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Multi-Ring Particle Swarm Optimization 

Carmelo J. A. Bastos-Filho, Danilo F. Carvalho, Marcel P. Caraciolo, 
Péricles B. C. Miranda and Elliackin M. N. Figueiredo 

Department of Computing and Systems, University of Pernambuco 
Brazil 

1. Introduction     

Many real world problems are quite expensive to be solved by using exhaustive 
computation. Because of this, many metaheuristics have been proposed recently to deal with 
optimization and search problems. Although many approaches have been proposed based 
on local search, the current research in Evolutionary Computation (EC) is mainly focused on 
algorithms that are based on populations and inspired in nature (Schwefel, 1981; Bäck, 1996; 
Fogel, 1996; Beyer, 2001; Beyer, 2002). 
In this context, Swarm intelligence techniques, mainly Particle Swarm Optimization (PSO), 
have been widely applied to solve many different types of optimization problems. PSO was 
proposed by Kennedy and Eberhart (Kennedy & Eberhart, 1995) and the main idea is to 
explore the intelligence originated by the social knowledge disseminated by the agents 
during the search process. Due to its great performance in difficult optimization tasks and 
its simplicity, PSO became a popular, easy-to-use and extendable technique (Abido, 2001; 
Eberhart & Shi, 2001; Parsopoulos & Vrahatis, 2001; Agrafiotis & Cedeno, 2002; Coello 
Coello & Lechuga, 2002; Parsopoulos et al., 2002; Shi & Krohling, 2002; Praveen et al., 2007; 
Santana-Quintero ET AL., 2008).  
By applying PSO to problems where the feasible solutions are too much difficult to find, 
more sophisticated approaches are required, mainly for hyper dimensional spaces. Many 
variations on the basic PSO form have been explored, most of them proposing different 
velocity update equations (Shi & Eberhart, 1998; Clerc & Kennedy, 2002; Kennedy, 2005; 
Jiao, et al., 2008). Other approaches attempt to change the structure of the swarm (Kennedy 
& Mendes, 2002; Suganthan, 1999) and its communication schema (Engelbrecht, 2005; Sutton 
et al., 2006).  
To disseminate information within the swarm is the key of any swarm intelligence based 
algorithm. PSO, like others swarm algorithms, makes use of its own information exchange 
methods to distribute the best positions found during the algorithm execution (Engelbrecht, 
2005). The way used by the swarm to distribute this information lies in the social structure 
formed by the particles. Variations in this structure can improve the algorithm performance. 
By using local communication, each particle of the swarm has its own neighborhood. Many 

papers (Engelbrecht, 2005; Carvalho & Bastos-Filho, 2008; Carvalho & Bastos-Filho, 2009) 

have shown that it improves the exploration capacity of the entire swarm but decreases the 

convergence speed of the algorithm. It means that the algorithm obtains better solutions, but 

it needs more iterations to reach the convergence.  O
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Other important and already known PSO algorithm variation is the Cooperative Particle 
Optimizer (CPSO) (van den Bergh & Engelbrecht, 2001; van den Bergh & Engelbrecht, 2004) 
which is based on the cooperative GA proposed by Potter and De Jong (Potter & De Jong, 
1994). This approach proposes a performance improvement of the PSO algorithm by 
splitting the solution vector into different components that will be optimized by different 
sub-swarms cooperatively. CPSO inserts another parameter called split factor which can be 
interpreted as the number of sub-swarms that compose the entire swarm. 
By using the ring structure as an inspiration, a novel PSO topology called Multi-ring PSO 

(MRPSO) based on coupling different rings was recently proposed (Bastos-Filho et al. 2008). 

This novel approach makes use of a diversity mechanism provided by ring rotations in 

order to improve the exploration of the search space. The structure of the proposed topology 

is formed by ring layers connected by axis that cross the layers trough the particles. Each 

single particle, which belongs to a specific layer, is automatically connected to other 

particles in neighbour ring layers. These connections establish the communication between 

neighbour particles which is a peculiar neighbourhood scenario based on local 

communication. The ring layers increase the capacity to avoid stagnation states making use 

of a process and an attribute called rotation skill and trigger criterion, respectively, also 

described in the chapter. Furthermore, we included a novel concept proposed by Cai et al. 

(Cai et al. 2008) that assigns a grade to the particles based on their fitness. This information is 

used to switch the neighbourhood inside the rings. 

The rest of this paper is organized as follows. Section 2 shows a brief review about PSO. It 
also describes some well known topologies. In Section 3 the proposed Multi-ring topology 
and its features are described. Section 4 is devoted to the Dispersed based Multi-ring 
approach. The simulation setup used by the experiments and the chosen benchmark 
functions are presented in Section 6. In section 7 the analysis of Multi-ring and Multi-ring 
Dispersed are shown. The results of a comparison with some well-known topologies are 
presented too. 

2. Background 

2.1 Particle Swarm Optimization - PSO 

The basic form of the PSO algorithm is composed by a group particles, where each particle 

represents a possible solution to the problem. Each particle maps the attributes of a solution, 

i. e., the position of one particle represents exactly the values of the attributes of a solution. 

Besides, particles move inside the search space reaching new positions. After some 

iterations, particles tend to a global optimum based on two basic components: the cognitive 

component and the social component. The first one considers the best position already 

found by the particle itself (pbest).  The second one use the best position attained by all the 

particles of the swarm (gbest) in order to guide the swarm to a common spot in the search 

space. Based on these two information components, each particle updates its own velocity. 

The velocity is a vector that directs the particle to the next position. 

As the original PSO is based on the global knowledge of the swarm, it has a low capacity for 
local search. Thus, other approaches were proposed in order to avoid this disadvantage. Shi 
and Eberhart (Shi & Eberhart, 1998) proposed a velocity update equation that uses an inertia 
factor w (see equation 1). This factor balances the exploration-exploitation trade-off by 
controlling the contribution of the previous velocity in the evaluation of the current velocity 
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of each particle. For each iteration of the PSO algorithm the velocity )(tv i
f

contribution is 

decreased. Thus, the exploitation level of the swarm is increased. 

 ))()(())()(()()1( 2211 txtprctxtprctvtv igiiii

ffffff
−+−+=+ ω ,  (1) 

where w is the inertia factor, )(tx i
f

is the current position of particle i in time step t, c1 and c2 

are positive acceleration constants, and r1 and r2 are two random numbers generated by a 
uniform distribution in the interval [0,1]. 
Recently, Jiao et al. (Jiao et al., 2008) proposed a dynamic inertia weight for the particle 
swarm optimization algorithm. They showed that it can improve the quality of the solutions 
obtained by the algorithm. 
Another popular approach for the PSO velocity update equation involves a constriction factor 
which implies a velocity value reduction at each time step (Clerc & Kennedy, 2002). Under 
some peculiar conditions, it can guarantee both convergence and a high degree of exploration. 
Both inertia and constriction approaches balance exploration and exploitation abilities and 
improve the convergence speed and the quality of the solutions found by the algorithm 
(Bratton & Kennedy, 2007). 

2.2 Topologies 
The communication between particles inside a swarm is one of the most important 
mechanisms of PSO. This mechanism distributes information already achieved by the  
 

 

Fig. 1. Commonly used particle topologies: (a) Star topology used in gbest , (b) Ring 
topology used in lbest, (c) Von Neumann topology and (d) Four clusters topology. 
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swarm through all particles, updating the swarm status. Global and local communication 
structures are the two main structures used for particles’ communication. Considering that 
particles share information acquired through a structured swarm, this model of 
communication can be seen as a topology. Some of the well-known topologies are depicted 
in Figure 1. 
Each topology shown in Figure 1 has its own way to spread information through the swarm 

(Kennedy, 1999; Kennedy & Mendes, 2002).  

Star and ring topologies are shown in Figure 1(a) and Figure 1(b), respectively. Star topology 

is composed by a fully-connected structure (gbest) that allows each particle of the swarm to 

share information globally. In a global neighbourhood, information is instantaneously 

disseminated to all particles, quickly attracting the entire swarm to the same swarm region. 

To avoid local minima, ring topology (Figure 1(b)) make use of local neighbourhoods (lbest), 

i. e., particles just communicate with its immediate neighbours. Therefore, the swarm needs 

a great number of iterations to converge, but higher quality solutions can be found. 

In Figure 1(c), a grid of particles forming a peculiar social structure is shown. This structure 

is very useful for many optimization problems (Kennedy & Mendes, 2002; Peer et al., 2003) 

and is known as Von Neumann topology. 

Based on clusters of particles, the four clusters topology is shown in Figure 1(d). Each cluster 

communicates with the others by connections previous defined between the particles 

(Mendes et al., 2003; Engelbrecht, 2005). The number of connections originated from a 

cluster is equal to the number of neighbour clusters. 

3. Multi-ring topology 

3.1 Multi-ring concepts 

Multi-Ring is a novel PSO topology that uses the ring structure as an inspiration. By using 

local communication, each particle of the swarm has its own neighbourhood. Many papers 

have shown that it improves the explorarion capacity of the entire swarm but decreases the 

convergence time of the algorithm (Engelbrecht, 2005; Carvalho & Bastos-Filho, 2008; 

Carvalho & Bastos-Filho, 2009). A topology based on coupling different rings with dynamic 

commutation of the neighbourhood is proposed, which aims to obtain better solutions as the 

benefit of the local communication. At the same time, we expect to reduce the number of 

iterations to reach a convergence as the benefit of the dynamic neighbourhood mechanism.  

The proposed topology is formed by particles arranged in multiple rings layers, where each 

particle of the ring can communicate with some particles of neighbour rings.  In order to 
 

 

Fig. 2. Multi-Ring Topology. 
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couple different ring layers, the number of particles in each ring must be the same.  
Therefore, each single particle, which belongs to a specific layer, is automatically connected 
to other particles from neighbour ring layers, as shown in Figure 2. The structure in Figure 2 
illustrates an example of the multi-ring topology with 3 rings (A, B and C) of 3 particles. 

3.2 Communication between different rings 

The particles from different ring layers communicate with each other by using a peculiar 
neighbourhood scenario. The Figure 3 can be used to illustrate this scenario. Considering a 
ring layer rl(k), each particle rl(k)(i) is directly connected with the particles rl(k-1)(i)  and  rl(k+1)(i)  of 
the next and previous ring layers. During the algorithm execution, one particle rl(k)(i) will 
exchange information with a neighbourhood composed by { rl(k)(i-1) , rl(k)(i+1) , rl(k-1)(i) , rl(k+1)(i) }.   
 

 

Fig. 3. Ring layers structure. 

One special observation must be considered for the first and last ring layers of the topology.  
The communication between the particles located at those two rings is partially limited, 
since both do not have a complete ring neighbourhood, it means that they only have a 
unique ring layer directly connected to them. Therefore, the information exchange for one 
particle belonging to a ring rl(1) is limited by the set { rl(1)(i-1) , rl(1)(i+1) , rl(2)(i) }. The same 
restriction must be considered for the ring rl(n)  , which the neighbourhood is composed by 
the set { rl(n)(i-1) , rl(n)(i+1) , rl(n-1)(i) }.  
One particle which belongs to a ring layer rl(k)  exchange information with other layers rl(k-1) 

and  rl(k+1) in order to make use of the social information achieved by the other layers. If one 
particle just exchanges information with the same neighbourhood through the entire 
execution of the algorithm, the neighbourhood would be static. In this case, the topology is 
just a simple local approach. To avoid this static possibility, one important process was 
added to the proposed topology, called rotation skill. 

3.3 Ring layer rotation skill 

One of the biggest problems of PSO is the stagnation. In nonlinear multimodal problems, 
which have many local minima regions, the swarm can be stagnated in one those regions of 
the search space during the algorithm execution. In those regions, the particles can spend 
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many time steps without varying the value of the best position found by their 
neighbourhoods. It can cause a stagnation state in the entire swarm. Hence, the proposed 
strategy to avoid stagnation is to add the ability of rotation to each ring layer. By adding the 
rotation skill, the position of the particles in the ring can be altered. Hence, the 
neighbourhood is changed. It can move the swarm from one region to another, increasing 
the exploration of the space search by considering different local minima regions.  
In the Multi-Ring approach, the particles of different rings exchange information between 
themselves using local communication. The particle that belongs to a ring rl(k) exchanges 
information with other rings rl(k-1) and rl(k+1) aiming to transmit its previous experience.  
Each ring layer of the Multi-Ring has the ability to self-rotate. It means that if the ring layer 
rl(k)   does not improve its own best position, defined as ringbest, it will be rotated. In the 
rotation process, each particle in the ring layer has its index changed to i = (i+d) mod (nl), 
where d is the rotation distance and nl is the number of particles in a layer. Thus, the new 
neighbourhood will be composed by { rl(k)(i-1) , rl(k)(i+1) , rl(k-1)(i+d) , rl(k+1)(i+d) }. One can note that the 
main difference is the communication replacement between the neighbour ring layers. 
Figure 4 shows an example of the rotation process. Initially, the particle E communicates 
with {D,F,B,H}. After the rotation, the neighbourhood of the particle E is changed to 
{D,F,A,G}.  This process improves the social information exchange. Besides, it also improve 
the convergence capacity of the swarm. One can note that all the particles of the same ring 
layer change its neighbourhood. 
 

 

Fig. 4. Rotation skill example. 

The main mechanism of the rotation process is the trigger criterion that will be used to 
invoke the rotation skill. It is based on the idle status of the best solution found in a specific 
ring layer, i.e. the number of iterations that the best solution found by a specific ring does 
not change. To clarify the process described above, consider a ring layer rl(k). If the best 
solution found remains with the same value during tr iterations, so this ring layer will be 
rotated after tr iteration.  
Therefore, the use of the exploration capacity provided by the local communication 
combined with rotation mechanisms helps to avoid the stagnation of the solution found by 
the swarm during the execution of the PSO algorithm.    
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3.4 Multi-ring PSO algorithm 

Inspired by the entity described in the previous section, the PSO algorithm with this novel 
topology has some new specific steps that must be considered in the execution process of 
the algorithm. Figure 5 illustrates the Multi-Ring topology containing an example with two 
ring layers (rl(1) and  rl(2)) of three particles. 

 

Fig. 5. Multi-Ring topology of 2 ring layers with 3 particles. 

In the basic PSO algorithm, one of the steps is the definition of the initial pbest and gbest, 
which represent the best position found by the particle and swarm, respectively. The 
manner how the value of pbest is updated or chosen is not influenced by the use of Multi-
Ring topology, since it is related to the individual experience of the particle. Therefore, all 
the particles of the swarm define the pbest in the same way. 
For each iteration, each ring layer performs a search and marks the particle that reached the 
best position of the entire ring layer. Different from gbest, in the Multi-Ring approach, the 
definition of this new position called ringbest, considers only the particles within the 
respective ring layer.  Therefore, each ring layer will have its own ringbest. After that, the 
ringbests of each ring layer are compared with each other, and the best one will be selected 
as the best solution. The pseudo-code of the algorithm is presented in Figure 6. 
 

 

Fig. 6. Multi-Ring particle swarm optimization algorithm. 

After the pbest evaluation, the algorithm performs the selection of the best particle of the 
respective ring layer. This process is repeated for all the ring layers that compose the Multi-
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Ring topology (see Line 10 in Figure 6). Line 12 of Figure 6 shows that the selection of the 
best ringbest for the topology occurs at the end of each algorithm iteration. 
The updateVelocityAndPosition() and updateInformation() processes are the core of any 
PSO algorithm. These two processes are described in the pseudo-codes of Algorithms 2 and 
3  that are shown in Figures 7 and 8, respectively. 
 

 

Fig. 7. Particle swarm position and velocity updating algorithm. 

 

Fig. 8. Particle information updating algorithm. 

The other process involved in Algorithm 1 execution is rotate() (see Line 4), which belongs 

only to the multi-ring topology approach proposed here. One can note that this step is done 

before the fitness evaluation. Figure 9 can be used to represent this process. Consider that the 

rotation trigger criterion used is the number of successive iterations that the best solution 

found (ringbest) by the ring layer has not improved and d is the number of positions that the 

ring will be rotated. Using tr to represent the trigger mechanism and Xi to represent the 

particle i of the ring layer X, the ring layer X will be rotated if the value of its best position 

has not improved after tr iterations. Otherwise, if the respective number of iterations is 

below tr, the algorithm does not rotate the ring layer X and the number of iterations is 

incremented. This process is done for all ring layers of the Multi-ring topology. 

When the trigger criterion is satisfied, the ring layer is rotated by d particles and the number 
of iterations that the ringbest did not improved is reset. It implies in a new neighbourhood 
for each particle of the rotated ring and, as a result, it improves the social information 
exchange. One can note that there is a trigger criteria tr(k) for each ring layer rl(k) . The figure 
10 illustrates the rotation algorithm process described above.  

4. Dispersed particle swarm optimization 

4.1 Dispersed PSO concepts 
In particle swarm optimization (PSO) literature, the published social coefficients settings 
aims to increase the search around the swarm memory. However, few approaches 
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Fig. 9. Rotation simulation process. 

 

Fig. 10. Multi-Ring rotation process. 

take into account the useful information inside the particle’s memories. Thus, to improve the 
convergence speed, a new approach considering the social coefficient was proposed (Cai et 
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al, 2008) by introducing an explicit selection pressure, in which each particle decides its 
search direction toward the personal memory or swarm memory. 
The fitness value of the current position of each particle represents its adaptive capability, 

and it can be selected to distinguish between search modes. In this approach, the better the 

fitness of the current position is, more adaptation this particle can get to enhance its survival 

ratio. 

Since the literature consider the extreme situations such as global or local approaches, they 

neglect the differences between the particles in the search process. These settings lose some 

information that can be useful to find the global optima or escape from local optima.  

To minimize this problem, Cai et al. (Cai et al., 2008) proposed a new index to indicate 

performance differences, named Gradei(t). The definition of the index is provided as follows: 

                                        
( ) ( )[ ]
( ) ( )tftf

txftf
tGrade

bestworst

iworst
i −

−
=

f
)( ,  (2) 

where fworst(t) and fbest(t) are the worst and the best fitness values of the swarm at time step t, 

respectively.  

Occasionally, the swarm can converge onto one point, that means fworst(t) = fbest(t). In this 

case, the value Gradei(t) of an arbitrary particle i is set to 1. Gradei(t) represents the 

performance of particle i at time t, according to its fitness value of the current position. The 

better particle is, the larger Gradei(t) is, and vice-versa. 

In most cases, if the fitness value of particle i is better than the fitness of particle u, the 

probability of i’s neighbourhood falls into a global optima is higher than the particle u. Thus, 

the particle i should give more attentions to exploit its neighbourhood. On the contrary, it 

may tend to explore other regions with a larger probability. Therefore, the best solution 

should perform a complete search around its historical best position and the worst solution 

should perform a global search around the best solution found so far. 

Then, the dispersed social coefficient of particle i at time t is set as follows: 

 c 2, i ( t ) = c low + c up − c low( )Grade i ( t ) ,  (3) 

where cup and cdown are two predefined numbers, and c2,i(t) represents the social coefficient of 
particle j at time t. One can note that better particles will present higher values for c2.  

4.2 Multi-ring dispersed particle swarm optimization 

Based on the new manner to determine the acceleration coefficients, the dispersed PSO 

approach was included into the Multi-Ring Topology. By applying the Gradei(t) to determine 

the communication rules inside each ring, we expect that it will improve the performance of 

the search made by the Multi-Ring PSO algorithm. 

The grade criterion, which is calculated by evaluating a fitness comparison, will make the 
best solutions perform searches around its vicinities and the worst solutions look for the 
history of a larger part of the swarm, in order to increase its experience. 
Figure 11 illustrates the grade strategy in action. If the Gradei(t) is above a threshold  (good 
solutions), we reduce the neighbourhood of the particle. In this case, the neighbourhood of 
the particle i is defined as { rl(k)(i-1) , rl(k)(i+1) , rl(k-1)(i) , rl(k+1)(i) }. Otherwise, the particle should 
expand its communication range to achieve more information, which it would get 
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information from all particles in the same ring in order to increase its experience. One can 
note that rings which the ringbest are below the threshold will perform searches using a 
more connected structure in order to achieve better regions in the search space. In spite of 
this, one should note that the communication between the ring layer remains local. 
 

 

Fig. 11. Grade criteria at Multi-Ring PSO.  

5. Simulation setup 

In Table 1, seven commonly used benchmark functions are presented. Their names, 

definitions, search space, initialization range, and optimum compose the columns of Table 1. 

All the functions described are used as minimization problems classified as unimodal (f1) or 
multimodal (f2, f3, f4, f5, f6 and f7) containing many local minima and a high level of 
complexity. For the simulations, each function was tested with 30 dimensions. 
Each simulation was performed using PSO with inertia factor. The reduction of w is linear 

and starts at 0.9 decreasing to 0.4 along the iterations. The number of rings was varied based 

on a swarm with 30 particles. Thus, the number of ring layers is defined as nl = 30 / n. The 

rotation distance is equal to a half of the ring layer size (d = nl / 2) and the trigger criterion 

was tr = 15. 
We used c1 and c2 equal to 2.05. In the MRDPSO, we used clow = 1.5 and cup = 2.5. 
The number of iterations used in a single simulation was 10,000. After 30 executions, the 

mean and standard deviation were stored. The initial positions of the entire swarm are 

defined randomly inside the initialization range of the benchmark function used. 

Comparisons with other topologies were also provided for convergence performance 

validation in both inertia and dispersed approaches. 
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Table 1. Benchmark functions used in the experiments. 

6. Results     

This section shows the results of the experiments involving the benchmark functions 
described previously. In the first section (Section 6.1) of the simulation results, we vary the 
number of ring layers. The second one (Section 6.2) presents a comparison between each 
Multi-ring approach and the topologies already mentioned in Section 2 of this paper. 

6.1 Ring layer variation 
Table 2 shows the results of MRPSO varying the number of ring layers in simulations 
involving each benchmark function. For function f6, the structure composed by 3 ring layers 
behaved better. The 5-ring MRPSO achieved a better performance for functions f1, f2 and f3, 
and the 10-ring behaves better for f4, f5, and f7. 
One can note that the best choice for function f6 was 3-ring layers followed by the 5-rings 
configuration. Thus, in general, the 5-rings configuration achieved the most satisfactory 
fitness values. This is due to the fact that maintaining a balance between the degree of  
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MRPSO 

3 ring layers 5 ring layers 10 ring layers Function 

Mean SD Mean SD Mean SD 

(f1) 17.48 9.39 15.05 7.87 29.48 29.33 

(f2) 3.19E-9 3.40E-9 2.28E-9 3.53E-9 2.56E-10 3.41E-10 

(f3) 0.0097 0.01 0.00509 0.0063 0.0062 0.00902 

(f4) 2.56E-32 3.1E-32 2.72E-32 4.26E-32 1.62E-32 2.23E-32 

(f5) 2.72 2.82 3.56 4.94 0.56 1.03 

(f6) 16.3 5.19 17.36 7.41 19.57 5.85 

(f7) 3305.57 577.24 2963.11 498.9 2686.44 456.16 

Table 2. Number of ring layers variation of MRPSO. 

communication inside a ring and through different rings, the MRPSO can reach regions with 

better solutions. 

For the dispersed approach for the proposed topology (MRDPSO) (see Table 3) the 5-rings 

configuration achieved the best overall performance. 

 

MRDPSO 

3 ring layers 5 ring layers 10 ring layers Function 

Mean SD Mean SD Mean SD 

(f1) 12.99 19.05 9.84 14.42 8.44 5.97 

(f2) 6.83E-15 1.44 E-15 7.31E-15 9.01E-16 7.54E-15 1.61E-15 

(f3) 0.70E-4 0.01 0.80E-4 0.80E-4 0.01 0.01 

(f4) 4.08E-32 5.40E-32 4.55E-32 5.36E-32 8.37E-33 7.96E-33 

(f5) 0.28 0.42 0.29 0.41 0.37 0.78 

(f6) 14.725 4.008 13.929 3.102 20.39 7.54 

(f7) 4063.20 543.16 3969.54 563.79 3975.34 356.32 

Table 3. Number of ring layers variation of MRDPSO. 

For functions f2, f3 and f5 the 3-rings configuration achieved the best fitness values. The 

configuration with 10 ring layers achieved better performance in functions f1 and f4. Again, 

we can consider that a configuration with 5-rings is enough to reach satisfactory fitness 

values in complex and different search spaces. 

The dispersed coefficient improves the convergence speed, thus is clearly expected that 

MRDPSO will converge fast than MRPSO. Therefore, the 5-rings configuration can be 

considered the best configuration choice in both MRPSO and MRDPSO. 

Varying the number of rings, both MRPSO and MRDPSO can fit to different kind of 

problems. Hence, the number of rings can be varied according to the problem to be solved. 
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6.2 Topologies comparison 

The results between the comparison of MRPSO and MRDPSO and other topologies are 

shown in Table 4 and Table 5, respectively. For all the functions, the fitness values presented 

by the Multi-ring approaches are the ones that achieved the best performance or similar 

performance to the best performance. 

 

MRPSO Global Local Von Neumann Four Clusters 
f 

Mean SD Mean SD Mean SD Mean SD Mean SD 

(f1) 15.05 7.87 17.712 6.3686 18.215 12.995 39.54 29.36 88.15 44.51 

(f2) 2.28E-9 3.53E-9 1.26E-14 3.04E-15 9.61E-8 8.70E-8 1.81E-10 1.86E-10 0.16 0.51 

(f3) 0.00509 0.0063 0.01 0.02 0.0031 6.4E-3 0.008 0.01 0.04 0.03 

(f4) 1.62E-32 2.23E-32 5.02E-32 5.52E-32 6.22E-33 7.82E-33 9.94E-33 1.27E-32 9.42E-32 5.05E-32 

(f5) 0.56 1.03 4.46 8.31 1.33 1.47 1.00 1.64 52.67 39.25 

(f6) 16.3 5.19 15.35 5.93 21.94 5.33 19.58 4.89 19.58 7.37 

(f7) 2686.44 456.16 2164.17 368.74 2964.79 389.31 2898.37 347.01 3633.34 519.53 

Table 4. Comparison between MRPSO and other topologies. 

 

MRDPSO 
Global 

Dispersed 
Local 

Dispersed 
Von Neumann 

Dispersed 
Four Clusters 

Dispersed f 

Mean SD Mean SD Mean SD Mean SD Mean SD 

(f1) 8.44 5.97 32.8099 33.7074 15.3180 18.0088 10.8321 13.8913 83.8264 54.0686 

(f2) 6.83E-15 1.44 E-15 1.13E-14 3.60E-15 9.73E-13 5.43E-13 7.54E-15 9.01E-16 0.2947 0.6127 

(f3) 0.70E-4 0.01 0.0134 0.0137 4.09E-11 2.24E-10 0.0103 0.014 0.0529 0.0498 

(f4) 8.37E-33 7.96E-33 4.86E-32 4.81E-32 5.23E-33 7.53E-33 2.72E-32 4.1436 9.10E-32 5.09E-32 

(f5) 0.28 0.42 0.7080 1.5170 0.1375 0.22 0.16 0.401 63.50 40.47 

(f6) 13.929 3.102 13.99 3.66 20.96 4.6 21.16 6.84 36.92 6.86 

(f7) 3969.54 563.79 2320.08 355.31 3610.09 461.8253 3889.64 503.86 3750.91 334.53 

Table 5. Comparison between MRDPSO and other topologies. 

For function f1 and f5 MRPSO reaches the best fitness values (F = 15.05 and F = 0.56). For all 
the other functions used, it reaches values close to the best performance achieved by some 
well known topologies. A good example is the performance for functions f6 and f7, in which 
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the only topology that achieved fitness values better than the ones achieved by MRPSO was 
the global topology. Hence, considering that MRPSO is a local communication topology, the 
results presented by Table 4 are strongly satisfactory. 
Table 5 shows the results of the MRDPSO and topologies enabled with the dispersion grade 
strategy. For function f1, f2, and f6 the MRDPSO achieves the best fitness values (F=8.44, 
F=6.83E-15 and F=13.929). For the functions f3 and f5, it reaches a good value for the mean 
fitness with low standard deviation, close to the best performance achieved by well known 
topologies. For the function f7, MRDPSO achieves a value for the mean fitness in the same 
order of magnitude of Dispersed PSO with local, Von Neumann and Four Clusters 
topologies. Therefore, considering all results shown at the Table 5, the MRDPSO achieves 
good solutions for both unimodal and multimodal problems. 

7. Conclusions     

This paper has proposed a novel topology for Particle Swarm Optimization based on a multi 
layer structure based on local communication (lbest). The Multi-ring PSO (MRPSO) and also 
its combination with the Dispersed PSO approach (MRDPSO) are thoroughly described. The 
first one introduces a new feature called rotation skill that minimizes the stagnation 
probability of the PSO algorithm. In the second one, some changes in the communication 
rules inside the rings were made by using the dispersion grade attribute of Dispersed PSO 
approach. 
The Multi-ring approaches achieved better performance or close to well-known topologies 
used for comparison. This fact exalts how satisfactory the results involving MRPSO and 
MRDPSO were. By varying the number of rings, the size of each ring and how the rotation 
skill work, the proposed approach could be used to reach good quality solutions for both 
unimodal and multimodal problems. Besides, it helps to avoid the swarm of being trapped 
at local minima regions, making it moves to new regions of space search in order to help the 
PSO algorithm to converge to the best solution. 
Due to its peculiar features, the proposed PSO topology is an interesting approach able to be 
applied in different kind of optimization problems. 
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