to using neural networks in computer game design lies not with
understanding how neural networks function but how to apply one of the various neural
network techniques to a specific computer game. As seen from the previous examples, there
are many different methods to develop and use neural networks in computer games.
Decisions such as off-line/on-line training, neural network architecture, training algorithms,
and most importantly, data acquisition, are all components of the neural network
development process. This section of the chapter will discuss a simple process for
incorporating a neural network inside a computer game and then follow up in Section 4
with the Defend and Gather game that uses the outlined development process in its
implementation.
The first decision is to decide the scenarios in which the neural network will be used in the
game. Will the neural network control a game agent, animation routine, or other function?
The second decision revolves around training data. In other words, how and what data will
be collected to train the neural network? This leads to questions concerning what constitutes
data for the game system. Generally, the data is determined by the type of data inputted
into the neural network and outputted by the neural network. The third decision that needs
to be made is what type of neural network architecture is most appropriate based on the
intended function of the agent. The neural network architecture can vary greatly depending
on its given tasks. The fourth decision revolves around deciding between off-line/on-line
training and the types of learning algorithms to be deployed. The main question is will the
neural network continue to learn while the game is being played or will the neural network
be trained and placed within the computer game with no further learning during game
execution? There are advantages and disadvantages to both approaches. Allowing the
neural network to continue to learn during game execution can provide it further
refinement in playing the game but could lead to unforeseen actions that may result in the
game not performing as desired. Even without further learning, anomalous game behavior
can still be an issue. All of these important decisions are highly interdependent and are
determined by the type of computer game being developed and the intended function of the
agent.
As previously discussed, neural networks can be used to control various aspects of a
computer game. For developing our simple process, we first create a hypothetical computer
game in which an agent must navigate an environment to exit a simple maze. The game
agent will have a sight range to allow for detection of walls and the goal of finding the exit.
If the game agent gets close to a wall, it should move away from it. Fig. 2. shows a typical
maze game.
For our first decision, the neural network will control all of the actions of the game agent.
The neural network will determine how the agent moves around the environment.
Therefore, the inputs to the agent are the directions of the walls from the perspective of the
sight range of the agent and the outputs will be the direction the agent should follow. In
short, we will have four inputs representing wall directions consisting of UP, DOWN, LEFT,

www.intechopen.com

Applications of Neural-Based Agents in Computer Game Design

391

Fig. 2. Example maze game with the agent navigating the environment

and RIGHT and the outputs will be the direction the game agent travels: UP, DOWN, LEFT,
and RIGHT. For the second decision, we will collect data by playing the game and recording
the directions of the walls within the sight range of the game agent and the resulting
direction we move the game agent. The sampling rate for data collection of the inputs and
outputs was set as two samples per second. For most action games on the market today this
rate will need to be increased due to the volume of information that a player may be
exposed to within one second of game play. Table 1. shows an example recording of the
game agent for two seconds.

Maze Game Recording Output File

Inputs: Wall Directions Outputs: Game Agent Direction

UP DOWN LEFT RIGHT UP DOWN LEFT RIGHT

1 0 0 0 0 1 0 0

1 0 1 0 0 1 0 1

0 1 1 0 1 0 0 1

0 0 1 0 0 0 0 1

Table 1. Agent recording for two seconds as human player moves around the maze

The third decision requires the specification of the neural network architecture. There are
many types of architectures to choose from, such as recurrent, feed forward, and many
more. If we look at the inputs and outputs of the game agent in this case, there are four
inputs and four outputs, so we chose a feed-forward network, which is also one of the
simplest architectures to implement. We also specify the number of hidden layers, as well as
the number of nodes in each layer. A general rule of thumb is the number of nodes in the
hidden layer should total to at least the sum of the output and input nodes to be adaptive to
changing environments. Another rule of thumb is that a feed-forward network should have
at least one and half times the number of input or output nodes in each hidden layer
(Garzon, 2002). For the simple game in this case, there are four inputs and four outputs so
there are two hidden layers with six nodes each. Fig. 3. shows the neural network
architecture for our agent in the simple maze game.
The last decision involves deciding between training the neural network off-line then
placing into the game or to allow the neural network to continue to learn while the game is
being played. Also, the type of training algorithm must be specified. For this simple game,
the neural network will be trained once off-line with back propagation. Larger and more
complex games may need on-line training because the game itself may change over time,
which is typical for multi-player on-line games. By answering these questions during the

www.intechopen.com

 Evolutionary Computation

392

development of a computer game, the process for adding a neural network to a computer
game can become straightforward. The following section of the chapter will go through a
more complex example detailing how a neural network was added to the Defend and
Gather game.

Fig. 3. Neural network architecture of the agent for the simple maze game

4. Example game with neural networks

4.1 Defend and gather
The Defend and Gather game will provide a better understanding of the benefits of neural
networks in game design. In this game, neural-based agents play against classical symbolic
AI agents in a contest to determine which agent will win the game. Defend and Gather was
influenced by many of the games discussed in Section 2 of this chapter. One key difference
is that instead of the neural-based agents facing off against human opponents they play
against other game agents implemented with multiple classical AI techniques. The game
agents consisting of classical AI techniques used techniques such as complex branching and
conditional statements. These game agents will be referred to as BaC throughout the
remainder of this chapter. Since the BaC agents use fairly simple AI techniques, it was
decided that the neural-based agents would use off-line training techniques. Using off-line
training also allows for better assessment of the neural-based agent’s ability to cope with
increasing difficulty with no additional learning while the game is being played. To facilitate
the development of Defend and Gather an engine developed by Bruno Teixeira de Sousa
was used (De Sousa, 2002). This game engine is a simple but robust two-dimensional open
source engine that handles graphics, input/output, and simple physics computations. By
choosing to use this game engine it allows other developers who may be interested in the
implementation of neural-based agents to have a common platform to understand the
process of developing their own neural-based agents for their respective game.
In Defend and Gather, the game agents have conflicting goals for winning the game. This
was implemented to ensure that the neural-based agents will have confrontations with the
BaC agents. The BaC agents have two goals to follow. First, they need to defend resource
points and second they need to hunt and destroy the neural-based agents. There are two
different neural-based agents in the game, each with a different goal. The first neural-based
agent (Resource Collector) searches for and collects resource points while avoiding the BaC

www.intechopen.com

Applications of Neural-Based Agents in Computer Game Design

393

agents. The second neural-based agent (Protector) actively protects the other neural-based
agents and searches for and destroys the BaC agents. An additional constraint is that the
protector agent cannot destroy the BaC agents unless the resource collector agents have
collected resources. This implies that the neural-based agents must work together to survive
and win the game. Defend and Gather ends when one of following three conditions is met:
1) all BaC agents are killed; 2) all neural-based agents are killed; or 3) all the energy is
collected and exhausted by the neural-based agents. If conditions 1 or 3 are completed then
the neural-based agents win the game, or if condition 2 is completed then the BaC agents
win the game. Fig. 4. shows a sample screen shot of Defend and Gather showing several
environmental components, including resource points (Triangles), resource collector (Smiley
Face), BaC agent patrol (Orange Plus), and several walls (Squares), all of which will be
explained in further detail.

Fig. 4. Level 1 of Defend and Gather

There are four different agents in the game. The agents include two BaC agents called the
patroller and the hunter and two neural-based agents called the protector and resource
collector. All of these agents navigate the game environment in real-time. Mass-force vector
calculations are used for movement. In other words, the agents control their thrust in four
different directions for moving and slowing down. There are no limits on how fast any of
the agents can move, so the agents will have to cope with not losing control. Also, if the
agents run into a wall, then they will bounce off the wall based on the speed and trajectory
they were traveling. So, if the agent moves too fast and hits a wall it can have the effect of
bouncing around like a pin ball until control is regained. Each of the agents has a limited
visibility range or field of view around them. The visibility range of each agent is a circle
about three times their respective size.
The behaviors of each of the agents are dictated by their respective goals. First, the

patrolling agent is a fairly simple BaC agent. It moves back and forth between two set points

in the environment. If the patrolling agent detects a neural-based agent in its visibility range

www.intechopen.com

 Evolutionary Computation

394

it will accelerate and start to fire its laser shields at the neural-based agent. Once the neural-

based agent is destroyed or out of its visibility range the patrolling agent will return to its

normal patrolling route and stop firing its shields. The hunter agent is a more complex BaC

agent. The hunter agent moves randomly across the environment in search of the neural-

based agents. If the hunter agent detects a neural-based agent in its visibility range it will

start to pursue the neural based-agent by increasing its speed while also firing its laser

shield. The hunter agent will continue to pursue the neural-based agent until it is destroyed

or it no longer detects the neural-based agent in its visibility range. Once a neural-based

agent is no longer detected, it will stop firing its laser shield and return to randomly

searching for another neural-based agent. The resource collector neural-based agent simply

searches for resource points while avoiding the BaC agents. The resource collectors have no

laser shield for protection. The only advantage they have is that they can accelerate slightly

faster than all the other agents. Once the resource collector has discovered a resource point it

will hover at that location until all the resources have been collected. If a BaC agent is

detected in its visibility range the resource collector will flee and try to move toward the

protector agent. Once the resource collector no longer detects the BaC agent it will return to

collecting resources so that the protector agent will have energy to fire its laser shield. The

protector actively searches for both types of BaC agents and tries to protect the resource

collector agents. The protector agent tries to stay close to the resource collectors while also

searching for the BaC agents. Once a BaC agent is detected in the protector’s visibility range

it will start to pursue the BaC agents by accelerating if it has energy to fire its laser shield. If

the protector does not have energy to fire its laser shield it will not give chase. The protector

agent will continue to pursue a BaC agent until it is destroyed, no longer detected in its

visibility range, has energy for its laser shields, and the resource collectors are not being

attacked. If a resource collector is being attacked the protector will start to move towards

that resource collector.

The Defend and Gather game consists of a closed two-dimensional environment as seen in
Fig. 4. The environment contains the game agents previously mentioned along with
resource points and walls for the agents to navigate around. To test the viability of all the
agents, four different environments were created that increase in difficulty and pose more
difficult challenges for the game agents. Fig. 5. through Fig. 8. show the four levels
increasing from easy to most difficult. All levels contain one protector neural-base agent and
four resource collector neural-based agents. The amount of resource points and the number
and types of BaC agents varies across the levels. Fig. 5. shows the easiest level in the game.
This level consists of two resource points and a single wall to navigate around. The level
also contains just two patrolling BaC agents, one protector and four resource collector
neural-based agents. Fig. 6. shows the next level of the game. This level consists of two
resource points, two patrolling BaC agents, and one hunter BaC agent. The resource points
are located in two small rooms with one of the rooms having both entrances protected by
patrolling BaC agents moving in opposite directions. Fig. 7. shows the third level of the
game. There are three resource points in this level each of which is in a separate room. Two
of the resource points are heavily guarded while the third is not guarded. The level also
contains one hunter BaC agent and three patrolling BaC agents. The concept behind this
level is to see if the resource collectors will go for the unguarded resource point first and
then allow the protector to try to eliminate some of the BaC agents before attempting to

www.intechopen.com

Applications of Neural-Based Agents in Computer Game Design

395

collect the other resource points. Fig. 8. shows the final level of the game, which is the most
difficult level. This level has four resource points in separate rooms along with six patrolling
BaC agents and two hunter BaC agents. All of the resource points are heavily guarded. The
room itself is divided in half by a hallway that is designed as a chokepoint, which is
common in many of today’s games. The idea of a chokepoint is to force confrontation
between players in the game.

Fig. 5. Difficulty 1—Two resource points and a single wall to navigate around

Fig. 6. Difficulty 2 —Two resource points each in a separate room

www.intechopen.com

 Evolutionary Computation

396

Fig. 7. Difficulty 3—Three resource points each in a separate room

Fig. 8. Difficulty 4—Four resource points each in separate room with a choke point in the
center of the level

4.2 Neural network development process
Now that the game world has been defined, we must determine how the neural network
will operate in Defend and Gather. We have already defined the resource collectors and the
protectors, which are the two types of agents that will use the neural networks in their

www.intechopen.com

Applications of Neural-Based Agents in Computer Game Design

397

design. The neural-based agents must able to move around the environment and react to the
surroundings within their visibility range. Therefore, the inputs are the surroundings in its
visible range and the outputs are the resulting movement. That is, the inputs of the neural
network are objects in the game while the outputs control the movement of the neural-based
agents. The outputs are the four directions UP, DOWN, LEFT and RIGHT. These outputs
inform the agents which direction to fire their thrusters. The agents are not limited to firing
their thrusters in one direction at the same speed as they can fire in several directions and at
different speeds, which increases their maneuverability. The inputs of the neural network
consist of directions of other game objects in different directions. The neural network has
eight inputs, with the top four inputs representing the directions of walls and the bottom
four inputs representing the direction of BaC agents.

4.3 Network architecture
Since each neural-based agent is a separate entity within Defend and Gather, two neural
network architectures were created. Since the BaC agents use relatively simple AI
techniques, the neural-based agents were designed using feed-forward networks, which is
the simplest type of neural network architecture. Feed-forward networks are also
straightforward to implement in gaming software. Many other topologies could have been
implemented; however, it was decided to implement the simplest design first, then, try
more complex networks.
One of the more difficult aspects of implementing the network architecture is determining
the number of hidden nodes in the network. As stated in Section 3, we used the convention
of choosing the number of hidden nodes to be approximately 1.5 to 2.0 times the number of
nodes in the input/output layer. This design criterion was used for both the protector and
the resource collector neural-based agents. Since the number of inputs and outputs are
different, eight and four respectively, we used two hidden layers. The design criterion
resulted in a network architecture that consisted of eight input units, four output units, and
two hidden layers with fifteen and six nodes, respectively. Fig. 9. shows the final neural
network architecture for the resource collector along with several other details. This
architecture is also the same for the protector neural-based agent.

Fig. 9. Architecture of the resource collector with labeled inputs and outputs

www.intechopen.com

 Evolutionary Computation

398

As stated in Section 4.2, the eight inputs consist of two groups. The first four inputs in the
network are used for detecting the direction of a wall and the last four inputs are used for
detecting the BaC agent’s direction. The four inputs for the walls and enemies operate in the
same manner. These inputs remain at zero if no agent or wall is in the visible range of the
neural-based agent. If detection occurs of a wall or enemy, then, the input will change to a
one in the corresponding direction. For example, if there is a wall above the resource
collector or protector, then, a one will be sent to the Wall_Above input in the neural
network, Fig. 9.
Both the resource collector and the protector neural-based agents have the same outputs.

The output determines the direction and speed of the agent with values zero, one, or two.

For the resource collector, if all of the outputs are zero, then there is no detection of a wall or

BaC agent in its field of view; therefore, the resource collector continues to search for

resource points in the game environment. If any of the outputs are set to value one, then a

wall has been detected and the resource collector will move in that direction at the same

speed. If the value of any of the outputs is set to two, then a BaC agent has been detected

and the resource collector will accelerate and move away from the BaC agent. Following Fig.

9., if the input value Enemy_Above for a resource collector is set to one, meaning a BaC

agent has been detected above the resource collector, then the output value of Move_Down

will be set to two resulting in the resource collector accelerating away from the BaC agent. If

the input value Wall_Right is set to one then the output value Move_Left will be set to one

to move the resource collector away from the wall. This example may appear simple but by

supporting the ability for processing different multiple inputs, the resource collector can

detect an enemy in different directions and detect walls. The resource collector can move in

very complex directions, including arching curves. This capability is the same for the

protector neural-based agent except for how it reacts to a BaC agent. If the protector detects

a BaC agent, then it will accelerate toward it. For example, if the input value of Enemy_Up is

set to one, then output value Move_Up will be set to two to accelerate the protector toward

the BaC agent.

4.4 Training the neural networks
To obtain training data for the neural-based agents used in Defend and Gather, a similar

approach that was taken in the PlayStation game Colin McRae 2.0 mentioned in Section 2

was implemented. In the game Colin McRae 2.0, human players were used to play as the

opponent race car and their actions were recorded on given game states as exemplars in the

training data. Based on this same approach, Defend and Gather also recorded data from

humans playing the game. Training data was recorded by having humans play as the

resource collector and the protector on the level two of the game Defend and Gather. Level

two was chosen for play recording because both types of BaC agents, that is, hunters and

patrollers, were present in this level. Essentially the inputs and outputs of the neural-based

agents were recorded as the humans played the game and then the data was extracted to a

file. Data was recorded at five times a second. For example, if a BaC agent or a wall was

detected within the field of view of the neural-based agent while playing the game against a

human, then, both the inputs of the human and agent would be recorded and logged in the

output file. Table 2. shows a sample output as a human player moves down and to the left to

move away from a wall to the right. The BaC agent is above the player.

www.intechopen.com

Applications of Neural-Based Agents in Computer Game Design

399

Defend and Gather Sample Recording File
Inputs: Detection of Walls and BaC agents within visibility range in game environment

Wall Direction BaC Direction
ABOVE BELOW RIGHT LEFT ABOVE BELOW RIGHT LEFT

0 0 1 0 1 0 0 0

Outputs: Player Movement Direction
Acceleration Direction

ABOVE BELOW RIGHT LEFT
0 2 1 0

Table 2. Sample recording of player playing as the resource collector

To obtain enough training data, the humans played level two for several rounds, with each
round consisting of ten games. Data was recorded for both wins and losses. Losses were
included in the training set with the objective of making the neural-based agents behave in a
more human-like manner and to allow them to adapt to a changing game environment. One
problem with the recorded data was the large numbers of zeros in both the input and
output. This was a result of the absence of a sensed percept that resulted in an action, that is,
‘nothing’ being detected and the player not taking any action. These large areas of zeros
were parsed out of the data. After the parsing, the recorded data was then split into two
parts. The first part, which consisted of seventy percent of the data, was used for training
the neural networks. The remaining thirty percent was used to test the neural networks to
see how well the neural-based agents learned from the training data.
There are many different ways to train a neural network but to speed the process MATLAB
was used to train the two neural networks. Werbos’ back-propagation algorithm was chosen
to train the two neural networks (Haykin, 1999). Back-propagation was selected to train the
neural networks because it is considered one of the hallmarks of training algorithms for
traditional neural networks. After training the neural networks with MATLAB, the mean
squared error was obtained for training the resource collectors and the protectors (7e-7 and
2e-9) as shown in Fig. 10. and Fig. 11., respectively. The two neural networks yielded an
error rate of less than three percent over a training set size of 4000 separate entries. The
protector converged much faster than the resource collector. This may be due to the fact that
as the humans played the game in the role of the protectors, they acted more aggressively in
chasing down the BaC agents, whereas in the role of the resource collectors, the human
players had to act far more cautiously to avoid the BaC agents to find the resource points.

4.5 Evaluation
Evaluating the neural networks centered on the agents’ abilities to play Defend and Gather
well enough to cope with increasingly difficult game environments and more complex BaC
agents. To determine how well the neural-based agents play Defend and Gather twenty
games were completed on each of the four difficulty levels. The number of wins and losses
were recorded for each of the games. The number of wins and losses for the neural-based
agents are shown in Fig. 12. The last column in Fig. 12. shows the total number of wins over
all four difficulty levels. Further analysis of the neural-based agents focused on how well the
agents interacted with the game environments. These interactions included navigation
around walls to find resource points and how well the agents found or avoided the BaC
agents in the levels.

www.intechopen.com

 Evolutionary Computation

400

Fig. 10. Neural networks for the protector being trained in MATLAB

Fig. 11. Neural networks for the resource collector being trained in MATLAB

Fig. 12. Neural-based agents won 76% of the time over 80 plays of Defend and Gather

www.intechopen.com

Applications of Neural-Based Agents in Computer Game Design

401

To ground the performance of the neural-based agents, a comparison is needed. While the
humans played the game their resulting wins and losses were also recorded. Human players
only won level two sixty percent of the time during the data recording. Human players were
also asked to play other levels in the game and they won ninety five percent of the time on
level one, thirty percent of the time for level three, and less than three percent for level four.
The neural-based agents’ performance was regarded as a success if they won more than
seventy percent of the time for the total game. This benchmark was selected to ensure the
agents performed better than the humans. The neural-based agents won seventy-five
percent of all the games across the difficulties, thus exceeding our goal of seventy percent as
shown in Fig. 12.
Next, observations were made of the neural-based agents’ interactions with the game
environments. In general, the neural-based agents were able to navigate the levels without
too many problems. One problem scenario that consistently occurred was when a wall was
placed directly between a resource point and the neural-based agent. The neural-based
agents would sometimes stop at the wall and never attempt to navigate around the wall to
the resource point. This scenario only happened about ten percent of the time, but it did
contribute to losses incurred by the neural-based agents. The resource collectors did an
excellent job of navigating around the BaC agents to find the resource points. The deaths of
the resource collectors were generally the result of the agents accelerating too fast in one
direction and running into the BaC agents because they could not change direction fast
enough to avoid them. Other kills by the BaC agents involved trapping the resource
collectors in a corner until they were destroyed. The protector also did an excellent job of
hunting down the BaC agents to destroy them. Over half of the wins of the neural-based
agent occurred because the protector was able to destroy all of the BaC agents in the game.
The neural-based agents were extremely effective at playing the game Defend and Gather.
Their effectiveness of navigating the environment and interacting with the BaC agents led to
winning over seventy percent of the games played. Even with the increasing difficulty, the
neural-based agents were still able to win the game. On the most difficult level the neural-
based agents were able to win half of the games, whereas the human players could only win
three percent of the time.

4.6 Future work
As seen in Section 4.5, the neural-based agents designed for Defend and Gather learned to
play the game quite effectively and they were able to win approximately seventy-six percent
of the time. There is still opportunity for improvement in the capabilities of the neural-based
agents. Various techniques could be applied to the agents to increase their performance.
First, Defend and Gather used off-line learning so as the neural-based agents play the game
they do not gain from their experience. The next step would be to include some form of on-
line learning so that the neural-based agents can continue to learn while playing the game.
Neural-based agents using on-line learning would be able to formulate better strategies
during the game in real-time and over time rather than learning only once. This continuous
learning may be particularly useful with dynamic obstacles and when other agents playing
in the game are learning improving their performance over time through learning.
Only back-propagation was used for training in Defend and Gather. There are many other
training techniques that could have also been used to increase performance. These various
algorithms include genetic algorithms, dealing with mutations over time, simulated

www.intechopen.com

 Evolutionary Computation

402

annealing, and various other methods. Different network architectures other than feed-
forward networks could be implemented for future work. Architectures, such as recurrent
networks, which facilitate bi-directional data flow, a self-organizing map, to remember the
location of certain enemies and the topology of the game environment, stochastic networks,
which introduce randomness, and finally a modular network made up of many kinds of
neural networks have applicability in game design (Haykin, 1999). From these
improvements alone, there are many possibilities that could be applied to Defend and
Gather to improve performance of the neural-based agents.

5. Conclusions

It is clear from the implementation and analysis of the performance of the game Defend and
Gather and the many other examples discussed in this chapter that neural-based agents
have the ability to overcome some of the shortcomings associated with implementing
classical AI techniques in computer game design. Neural networks can be used in many
diverse ways in computer games ranging from agent control, environmental evolution, to
content generation. As outlined in Section 3 of this chapter, by following the neural network
development process, adding a neural network to a computer game can be a very rewarding
process. Neural networks have proven themselves viable for agent design, but there are still
many unexplored avenues that could prove to benefit from neural networks in computer
games. The area of content generation has only briefly been discussed in recent research.
The potential is that neural networks could generate entire worlds or even entire computer
games based on human players’ preferences. Neural networks have great potential for
designing computer games and technology that will entertain players in terms of newly
generated content and increasing challenge as the players learn the game.

6. References

Agogino, A.; Stanley, K. & Miikkulainen, R. (2000). On-line Interactive Neuro-evolution,
Neural Processing Letters, Vol. 11, No. 1, (February 2000) (29-38), 1370-4612.

Baader, F.; Calvanese, D.; McGuinness, D.L.; Nardi, D. & Patel-Schneider, P.F. (2003). The
Description Logic Handbook: Theory, Implementation, Applications, 0-521-78176-0,
Cambridge University Press, Cambridge, UK

Barnes, J. & Hutchens, J. (2002). Testing Undefined Behavior as a Result of Learning, In: AI
Game Programming Wisdom, Rabin, S., (Ed.), Charles River Media, 13: 978-1-58450-
077-3, MA

Briggs, F. (2004). Realtime Evolution of Agent Controllers in Games, In: Generation 5,
Accessed 2009, Available Online at: http://www.generation5.org/content/2004
/realtimeevolutionagents.asp

De Sousa, B. (2002). Game Programming All in One, Premier Press, 13: 978-1-93184-123-8, OR
Dybsand, E. (2000). A Finite-State Machine Class, In: Game Programming Gems, Deloura, M.,

(Ed.), Charles River Media, 13: 978-1-58450-049-0, MA
Erol, K.; Hendler, J. & Nau. D. (1996). Complexity results for HTN planning. Annals of

Mathematics and Artificial Intelligence, Vol. 19, No. 1, (1996) (pp. 69-93)
Fikes, R. & Nilsson, N. (1971). STRIPS: A new approach to the application of theorem

proving to problem solving. Artificial Intelligence, Vol. 2, (1971) (pp. 189-208)

www.intechopen.com

Applications of Neural-Based Agents in Computer Game Design

403

Garzon, M. H.; Drumwright, E. & Rajaya, K. (2002). Training a Neurocontrol for Talking
Heads, Proceedings of the International Joint Conference on Neural Networks, pp. 2449-
12453, Honolulu HI, May 2002, IEEE Press, Piscataway, NJ

Grand, S. & Cliff, D. (1998). Creatures: Entertainment Software Agents with Artificial Life,
Autononomus Agents and Multi-Agent Systems, Vol. 1, No. 1, (1998) (pp. 39-57)

Hastings, E. J.; Gutha, R. K. & Stanley, K. O. (2007). NEAT Particles: Design, Representation,
and Animation of Particle Systems Effects, Proceedings of the IEEE Symposium on
Computational Intelligence and Games, pp. 154-160, Honolulu Hawaii, 2007, IEEE
Press, Piscataway NJ

Haykin, S. (1999). Neural Networks A Comprehensive Foundation, 2nd ed., Prentice Hall, 13: 978-
0-13273-350-2, NJ

Larid, J. & Lent, M. V. (2000). Human-Level AI's Killer Application: Interactive Computer
Games, Proceedings of the Seventeenth National Conference on Artificial Intelligence and
Twelfth Conference on Innovative Applications of Artificial Intelligence, pp. 1171-1178,
10: 0-262-51112-6, Austin Texas, August 2000, AAAI Press, Menlo Park, CA

Lioret, A. (2008). An Artifical Intelligence Nodes module inside Blender for expert
modeling, texturing, animating, and rendering, Proceedings of the Blender Conference,
Amsterdam Netherlands, October 2008.

Mathews, J. (2000). Colin McRea 2.0 (PlayStation), In: Generation 5, Accessed 2009, Available
On-line at: http://www.generation5.org/content/2001/hannan.asp

Miikkulainen, R.; Bryant, B. D.; Cornelius, R.; Karpov, I. V.; Stanley, K. O. & Yong, C. H.
 (2006). Computational Intelligence in Games, In: Computational Intelligence:

Principles and Practice, Yen, G. Y. & Fogel, D. B. (Ed.), (155-191), IEEE
Computational Intelligence Society

Orkin, J. (2004). Symbolic Representation of Game World State: Toward Real-Time Planning
in Games, Proceedings of the AAAI Workshop on challenges in Game AI, pp. 26-30, 13:
978-0-262-51183-4, San Jose, CA, July 2004, The MIT Press, Cambridge, MA

Orkin, J. (2005). Agent Architecture Considerations for Real-Time Planning in Games,
Proceedings of Artificial Intelligence and Interactive Digital Entertainment, pp. 105-110,
13: 1-57735-235-1. Marina del Rey California, June 2005, AAI Press, Menlo Park, CA

Qualls, J.; Garzon, M. & Russomanno, D.J. (2007) “Neural-Based Agents Cooperate to
Survive in the Defend and Gather Computer Game,” IEEE Congress on Evolutionary
Computation, IEEE Press, Singapore, pp. 1398-1402

Russel, S. & Norvig, P. (2003). Artificial Intelligence a Modern Approach, 2nd ed., Prentice Hall,
13: 978-0-13790-395-2, NJ

Schaefer, S. (2002). Tic-Tac-Toe (Naughts and Crosses, Cheese and Crackers, etc), In:
Mathematical Recreations, Accessed 2007, Available On-line at:
http://www.mathrec.org/old/2002jan/solutions.html

Stanley, K.; Bryant, B. D. & Miikkulainen, R. (2005a). Evolving Neural Network Agents in
NERO Video Game, Proceedings of the IEEE 2005 Symposium on Computational
Intelligence and Games, pp. 182-189, Essex UK, April 2005a, IEEE Press, Piscataway,
NJ

Stanley, K. O.; Bryant, B. D.; Karpov. I. & Miikkulainen, R. (2005b). Real-Time Neroevolution
in the NERO Video Game, IEEE Transactions on Evolutionary Computation, Vol. 9,
No. 6, (December 2005b) (653-668), 1089-778X

www.intechopen.com

 Evolutionary Computation

404

Stanley, K. O.; Bryant, B. D.; Karpov. I. & Miikkulainen, R. (2006). Real-Time Evolution of
Neural Networks in the NERO Video Game, Proceedings of the Twenty-First National
Conference on Artificial Intelligence, pp. 1671-1674, Boston, MA, July 2006, AAAI
Press, Menlo Park, CA

Watt, A. & Policarpo, F. (2001). 3-D Games Real-Time Rendering and Software Technology,
Addison-Wesley, 13: 978-0-20161-921-8, NY

Zarozinski, M. (2001). Imploding Combinatorial Explosion in a Fuzzy system, In: Game
Programming Gems 2, Deloura, M., (Ed.), Charles River Media, 13: 978-1-58450-054-
4, MA

www.intechopen.com

Evolutionary Computation

Edited by Wellington Pinheiro dos Santos

ISBN 978-953-307-008-7

Hard cover, 572 pages

Publisher InTech

Published online 01, October, 2009

Published in print edition October, 2009

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book presents several recent advances on Evolutionary Computation, specially evolution-based

optimization methods and hybrid algorithms for several applications, from optimization and learning to pattern

recognition and bioinformatics. This book also presents new algorithms based on several analogies and

metafores, where one of them is based on philosophy, specifically on the philosophy of praxis and dialectics. In

this book it is also presented interesting applications on bioinformatics, specially the use of particle swarms to

discover gene expression patterns in DNA microarrays. Therefore, this book features representative work on

the field of evolutionary computation and applied sciences. The intended audience is graduate,

undergraduate, researchers, and anyone who wishes to become familiar with the latest research work on this

field.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Joseph Qualls and David J. Russomanno (2009). Applications of Neural-Based Agents in Computer Game

Design, Evolutionary Computation, Wellington Pinheiro dos Santos (Ed.), ISBN: 978-953-307-008-7, InTech,

Available from: http://www.intechopen.com/books/evolutionary-computation/applications-of-neural-based-

agents-in-computer-game-design

© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

