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1. Introduction 

The discrete-time model is often used for the system identification. However, the controlled 
plant is a continuous-time system in many cases. In addition, there are some disadvantages 
in the discrete-time model, such as the discrete-time model has a complex representation of 
the continuous-time model parameters, and can’t reflect the structure of the plant. Especially 
for the nonlinear system, if the sampling period is large, system nonlinearity will be 
enlarged, and the nonlinear discrete-time model can’t be identified well. Because of these 
reasons, the method for estimating the parameter of the continuous-time system from the 
sampled I/O data directly has attracted attention. 
Estimation in nonlinear system is very important, because almost all practical systems 
involve nonlinearities. The Unscented Kalman Filter (UKF) is a nonlinear estimation  
method, which propagates mean and covariance information through nonlinear 
transformation. It is accurate, and has superior implementation properties. Plant parameters 
can be estimated based on the UKF like algorithm by defining an augmented state as the 
state and the unknown parameters. As it is well known, the UKF uses sigma points to 
capture the statistics of a Gaussian random variable, instead of calculating the Jacobian 
matrices, and the UKF does not use linear approximation. Furthermore, it does not matter if 
the plant is based on continuous-time model, because the one-step-ahead estimate in 
continuous-time model can be calculated by numerical integration. From these reasons, it is 
possible to estimate the state and the parameters of a continuous-time system by using the 
UKF. 
In order to demonstrate the validity, the Rotary Pendulum is provided to estimate the 
unknown parameter of the continuous-time nonlinear system. For the numerical simulation, 
system parameters have been almost exactly estimated. From the experimental I/O data, 
system parameter has been estimated within one percent Relative Root Squared Error 
(RRSE) by using the UKF like algorithm. 

2. Continuous-time model and discrete-time model 

2.1 Dynamical system 
System is an object in which variables of different kinds interact and produce observable 
signals. As shown in Fig.1, system can be represented by input u(t), output y(t), and 
disturbance ν(t). As a general rule, u(t) and y(t) can be measured possibly, however, ν(t) can 
not be measured usually. 
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Dynamical system is a system whose output depends not only the current input but also 
the past input.  
 
 
 

 
 
 

Fig. 1. Dynamical system 

In general, the dynamical system shown in Fig.1 is represented with n-dimensional state 
variables {x1 , . . . , xn} by a first-order differential equation as follows: 

 

(1) 

where {u1, . . . , ul} is l-dimensional system input signals, and m-dimensional output 

 

(2) 

can be measured. From  

 

(3) 

and vector functions 
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(4) 

eqs.(1) and (2) can be expressed briefly as follows 

 (5) 

 (6) 

x(t) is called state vector, eqs.(1) and (5) are called state equation, and eqs.(2) and (6) are 
called output equations. 
In order to analyze the discrete-time model, f and g are assumed to be linear in section 2.2. 
At that time, eqs.(7) and (8) are used instead of eqs.(5) and (6) 

 (7) 

 (8) 

where A(t) ∈ Rn×n,B(t) ∈ Rn×l,C(t) ∈ Rm×n,D(t) ∈ Rm×l respectively. It is called a time-varying 
linear system if the system is represented by eqs.(7) and (8). When A(t), B(t), C(t), D(t) are 
constant matrices and do not depend on the time variable t, the system 

 (9) 

 (10)

is called a time-invariant linear system. In many cases, D(t) = 0, because phase of a physical 
system always delays in high frequency range. Output eq.(8) can be changed as 

 (11)

Vis-a-vis the linear system, the system which is represented with eqs.(1), (2) or the eqs.(5), 
(6) is called a nonlinear system. 

2.2 Continuous-time model and discrete-time model 
The behavior of a dynamic system evolves over time. The discrete-time model is often used 
for the system identification. However, in many cases the controlled plant is a continuous-
time system, which its descriptive equations are defined for all values of time and the 
system dynamic properties shown by the differential equations. There are some properties 
of continuous-time model, 
1. In the control design, the important parameters are easy to be grasped. 
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2. If the physical structure of the plant is known, the mathematical continuous-time model 
can be obtained beforehand. 

The focus in this chapter targets the modeling of continuous-time systems. As for the second 
property, if the differential equations of the continuous-time model can be obtained, the 
identification problem afterwards can be replaced by the parameter estimation problem. 
In many applications, particularly in physical modeling, the design of a discretetime model 
starts from the description of a physical continuous-time model by means of differential 
equations and constraints. Therefore, for this section, the continuous-time model is 
represented as 

 (12)

 (13)

where u ∈ Rm, y ∈ Rl, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n. On the other hand, for performing a 
system by using a digital computer, it has become prerequisite to handle the sampled data. 
Discrete-time model is the mathematical model in which the I/O relation of the sampled 
data is shown by a difference equation. Corresponding to eqs.(14) and (15), the discrete-time 
model can be described by 

 (14)

 (15)

Similarly to the continuous-time model, xk, uk and yk are state variable vector, input and 
output at a time step k respectively. And G ∈ Rn×m and H(=C) ∈ Rl×n are the system matrices 
of the discrete-time model. 
The solution of eq.(14) can be solved as 

 
(16)

where t0 is the initial time. Let tk, k=0, 1, . . ., denote the sampling time. If the input u(t) is a 
constant uk for the sampling interval [tk, tk+1), i.e. 

 

(17)

Then 

 
(18)

can be obtained. Here, assume tk+1 − tk = Δ(const.), the discrete-time system representated as 
follow 
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 (19)

where 

 

(20)

Δ is the sampling period. 
For zero-order hold of the sampling, it is possible to calculate without the approximate 
error. However, if unlimitedly reduces Δ, 

 

(21)

F and G approach to identity matrix and zero matrix, regardless of the elements of A and B. 
Moreover, if the obtained discrete-time model is clear to identity matrix or zero matrix, the 
backward calculation from the discrete-time model to the continuous-time model becomes 
numerically unstable. Therefore, for the discrete-time model, the value of the model 
depends on the sampling period. And it is not limited to represent the dynamics of the 
actual system accurately, though the sampling period be diminished simply. 
In a summary, for the discrete-time model and continuous-time model, there are some 
problems 
1. The discrete-time model does not reflect the structure of the plant. 
2. The discrete-time model has a complex representation of the continuous-time model 

parameters. 
3. Especially for the nonlinear system, if the sampling period is large, system nonlinearity 

will be enlarged, and the nonlinear discrete-time model can’t be identified well. 
Because of these reasons, the method for estimating the parameter of the continuous-time 
system from the sampled I/O data directly has attracted attention. 

3. Unscented Kalman filter 

Estimation in nonlinear system is very important because many practical systems involve 
nonlinearities. The Extended Kalman Filter (EKF) which applies the KF to nonlinear system 
by linearizing all nonlinear models, has become a most widely used method for estimation 
of nonlinear system. However, more than 35 years of experience in the estimation 
community, although the EKF maintains the elegant and computationally efficient recursive 
update form of the KF, it suffers a number of serious limitations. 
1. Only reliable for systems which are almost linear on the time scale of the updates. 
2. Linearization can be applied only if the Jacobian matrix exists. However, this is not 

always the case. 
3. Calculating Jacobian matrices can be a very difficult and error-prone process. 
It means the EKF is difficult to implement, difficult to tune, and the reliability is limited. To 
address the limitations, the Unscented Kalman Filter (UKF) was proposed by Julier and 
Uhlmann in 1996. 
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The UKF is a nonlinear estimation method which propagates mean and covariance 
information of the parameter recursively through nonlinear transformation. As it is well 
known, the UKF is a straightforward extension of the Unscented Transformation (UT) to the 
recursive estimations. It uses sigma points to capture the statistics instead of calculating the 
Jacobian matrices, and the UKF does not use the linear approximation of functions. It is 
accurate, and has superior implementation properties. As a nonlinear estimation method, 
the UKF has been widely applied in nonlinear control applications. 

3.1 Unscented Transformation 
The UT is a nonlinear method for calculating the statistics of a random variable which 
undergoes a nonlinear transformation and builds on the principle that it is easier to 
approximate a PDF( probability distribution function) than to approximate an arbitrary 
nonlinear function. 
The approach is illustrated in Fig.2. And the the principle of the UT is as follows: 
1. Sigma points are chosen from the mean and covariance. 
2. The nonlinear function is applied to each points in turn to yield a cloud of transformed 

points. 
3. The statistics of the transformed points can then be calculated to form an estimate of the 

nonlinearly transformed mean and covariance. 
 
 

 
Fig. 2. The principle of the UT 

Different from other methods, there are two important distinctions of the UT. 
1. The sigma points are chosen deterministically from the statistics of transformation, and 

not drawn at random. 
2. The approximation itself can be interpreted more generally than as probability 

distribution. 

3.2 Calculating sigma points 
As described in section 3.1, the UT method is founded as a nonlinear method to calculate the 
sigma points which are deterministically chosen from the propagated mean and covariance 
through nonlinear transformations. This section describes how to calculate 2n + 1 weighted 
sigma points of the n-dimensional samples, and illustrate the coordinate transformation to 
demonstrate the improved accuracy of the UT. 
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Consider a n-dimensional random variable x through a nonlinear functuon. Assume x has 
mean x  and covariance P. Calculate a set of 2n + 1 weighted sigma points { ; i = 1, 2, . . . , 

2n}, where  ∈ Rn. The first sigma point is 

 (22)

and the other sigma points are calculated using the following general selection scheme: 

 
(23)

 
(24)

 

where κ ∈R is a scaling parameter,  is ith row or column of the matrix square 
root of (n + κ)P, κ scales the third and higher order terms of this set.  If (n + κ) = 3, it is 
possible to match some of the fourth order terms when x is Gaussian. 
The scaled result is a different sigma set, with different higher moments, but with the same 
mean and covariance. The weight is provided to weight the point for controlling some 
aspects of distribution of the sigma points. By convention, let W 0 be the weight on the mean 
point, adjusting the weights as follows: 

 (25)

 (26)

 (27)

 
Calculate the mean: 

 
(28)

and the covariance: 

 

 
 
 
 
 
 
 

(29)
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From the results, the mean and covariance of  are same to them of xk is found. 

3.3 The coordinate transformation problem 
The problem of converting uncertain information between polar and Cartesian coordinate is 
a special case of the general problem for applying a nonlinear projection to a random 
variables. Here, illustrates coordinate transformation to describe the properties of the UT 
and demonstrates the improved accuracy of the UT. 
An example of a coordinate system is to describe polar information (r, θ) returned in its 
local coordinate frme that has to be converted into an (x, y) position in Cartesian 
coordinate frme 

 
(30)

where samples are 1000 polar coordinate range, and standard deviation pr = 0.02[m], pθ = 
π/12[rad] for the true value . The Fig.3 plots the (r, θ) samles, the 

mean, and the covariance ellipse. The performance of the UT, sigma points 0, . . . , 4 is 
shown in Fig.4. 
One thousand (x, y) samples from the transformation and the statistics calculated though 
the nonlinearization are plotted in the Fig.5. As can be seen, the points lie on a ”banana”-
shaped arc. Fig.6 plots the mean and standard deviation ellipses for the true statistics, and 
the set of sigma points 0, . . . , 4 which have undergone the nonlinear transformation 
by the UT. 
 

 
 

Fig. 3. Polar Coordinate Samples 
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Fig. 4. Sigma Points 

 
 

 
 
 

Fig. 5. Transformed samples 
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Fig. 6. Transformed sigma points 

3.4 Formulation of problem 
Consider a continuous-time nonlinear sysytem, 

 (31)

 (32)

where  is the system state, u(t) ∈ R is the control input, y(t) ∈ R is the system 
output, θ denotes the unknown plant parameters, and ν(t) ∈ R is the measurement noise 
with zero mean and its covariance matrix R. The discrete-time model of the system can be 
represented as: 

 (33)

 (34)

where xk = x(kT), the subscript k is a discrete time, k ∈ {1, . . . ,N −1}, and T is the sampling 
period. An explicit formula of fd is not required, but a calculation procedure such as 
numerical integration is required. Let  , the equations are rearranged as: 

 (35)

 (36)

3.5. UKF algorithm 

Denote an estimate of  at a time step l as . For the general formulation of the UKF, 
the n-dimensional state with mean  and covariance  are approximated by 2n + 1 
weighted sigma points. The index i takes values over {1, ... , n}. 
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The estimation will be performed as fllows: 
1. Initialization of , and R0. 
2. Calculatation of sigma points: 

 (37)

 (38)

 
(39)

 (40)

 
(41)

 (42)

3. Time update: 

 

(43)
 
 

(44)
 
 

(45)
 
 

(46)
 
 

(47)

4. Measurement update: 

 

 

(48)
 

 
(49)

 
(50)

 
(51)

 
(52)

 
(53)

 
(54)
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Summarily, the UKF uses sigma points to capture the mean and covariance of a Gaussian 
random variable, instead of calculating the Jacobian matrices. Plant parameters can be 
estimated based on the UKF like algorithm by augmenting the state with the unknown 
parameters. Furthermore, it does not matter if the estimation is based on continuous-time 
model, because the one-step-ahead estimate in continuous-time model can be calculated by 
numerical integration. From these reasons, it is possible to estimate the state and the 
parameters of a continuous-time system by using the UKF like algorithm. 

4. Numerical example 

In order to demonstrate the effectiveness of the proposed method, the Rotary Pendulum is 
provided to estimate the parameters of the continues-time nonlinear system by using the 
UKF from the sampled I/O data. 
The schematic representation of the Rotary Pendulum system is shown in the Fig.7, where m 
is the pendulum mass, r is the arm length, l denotes half the length of the pendulum. The 
total effective moment of base inertia is Jb. Each of the angle of the pendulum α and the 
angle of the arm φ is measured by the potentiometer. 
 

 
Fig. 7. Schematic Diagram of Rotary Pendulum 

Consider the nonlinear model of this system, the nonlinear equations can be derived by 
Lagrange equations: 

 (55)

 
(56)

Take consider of the torque q as follow: 

 
(57)

where Kg is Gear ratio in motor, Km denotes Motor torque constant, and Rm is Motor Torque 
DC resistance, 
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and rearrange the equations into the state space representation given as: 

 

(58)

where 

 
(59)

 
(60)

The parameters of the plant can be estimated from eq.(58) by using the UKF like algorithm. 
The numerical values of parameters are provided in Tabel.1. 
 

 
 

Table 1. Parameters of the experiment Rotary Pendulum system 

4.1 Numerical simulation result 
Offer the system an input voltage to observe the system output as in Fig.8. The sampling 
period T is 0.008668 seconds, and 1001 sampled I/O data used. 
Assume there is no noise in the system to make the simulations. 
Estimate the augmented state X = [x, θ] of the continuous-time model by using the UKF 
from the sampled I/O data to demonstrate the effectiveness of the UKF, where  

x = is the system state and θ =  is the system parameter. The estimated 

parameters can be seen in Fig.9. 
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Fig. 8. Input and Output of the Rotary Pendulum system 
 

 
Fig. 9. Estimated parameters 

Fig.10 shows the Relative Root Squared Error (RRSE) of the estimate for each sampling time 
which is defined by: 

 
(61)

where *

k
X is the true value and  is the estimate at a time step k. The RRSE reduced to 

1.493 × 10−14, an extremely small value, indicated that this method has very high precision. 
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Fig. 10. RRSE of the parameter esimation 

4.2 Experimental result of the actual system 
The above results are the numerical simulation results. In fact, the actual result is most 
important. Therefore, estimate the plant parameter from the experimental I/O data of actual 
system next. 
For the actual experiment, the Rotary Pendulum system is excited by a voltage input signal 
which is plotted in Fig.11, while the pendulum position is measured. Subsequently estimate 
the parameter of the Rotary Pendulum from the collected data. This time, the unknown 
parameter is the length of pendulum l. 
 

 
Fig. 11. Experimental I/O data of the actual system 

First step, estimate the system parameter by using the EKF. In this step, calculate the 
Jacobian matrix, then perform the estimation based on the EKF algorithm by the sampled 
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I/O data. The estimation result based on experimental output is plotted in Fig.12. From the 
plot, as can be seen, the estimated parameter converges to the different value from the true 
value. And the RRSE is about 0.128, it means the low-precision of the estimation based on 
the EKF. 
 

 
Fig. 12. Esimation result based on the experimental I/O data by using the EKF 

Next step, estimate the parameter by using the UKF like algorithm. Fig.13 is the estimated 
parameter. The RRSE of the estimation is less than one percent, about 5.866 × 10−3. 
Comparing the result of these two methods, the high-precision of the estimation based on 
the UKF like algorithm is known. 
 

 
Fig. 13. Esimation result based on the experimental I/O data by using the UKF 
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5. Conclusion 

In this chapter, direct estimation of the continuous-time systems from the sampled I/O data 
by using the UKF like algorithm is paid attention, and the Rotary Pendulum is provided to 
estimate the parameters of the continuous-time nonlinear system for demonstrating the 
validity of the UKF. Through the simulation and the experiment results, we found that, for 
the numerical simulation, system parameters have been almost exactly estimated, and from 
the experimental I/O data, system parameter has been estimated within one percent RRSE 
by using the UKF like algorithm. 
All the simulations were set up under the condition that the initial value is known. The 
estimation of initial states is very important for obtaining the correct estimates of the system 
parameters. However, for the practical plants, the initial state may not be measured because 
there is a dead zone of the sensor. If the initial state is unknown, the covariance of the initial 
state has to be set large, and it leads to low precision of the parameter estimation. Therefore, 
we are to propose a continuous-time model estimation method by using the UKF like 
algorithm, in which the initial state as well as the paramters are estimated, as a future 
research. 
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