
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

Performance and Reliability of Fault-Tolerant Ethernet Networked Control Systems 265

Performance and Reliability of Fault-Tolerant Ethernet Networked
Control Systems

Ramez M. Daoud, Hassanein H. Amer and Hany M. ElSayed

x

Performance and Reliability of Fault-Tolerant
Ethernet Networked Control Systems

Ramez M. Daoud1, Hassanein H. Amer1

 and Hany M. ElSayed2
1American University in Cairo

2Cairo University
Egypt

1. Introduction

In many control applications, networks are being used as a transmission medium for control
data such as sensor readings, controller signals, and alarm signals. The resulting control
system is termed a Networked Control system (NCS) (Clauset et al., 2008; Hespanha et al.,
2007; Yang, 2006). Examples of NCS application areas include industrial automation,
building automation, home automation, intelligent vehicle systems, and advanced aircraft
and spacecraft. Compared to point-to-point wiring, this approach simplifies wiring in
complex systems where several subsystems are interconnected and where sensors and
actuators may be physically remote from the controller. System hence becomes easier to
control and maintain. Networks also enable communication between several control loops
and fault-tolerance through redundancy of components. This chapter summarizes work
done by the authors in the area of performance and reliability of networked control systems.
Communication networks were first introduced in digital control systems in the 1970’s.
Since then, several types of communication networks have been developed to serve this
field. Protocols for these networks can be grouped into fieldbuses (e.g. FIP and PROFIBUS),
automotive buses (e.g. CAN), other machine buses (e.g. 1553B and the IEC train communication
network), general-purpose networks (e.g. IEEE LAN’s and ATM-LAN) and a number of
research protocols (e.g. TTP).
In manufacturing applications, the network connecting controllers with sensors and
actuators typically constitutes one level in a hierarchy of networks. Fig. 1 illustrates a
general network hierarchy model (Lian et al., 2001b). This model consists of five levels, each
one having different goals and also different communication capabilities, protocols and
complexity. Level one is the device or sensor-actuator level that is used to interconnect
controllers, sensors or actuators. Level two is the cell control level and it is designed to be
used with cell controllers such as at milling, lathe and control workstations in
manufacturing plants. Generally, levels one and two are called sensor and fieldbus,
respectively. Level three is the supervisory level and is used to interconnect machine cells
that perform different manufacturing processes. Level four is the plant management level
and is used to coordinate various tasks executed inside a plant such as manufacturing

13

www.intechopen.com

Factory Automation266

engineering, production management, and resource allocation. Level five is the corporate
management level. It may interconnect workstations located in different cities or countries
(Lian et al., 2001b).

Fig. 1. A general network hierarchy model (Lian et al., 2001b)

A wide variety of network protocols can be used to build an NCS, each suitable for a
particular application sector (Thomesse, 2005). However, the use of Ethernet remains a
viable and interesting option (Decotignie, 2005). Ethernet is now the dominant local area
networking solution in the home and office environments. It is fast, economic and easy to
install. Many computerized equipments now come with built-in Ethernet Interfaces. These
are some of the reasons why a number of manufacturers of industrial control systems are
now migrating to the use of Ethernet on the production floor and integrate it with the
management floor (Decotignie, 2005).
A highly desirable requirement is for the office Ethernet communication capability to be
fully retained when applying it for control, i.e., the best solution would be if no protocol
change were introduced (Daoud et al., 2003; Felser, 2005). Capabilities of Ethernet networks
allow us to envision the merger of several hierarchy levels in a single network. A main
focus of this research is thus to test the network operation and performance in the presence
of mixed traffic.
A major problem in networked control systems is the delays introduced by the network in
the control loop. Further problems may be caused by possible loss of data packets. Beyond

certain limits, delays will result in poor system response and tend to destabilize the control
loop. Network delays are generally variable and depend on such factors as the used
network protocol, network topology, and the amount of network traffic from other sources.
In this chapter the focus is on both the performance and reliability aspects of Ethernet based
NCS. The rest of the chapter is organized as follows: Section 2 presents a small survey on
previous works done in the area of NCS using Ethernet as communication protocol. Section
3 Introduces the network and its different components. Section 4 describes the model for
simulation. Section 5 presents the network simulation results. Sections 6, 7 and 8 discuss the
reliability and availability of fault-tolerant production lines. Section 9 concludes this
research.

2. Ethernet Networked Control Systems

Abundant research results on the use of Ethernet as a communication network for NCS have
been published in the recent years. Interested readers may refer to (Brahimi, 2007;
Decotignie, 2005; Felser, 2005; Georges, 2005; Kumar, 2001; Lian et al., 2001a; Marsal, 2006a;
Nilsson, 1998; Skeie et al., 2002).

Fig. 2. NCS Block Diagram (Nilsson, 1998)

Automated workcells (Morris, 2005) always include sensors, controllers and actuators
connected over the network. The control packet flow on the Ethernet channel is based on
publisher/subscriber mode of communication: once the packet is generated, it can be heard
by any node on the network. This facilitates the data flow and eliminates the duplication of
sensors. A comparison between different methods of communication is given in (Marsal,
2006a). The model of Fig. 2 (Nilsson, 1998) shows a schematic of NCS.
In this model, the physical data is sensed on a periodical basis (clock driven) every h
seconds. It is transmitted from the sensor to the controller of the network facing a delay sc

k .

It is consumed at the controller node and processed over c
k delay. The controller sends the

control action over the network to reach the actuator after a delay ca
k .

The source of non-determinism in switched Ethernet is queuing delays. For example, the
controller node may generate non-real-time traffic (also known as explicit messaging, in
contrast with implicit messaging used to designate the real-time control) like FTP sessions or
HTTP. This will perturb the queues and the processing loads at the controller node.

www.intechopen.com

Performance and Reliability of Fault-Tolerant Ethernet Networked Control Systems 267

engineering, production management, and resource allocation. Level five is the corporate
management level. It may interconnect workstations located in different cities or countries
(Lian et al., 2001b).

Fig. 1. A general network hierarchy model (Lian et al., 2001b)

A wide variety of network protocols can be used to build an NCS, each suitable for a
particular application sector (Thomesse, 2005). However, the use of Ethernet remains a
viable and interesting option (Decotignie, 2005). Ethernet is now the dominant local area
networking solution in the home and office environments. It is fast, economic and easy to
install. Many computerized equipments now come with built-in Ethernet Interfaces. These
are some of the reasons why a number of manufacturers of industrial control systems are
now migrating to the use of Ethernet on the production floor and integrate it with the
management floor (Decotignie, 2005).
A highly desirable requirement is for the office Ethernet communication capability to be
fully retained when applying it for control, i.e., the best solution would be if no protocol
change were introduced (Daoud et al., 2003; Felser, 2005). Capabilities of Ethernet networks
allow us to envision the merger of several hierarchy levels in a single network. A main
focus of this research is thus to test the network operation and performance in the presence
of mixed traffic.
A major problem in networked control systems is the delays introduced by the network in
the control loop. Further problems may be caused by possible loss of data packets. Beyond

certain limits, delays will result in poor system response and tend to destabilize the control
loop. Network delays are generally variable and depend on such factors as the used
network protocol, network topology, and the amount of network traffic from other sources.
In this chapter the focus is on both the performance and reliability aspects of Ethernet based
NCS. The rest of the chapter is organized as follows: Section 2 presents a small survey on
previous works done in the area of NCS using Ethernet as communication protocol. Section
3 Introduces the network and its different components. Section 4 describes the model for
simulation. Section 5 presents the network simulation results. Sections 6, 7 and 8 discuss the
reliability and availability of fault-tolerant production lines. Section 9 concludes this
research.

2. Ethernet Networked Control Systems

Abundant research results on the use of Ethernet as a communication network for NCS have
been published in the recent years. Interested readers may refer to (Brahimi, 2007;
Decotignie, 2005; Felser, 2005; Georges, 2005; Kumar, 2001; Lian et al., 2001a; Marsal, 2006a;
Nilsson, 1998; Skeie et al., 2002).

Fig. 2. NCS Block Diagram (Nilsson, 1998)

Automated workcells (Morris, 2005) always include sensors, controllers and actuators
connected over the network. The control packet flow on the Ethernet channel is based on
publisher/subscriber mode of communication: once the packet is generated, it can be heard
by any node on the network. This facilitates the data flow and eliminates the duplication of
sensors. A comparison between different methods of communication is given in (Marsal,
2006a). The model of Fig. 2 (Nilsson, 1998) shows a schematic of NCS.
In this model, the physical data is sensed on a periodical basis (clock driven) every h
seconds. It is transmitted from the sensor to the controller of the network facing a delay sc

k .

It is consumed at the controller node and processed over c
k delay. The controller sends the

control action over the network to reach the actuator after a delay ca
k .

The source of non-determinism in switched Ethernet is queuing delays. For example, the
controller node may generate non-real-time traffic (also known as explicit messaging, in
contrast with implicit messaging used to designate the real-time control) like FTP sessions or
HTTP. This will perturb the queues and the processing loads at the controller node.

www.intechopen.com

Factory Automation268

Accordingly, the end-to-end delays (the delay measured from the sensor node to the
actuator node taking into consideration all kind of encapsulation/de-capsulation,
processing and propagation delays) will not be constant. This is what is called mixed traffic
environment. It is important to test the Ethernet NCS behavior in simple control
environment (only control packets are communicated) and mixed traffic environment.
Early works such as (Meditch & Lea, 1983) tried to modify the medium access sub-layer of
CSMA/CD to distinguish between real-time and other traffic packets. Studies were
conducted to test stability of the communication channel and to optimize its performance.
Rockwell-Automation studied the use of Ethernet in its switched topology in control and
they merged Ethernet with ControlNet to make what is called EtherNet/IP (Ethernet/IP;
Lounsbury & Westerman, 2001; ODVA1; ODVA2; ControlNet). By using both TCP/IP and
UDP/IP protocols to encapsulate networked messages, both real-time I/O and “explicit
messaging” can occur. Also, by providing Ethernet users with real-time I/O, device-
configuration, and diagnostic capabilities, along with interoperability and
interchangeability, EtherNet/IP provides an Ethernet standard for automation
(Ethernet/IP).
In (Walsh & Ye, 2001), a new dynamic scheduling technique for NCS is proposed. The
network here is not only dedicated for control purposes, but it can also accommodate
communication frames. This gives rise to network induced delays due to unpredictable
loads. The control algorithm was made off-line ignoring network delays. This simplified the
analysis tremendously. Including time delays is a new approach to validate their work.
Also, the simplicity of this approach makes it attractive to be used in general studies for any
NCS. The simplicity of the approach in (Walsh & Ye, 2001) comes from the fact that they are
using a simple state space representation of the overall NCS.
In (Marsal, 2006a), an analysis is made to define the source of delay in an Ethernet NCS; it
shows that the overall response time is the sum of three delays: processing time, waiting
time for synchronization of asynchronous processes and waiting time for availability of
shared resources. A comparison between two methods to evaluate this response time
(simulation and colored Petri nets) can be found in (Marsal et al., 2006b). In this research, the
synchronization delays are included as well as the time for availability of shared resources
in the processing delays of the nodes. Also, these two major time delays are the focus of
other research works (Sundararaman et al., 2005).
In this chapter, the focus is only on switched Ethernet at different speeds. In (Skeie et al.,
2002), Fast Ethernet was tested to eliminate the various, usually incompatible,
communication networks at the traditional substation automation. This study was
conducted to test the possibility of using Fast Ethernet in the switched topology in power
station control application. Results of this study were satisfactory within the time frame of
the considered application. Because the application presented in (Skeie et al., 2002) had
relatively large time frame limit, Fast Ethernet switch topology succeeded to run this
system. Later works showed that with more tight timing requirements, especially in mixed
traffic environment, the speed of Gigabit Ethernet will be necessary for successful operation.

3. Network Nodes

The network nodes of a typical NCS model are namely: sensors, actuators and controllers.
These are the active nodes that generate and consume traffic. Other nodes that are present to

build the network are switches for a switched operation mode. The fabric of the network
used in this research is mainly Ethernet at 100Mbps and 1Gbps speeds. This means that
there are two types of networks that are tested in this study: Switched Fast Ethernet
(100Mbps Ethernet) and Switched Gigabit Ethernet (1Gbps Ethernet).

3.1 Sensor/actuator Networking Level
At this level, networked devices consist essentially of smart sensors, networked controllers,
and smart actuators. Smart sensors are nodes that have the capability of data acquisition,
intelligence and communication. They acquire proper physical data such as temperature or
speed from the industrial environment and have a network-capable application processor to
interface with the network. Intelligence gives smart sensors the ability to function
independently. Finally to be able to communicate over the network, the sensor must be able
to properly encode the information before sending it out on the network.
Smart actuators have the features of actuation, intelligence and communication. They are
able to decode the information from the network medium and apply it to the physical
devices (Lian et al., 2001b).
Networked controllers have the major function of analyzing the sensor data, making
decisions, and giving commands to actuators. The control algorithm should handle
decentralized information analysis as well as traditional centralized analysis. Networked
controller nodes may also provide a human-machine interface to operators or higher-level
managers.
Candidate networks protocols at this level must meet two main criteria: bounded time delay
and guaranteed transmission. Unsuccessfully transmitted or large time-delay messages may
deteriorate system performance. The system can even become unstable. Several protocols
have been proposed to meet these requirements for control systems (Nilsson, 1998). The
performance requirements mentioned above are used to determine the capability of the
network medium and to provide design specifications to control parameters such as
sampling rates as well as network parameters such as communication rates.

3.2 Using Ethernet in the Sensor/Actuator Level
With the use of Ethernet at this level, many things that were not possible in past
implementations of NCS will be enabled. Once the industrial floor (the machines network
connection) is running on top of Ethernet, it can be interconnected with the management
floor (engineering and management network connections). This will help in problem
diagnostic and set-up. Now more and more functions can be added. One possibility is on-
line system diagnostics and fix-up, by logging into the machine while running in normal
operation and setting-up some parameters without the need to stop the operation. This
means integration of communication packets (log-on, request/download file, up-load file,
log-off) while performing the usual control tasks (traffic of real-time control packets).
Moreover, some tasks that can be performed by the operator can be enabled like web-
browsing and e-mail check. These tasks add to the communication load that the network
handles as an overhead to the pure control load that it is built to support.

www.intechopen.com

Performance and Reliability of Fault-Tolerant Ethernet Networked Control Systems 269

Accordingly, the end-to-end delays (the delay measured from the sensor node to the
actuator node taking into consideration all kind of encapsulation/de-capsulation,
processing and propagation delays) will not be constant. This is what is called mixed traffic
environment. It is important to test the Ethernet NCS behavior in simple control
environment (only control packets are communicated) and mixed traffic environment.
Early works such as (Meditch & Lea, 1983) tried to modify the medium access sub-layer of
CSMA/CD to distinguish between real-time and other traffic packets. Studies were
conducted to test stability of the communication channel and to optimize its performance.
Rockwell-Automation studied the use of Ethernet in its switched topology in control and
they merged Ethernet with ControlNet to make what is called EtherNet/IP (Ethernet/IP;
Lounsbury & Westerman, 2001; ODVA1; ODVA2; ControlNet). By using both TCP/IP and
UDP/IP protocols to encapsulate networked messages, both real-time I/O and “explicit
messaging” can occur. Also, by providing Ethernet users with real-time I/O, device-
configuration, and diagnostic capabilities, along with interoperability and
interchangeability, EtherNet/IP provides an Ethernet standard for automation
(Ethernet/IP).
In (Walsh & Ye, 2001), a new dynamic scheduling technique for NCS is proposed. The
network here is not only dedicated for control purposes, but it can also accommodate
communication frames. This gives rise to network induced delays due to unpredictable
loads. The control algorithm was made off-line ignoring network delays. This simplified the
analysis tremendously. Including time delays is a new approach to validate their work.
Also, the simplicity of this approach makes it attractive to be used in general studies for any
NCS. The simplicity of the approach in (Walsh & Ye, 2001) comes from the fact that they are
using a simple state space representation of the overall NCS.
In (Marsal, 2006a), an analysis is made to define the source of delay in an Ethernet NCS; it
shows that the overall response time is the sum of three delays: processing time, waiting
time for synchronization of asynchronous processes and waiting time for availability of
shared resources. A comparison between two methods to evaluate this response time
(simulation and colored Petri nets) can be found in (Marsal et al., 2006b). In this research, the
synchronization delays are included as well as the time for availability of shared resources
in the processing delays of the nodes. Also, these two major time delays are the focus of
other research works (Sundararaman et al., 2005).
In this chapter, the focus is only on switched Ethernet at different speeds. In (Skeie et al.,
2002), Fast Ethernet was tested to eliminate the various, usually incompatible,
communication networks at the traditional substation automation. This study was
conducted to test the possibility of using Fast Ethernet in the switched topology in power
station control application. Results of this study were satisfactory within the time frame of
the considered application. Because the application presented in (Skeie et al., 2002) had
relatively large time frame limit, Fast Ethernet switch topology succeeded to run this
system. Later works showed that with more tight timing requirements, especially in mixed
traffic environment, the speed of Gigabit Ethernet will be necessary for successful operation.

3. Network Nodes

The network nodes of a typical NCS model are namely: sensors, actuators and controllers.
These are the active nodes that generate and consume traffic. Other nodes that are present to

build the network are switches for a switched operation mode. The fabric of the network
used in this research is mainly Ethernet at 100Mbps and 1Gbps speeds. This means that
there are two types of networks that are tested in this study: Switched Fast Ethernet
(100Mbps Ethernet) and Switched Gigabit Ethernet (1Gbps Ethernet).

3.1 Sensor/actuator Networking Level
At this level, networked devices consist essentially of smart sensors, networked controllers,
and smart actuators. Smart sensors are nodes that have the capability of data acquisition,
intelligence and communication. They acquire proper physical data such as temperature or
speed from the industrial environment and have a network-capable application processor to
interface with the network. Intelligence gives smart sensors the ability to function
independently. Finally to be able to communicate over the network, the sensor must be able
to properly encode the information before sending it out on the network.
Smart actuators have the features of actuation, intelligence and communication. They are
able to decode the information from the network medium and apply it to the physical
devices (Lian et al., 2001b).
Networked controllers have the major function of analyzing the sensor data, making
decisions, and giving commands to actuators. The control algorithm should handle
decentralized information analysis as well as traditional centralized analysis. Networked
controller nodes may also provide a human-machine interface to operators or higher-level
managers.
Candidate networks protocols at this level must meet two main criteria: bounded time delay
and guaranteed transmission. Unsuccessfully transmitted or large time-delay messages may
deteriorate system performance. The system can even become unstable. Several protocols
have been proposed to meet these requirements for control systems (Nilsson, 1998). The
performance requirements mentioned above are used to determine the capability of the
network medium and to provide design specifications to control parameters such as
sampling rates as well as network parameters such as communication rates.

3.2 Using Ethernet in the Sensor/Actuator Level
With the use of Ethernet at this level, many things that were not possible in past
implementations of NCS will be enabled. Once the industrial floor (the machines network
connection) is running on top of Ethernet, it can be interconnected with the management
floor (engineering and management network connections). This will help in problem
diagnostic and set-up. Now more and more functions can be added. One possibility is on-
line system diagnostics and fix-up, by logging into the machine while running in normal
operation and setting-up some parameters without the need to stop the operation. This
means integration of communication packets (log-on, request/download file, up-load file,
log-off) while performing the usual control tasks (traffic of real-time control packets).
Moreover, some tasks that can be performed by the operator can be enabled like web-
browsing and e-mail check. These tasks add to the communication load that the network
handles as an overhead to the pure control load that it is built to support.

www.intechopen.com

Factory Automation270

3.3 Performance Metric
The performance metrics of network systems that impact control system requirements
include: access delay, transmission time, response time, message delay, message collisions
(percentage of collision), message throughput (percentage of packets discarded), network
utilization, and determinism boundaries. For control systems, candidate control networks
generally must meet two main criteria: bounded time delay and guaranteed transmission;
i.e., a message should be transmitted successfully within a bounded time delay (Lian et al.,
2001b). Unsuccessfully transmitted or large time-delay messages from a sensor to an
actuator may deteriorate system performance or make a system unstable. Several protocols
have been proposed to meet these requirements for control systems (Nilsson, 1998). The
performance metrics mentioned above are used to determine the capability of the network
medium and to provide design specifications to control parameters such as sampling rates
as well as network parameters such as communication rates (Daoud et al., 2004a).
As in (Georges, 2005), the focus of this research is to use Ethernet IEEE802.3 Std without
modifications. A previous study was made to use Ethernet in control by changing the frame
structure for real time packets (Tolly, 1997). Another study was made to design a real-time
controller to control traffic of the communication medium in case of real-time constraint
(Lee & Cho, 2001). More research can be found in (Brahimi et al., 2006; Eker & Cervin, 1999;
Georges et al., 2006; Jasperneite & Elsayed, 2004a; Lian et al., 2001a; Vatanski et al., 2006;
Wang & Keshav, 1999; Wittenmark et al., 1998; Zhang et al., 2001).
In this research, the system success or failure is evaluated based on measuring the delay
faced by the sensor data traveling over the network to reach the controller, the processing
delay at the controller node, the propagation delay from the controller to the actuator node
faced by the control packet, and finally the processing delay at the actuator node before
applying the control word to the physical process. This end-to-end delay takes into
consideration all kind of data encapsulation, propagation, de-capsulation and processing in
all nodes on the network. End-to-end delay for Ethernet NCS can also be analyzed with
network calculus as in (Georges, 2005; Grieu, 2004). The network delay can be expressed as:

actuatorcontroller TTT DDD (1)

where TD is the total end-to-end delay.

controllercontrollercontrollersensorsensorsensorcontroler decapqpencappsT TTTTTD

 (2)

actuatoractuatoractuatorcontrollercontrollercontrolleractuator decapqpencappsT TTTTTD

 (3)

Where

psT is the processing delay

encapT is the encapsulation delay

pT is the propagation delay

qT is the queuing delay

decapT is the de-capsulation delay

4. Models Description

Many control applications naturally run at very low speeds compared to the speeds of the
new network standards. This may imply that the required delays of control packets can be
met under realistic loading conditions without handling these packets in a special manner.
Individual machines can be transformed into automated workcells (Soloman, 1994).
Networked Control Systems (NCS) make it possible to transform machines into small
networks (machine LANs) (Daoud et al., 2003). All sensors are sources of traffic. All
actuators are sinks of traffic. Data produced at sensor nodes is sent over the machine
network to reach the controller node. At the controller, control information is computed and
sent once again over the network to reach the corresponding actuator node. At the actuator,
control action is applied on the physical system (the plant).
Sensors and actuators in this scheme are smart. Smart sensors as well as smart actuators
have the capability of data encapsulation/de-capsulation. They have network capability to
be able to communicate over the machine network. Smart sensors are clock driven nodes:
data is sampled at the sensor nodes at constant frequency. This frequency can vary from one
sensor to the other depending on the physical quantity it is sensing (temperature is sampled
at a lower sampling frequency than speed for example). Once the data is ready at the sensor
node, it is encapsulated in network packet format and sent over the machine network.
The controller node, which is an Industrial Personal Computer (IPC), is event driven. When
it receives a packet form a sensor and after its de-capsulation and error check, it starts
computing the necessary control action. Again, it encapsulates the control word and sends it
in packet format to the actuator node. A smart actuator receives the control word and
applies the appropriate control action to the system after de-capsulation and error check.
Smart actuators are event driven as well (Daoud & Amer, 2007).
Two main Models are presented in this work. The Stand Alone Machine Model and the In-
Line Production Model.

4.1 Stand Alone Machine Model Description
Stand Alone Machine Model tests the operation of a single machine (workcell) having all its
connections based on Ethernet to implement the Ethernet NCS model.

Fig. 3. Stand alone machine model

Two models were built for this study. One model is run on-top-of Fast Ethernet and the
other one is run over Gigabit Ethernet for performance comparison. One model consists of
16 sensors, one controller, and 4 actuators, based on the model of (Skeie et al., 2002). In the

Controller

Smart
Sensors

Video
Terminals

Ethernet
Switch

www.intechopen.com

Performance and Reliability of Fault-Tolerant Ethernet Networked Control Systems 271

3.3 Performance Metric
The performance metrics of network systems that impact control system requirements
include: access delay, transmission time, response time, message delay, message collisions
(percentage of collision), message throughput (percentage of packets discarded), network
utilization, and determinism boundaries. For control systems, candidate control networks
generally must meet two main criteria: bounded time delay and guaranteed transmission;
i.e., a message should be transmitted successfully within a bounded time delay (Lian et al.,
2001b). Unsuccessfully transmitted or large time-delay messages from a sensor to an
actuator may deteriorate system performance or make a system unstable. Several protocols
have been proposed to meet these requirements for control systems (Nilsson, 1998). The
performance metrics mentioned above are used to determine the capability of the network
medium and to provide design specifications to control parameters such as sampling rates
as well as network parameters such as communication rates (Daoud et al., 2004a).
As in (Georges, 2005), the focus of this research is to use Ethernet IEEE802.3 Std without
modifications. A previous study was made to use Ethernet in control by changing the frame
structure for real time packets (Tolly, 1997). Another study was made to design a real-time
controller to control traffic of the communication medium in case of real-time constraint
(Lee & Cho, 2001). More research can be found in (Brahimi et al., 2006; Eker & Cervin, 1999;
Georges et al., 2006; Jasperneite & Elsayed, 2004a; Lian et al., 2001a; Vatanski et al., 2006;
Wang & Keshav, 1999; Wittenmark et al., 1998; Zhang et al., 2001).
In this research, the system success or failure is evaluated based on measuring the delay
faced by the sensor data traveling over the network to reach the controller, the processing
delay at the controller node, the propagation delay from the controller to the actuator node
faced by the control packet, and finally the processing delay at the actuator node before
applying the control word to the physical process. This end-to-end delay takes into
consideration all kind of data encapsulation, propagation, de-capsulation and processing in
all nodes on the network. End-to-end delay for Ethernet NCS can also be analyzed with
network calculus as in (Georges, 2005; Grieu, 2004). The network delay can be expressed as:

actuatorcontroller TTT DDD (1)

where TD is the total end-to-end delay.

controllercontrollercontrollersensorsensorsensorcontroler decapqpencappsT TTTTTD

 (2)

actuatoractuatoractuatorcontrollercontrollercontrolleractuator decapqpencappsT TTTTTD

 (3)

Where

psT is the processing delay

encapT is the encapsulation delay

pT is the propagation delay

qT is the queuing delay

decapT is the de-capsulation delay

4. Models Description

Many control applications naturally run at very low speeds compared to the speeds of the
new network standards. This may imply that the required delays of control packets can be
met under realistic loading conditions without handling these packets in a special manner.
Individual machines can be transformed into automated workcells (Soloman, 1994).
Networked Control Systems (NCS) make it possible to transform machines into small
networks (machine LANs) (Daoud et al., 2003). All sensors are sources of traffic. All
actuators are sinks of traffic. Data produced at sensor nodes is sent over the machine
network to reach the controller node. At the controller, control information is computed and
sent once again over the network to reach the corresponding actuator node. At the actuator,
control action is applied on the physical system (the plant).
Sensors and actuators in this scheme are smart. Smart sensors as well as smart actuators
have the capability of data encapsulation/de-capsulation. They have network capability to
be able to communicate over the machine network. Smart sensors are clock driven nodes:
data is sampled at the sensor nodes at constant frequency. This frequency can vary from one
sensor to the other depending on the physical quantity it is sensing (temperature is sampled
at a lower sampling frequency than speed for example). Once the data is ready at the sensor
node, it is encapsulated in network packet format and sent over the machine network.
The controller node, which is an Industrial Personal Computer (IPC), is event driven. When
it receives a packet form a sensor and after its de-capsulation and error check, it starts
computing the necessary control action. Again, it encapsulates the control word and sends it
in packet format to the actuator node. A smart actuator receives the control word and
applies the appropriate control action to the system after de-capsulation and error check.
Smart actuators are event driven as well (Daoud & Amer, 2007).
Two main Models are presented in this work. The Stand Alone Machine Model and the In-
Line Production Model.

4.1 Stand Alone Machine Model Description
Stand Alone Machine Model tests the operation of a single machine (workcell) having all its
connections based on Ethernet to implement the Ethernet NCS model.

Fig. 3. Stand alone machine model

Two models were built for this study. One model is run on-top-of Fast Ethernet and the
other one is run over Gigabit Ethernet for performance comparison. One model consists of
16 sensors, one controller, and 4 actuators, based on the model of (Skeie et al., 2002). In the

Controller

Smart
Sensors

Video
Terminals

Ethernet
Switch

www.intechopen.com

Factory Automation272

following, this model will be referred to as the light traffic system. The other model consists of
48 sensors, one controller, and 4 actuators. This model will be referred to as the heavy traffic
system.
Sensors and actuators are smart. For traditional control using PLCs, 1 revolution per second
is encoded into 1,440 electric pulses for electrical synchronization and control. This is why,
the system presented in this study is operating at a sampling frequency of 1,440 Hz.
Consequently, the system will have a deadline of 694 μs, i.e., a control action must be taken
within a frame of 694 μs as round-trip delay originating from the sensor, passing through
the controller, and transmitted once more over the network to reach the actuator.
It should be noted that the heavy traffic case should be accompanied by an increase in the
processing capabilities of the controller itself. Thus while in the light traffic case the
controller was able to process 28,800 packets per second, this number was increased to
74,880 in the heavy traffic case. (These numbers result from multiplying the number of
sources and sinks by the sampling rate). The packet delay attributable to the controller will
thus be reduced in the heavy traffic case.
OPNET (Opnet) was used as a simulation platform. Real-time generating nodes (smart
sensors and smart actuators) were modeled using the “advanced workstation” built-in
OPNET model. This model allows the simulation of a node with complete adjustable
parameters for operation. The node parameters were properly adjusted to meet the needed
task as source of traffic (smart sensor) or sink of traffic (smart actuator). The Controller node
was simulated also using “advanced workstation”. The Controller node is the administrator
in this case: it receives all information from all smart sensors, calculate control parameters,
and forward control words to dedicated smart actuators. Producer/ Customer model is
finally used to send data from Controller node to smart actuators.
All packets were treated in the switch in a similar manner, i.e., without prioritization. Thus,
the packet format of the IEEE 803.2z standard (IEEE, 2000) was used without modification.
Control signals in the simulations are assumed to be UDP packets. Also, the packet size was
fixed to minimum frame size in Gigabit Ethernet (520 bytes).
Simulations considered the effect of mixing the control traffic with other types of traffic.
These include the option of on-line system diagnostic and fix-up (log-on, request/
download file, up-load file, log-off) as well as e-mail and web-browsing. FTP of 101KB files
was considered (Skeie et al., 2002). HTTP, E-mail and telnet traffic was added using OPNET
built-in heavy-load models (Daoud et al, 2003).

4.2 In-Line Production Model Description
In many cases, a final product is not produced only on one machine, but, it is handled by
several machines in series or in-line. For this purpose, the In-Line Production Model is
introduced and investigated. The idea is simply connecting all machine controllers together.
Since each individual machine is Ethernet based, interconnecting their controllers (via
Ethernet) will enable them to have access to the sensor/actuator level packet flow.
The main function of the controller mounted on the machine is to take charge of machine
control. An added task now is to help in synchronization. The controller has the major role
of synchronizing several machines in line. This can also be done by connecting the networks
of the two machines together. To perform synchronization, the controller of a machine sends
its status vector to the controller another machine, and vice versa. Status vector means a
complete knowledge of machine information, considering the cam position for example, the

production rate, and so on. These pieces of information are very important for
synchronization, especially the production rate. This is because, depending on this statistic,
the machines can speed up or slow down to match their respective productions.
A very important metric also, is the fact that the two controllers can back-up data on each
other. This is a new added feature. This feature can achieve fault tolerance: in case of a
controller failure, the other controller can take over and the machine is not out of service.
Although this can slow down the production process, the production is not stopped (Daoud
et al., 2004b). Hardware or software failure can cause the failure of one of the controllers. In
that case, the information sent by the sensors to the OFF controller is consumed by another
operating controller on another machine on the same network (Daoud et al., 2005). “OFF”
controller is used instead of failed because the controller can be out of service for preventive
maintenance for example. In other words, not only failure of a controller can be tolerated,
but regular and preventive maintenance also; because in either cases, failure or maintenance,
the controller is out of order.

5. OPNET Network Simulations & Results

First, network simulations have to be performed to validate the concept of Ethernet
integration in its switched mode as a communication medium for NCS. OPNET is used to
calculate system performance.

5.1 Stand Alone Machine Models Simulation Results
For the light traffic system, and integrating communication as well as control traffic, results
for Fast Ethernet are found to be 671 μs round-trip delay in normal operating conditions,
and 683 μs round-trip delay as peak value. Results for Gigabit Ethernet are found to be 501
μs round-trip delay in normal operating conditions, and 517 μs round-trip delay as peak
value. As the end-to-end delay limit is set to 694 μs (one sampling period), it can be seen that
100Mbps Ethernet is just satisfying the delay requirements while 1Gbps Ethernet is excellent
for such system (Daoud et al., 2003).
For the heavy traffic system that consists of 48 smart sensors, 4 smart actuators and one
controller, results for Fast Ethernet are found to be 622 μs round-trip delay in normal
operating conditions, and 770 μs round-trip delay as peak value. Results for Gigabit
Ethernet are found to be 450 μs round-trip delay in normal operating conditions, and 472 μs
round-trip delay as peak value. The round-trip delay limit is still 694 μs (one sampling
period). It can be seen that 100Mbps Ethernet exceeds the time limit while 1Gbps Ethernet is
runs smoothly and can accommodate even more traffic (Daoud et al., 2003).
All measured end-to-end delays include processing, propagation, queuing, encapsulation
and de-capsulation delays according to equation 2 (Daoud, 2008).

5.2 In-Line Production Light Traffic Models Simulation Results
The first two simulations consist of two light-traffic machines working in-line with one
machine having a failed controller. The failed controller traffic is switched to the operating
controller node. One simulation uses Fast Ethernet while the other uses Gigabit Ethernet as
communication medium.

www.intechopen.com

Performance and Reliability of Fault-Tolerant Ethernet Networked Control Systems 273

following, this model will be referred to as the light traffic system. The other model consists of
48 sensors, one controller, and 4 actuators. This model will be referred to as the heavy traffic
system.
Sensors and actuators are smart. For traditional control using PLCs, 1 revolution per second
is encoded into 1,440 electric pulses for electrical synchronization and control. This is why,
the system presented in this study is operating at a sampling frequency of 1,440 Hz.
Consequently, the system will have a deadline of 694 μs, i.e., a control action must be taken
within a frame of 694 μs as round-trip delay originating from the sensor, passing through
the controller, and transmitted once more over the network to reach the actuator.
It should be noted that the heavy traffic case should be accompanied by an increase in the
processing capabilities of the controller itself. Thus while in the light traffic case the
controller was able to process 28,800 packets per second, this number was increased to
74,880 in the heavy traffic case. (These numbers result from multiplying the number of
sources and sinks by the sampling rate). The packet delay attributable to the controller will
thus be reduced in the heavy traffic case.
OPNET (Opnet) was used as a simulation platform. Real-time generating nodes (smart
sensors and smart actuators) were modeled using the “advanced workstation” built-in
OPNET model. This model allows the simulation of a node with complete adjustable
parameters for operation. The node parameters were properly adjusted to meet the needed
task as source of traffic (smart sensor) or sink of traffic (smart actuator). The Controller node
was simulated also using “advanced workstation”. The Controller node is the administrator
in this case: it receives all information from all smart sensors, calculate control parameters,
and forward control words to dedicated smart actuators. Producer/ Customer model is
finally used to send data from Controller node to smart actuators.
All packets were treated in the switch in a similar manner, i.e., without prioritization. Thus,
the packet format of the IEEE 803.2z standard (IEEE, 2000) was used without modification.
Control signals in the simulations are assumed to be UDP packets. Also, the packet size was
fixed to minimum frame size in Gigabit Ethernet (520 bytes).
Simulations considered the effect of mixing the control traffic with other types of traffic.
These include the option of on-line system diagnostic and fix-up (log-on, request/
download file, up-load file, log-off) as well as e-mail and web-browsing. FTP of 101KB files
was considered (Skeie et al., 2002). HTTP, E-mail and telnet traffic was added using OPNET
built-in heavy-load models (Daoud et al, 2003).

4.2 In-Line Production Model Description
In many cases, a final product is not produced only on one machine, but, it is handled by
several machines in series or in-line. For this purpose, the In-Line Production Model is
introduced and investigated. The idea is simply connecting all machine controllers together.
Since each individual machine is Ethernet based, interconnecting their controllers (via
Ethernet) will enable them to have access to the sensor/actuator level packet flow.
The main function of the controller mounted on the machine is to take charge of machine
control. An added task now is to help in synchronization. The controller has the major role
of synchronizing several machines in line. This can also be done by connecting the networks
of the two machines together. To perform synchronization, the controller of a machine sends
its status vector to the controller another machine, and vice versa. Status vector means a
complete knowledge of machine information, considering the cam position for example, the

production rate, and so on. These pieces of information are very important for
synchronization, especially the production rate. This is because, depending on this statistic,
the machines can speed up or slow down to match their respective productions.
A very important metric also, is the fact that the two controllers can back-up data on each
other. This is a new added feature. This feature can achieve fault tolerance: in case of a
controller failure, the other controller can take over and the machine is not out of service.
Although this can slow down the production process, the production is not stopped (Daoud
et al., 2004b). Hardware or software failure can cause the failure of one of the controllers. In
that case, the information sent by the sensors to the OFF controller is consumed by another
operating controller on another machine on the same network (Daoud et al., 2005). “OFF”
controller is used instead of failed because the controller can be out of service for preventive
maintenance for example. In other words, not only failure of a controller can be tolerated,
but regular and preventive maintenance also; because in either cases, failure or maintenance,
the controller is out of order.

5. OPNET Network Simulations & Results

First, network simulations have to be performed to validate the concept of Ethernet
integration in its switched mode as a communication medium for NCS. OPNET is used to
calculate system performance.

5.1 Stand Alone Machine Models Simulation Results
For the light traffic system, and integrating communication as well as control traffic, results
for Fast Ethernet are found to be 671 μs round-trip delay in normal operating conditions,
and 683 μs round-trip delay as peak value. Results for Gigabit Ethernet are found to be 501
μs round-trip delay in normal operating conditions, and 517 μs round-trip delay as peak
value. As the end-to-end delay limit is set to 694 μs (one sampling period), it can be seen that
100Mbps Ethernet is just satisfying the delay requirements while 1Gbps Ethernet is excellent
for such system (Daoud et al., 2003).
For the heavy traffic system that consists of 48 smart sensors, 4 smart actuators and one
controller, results for Fast Ethernet are found to be 622 μs round-trip delay in normal
operating conditions, and 770 μs round-trip delay as peak value. Results for Gigabit
Ethernet are found to be 450 μs round-trip delay in normal operating conditions, and 472 μs
round-trip delay as peak value. The round-trip delay limit is still 694 μs (one sampling
period). It can be seen that 100Mbps Ethernet exceeds the time limit while 1Gbps Ethernet is
runs smoothly and can accommodate even more traffic (Daoud et al., 2003).
All measured end-to-end delays include processing, propagation, queuing, encapsulation
and de-capsulation delays according to equation 2 (Daoud, 2008).

5.2 In-Line Production Light Traffic Models Simulation Results
The first two simulations consist of two light-traffic machines working in-line with one
machine having a failed controller. The failed controller traffic is switched to the operating
controller node. One simulation uses Fast Ethernet while the other uses Gigabit Ethernet as
communication medium.

www.intechopen.com

Factory Automation274

Other simulations investigate Gigabit Ethernet performance with more failed controllers on
more machines in-line with only one functioning machine controller. In this case, the traffic
of the failed controllers is deviated to the operational controller. Other simulations are run to
test machine speed increase. As explained in the previous section, the nominal machine
speed tested is 1 revolution per second (1,440Hz).
Non-real-time traffic (as in (Daoud et al., 2003)) is added in the three simulations. This is to
verify whether or not the system can still function and also if it can accommodate real and
non-real-time traffic.
Let the sensors/actuators of the machine with the operational controller be called near
sensors/actuators. Also, let the sensors/actuators of the machine with the failed controller
be called far sensors/actuators (Daoud, 2004a).
Results for Fast Ethernet indicate that the delay is too high. The real-time delay a packet
faces traveling from the near sensor to the controller and then to the near actuator is around
732 sec. This is the sum of the delay the real-time packet faces traveling from sensor to
controller and the delay it faces traveling from controller to actuator. For the far sensors and
actuators, the delay is again too large: around 827 sec.
Results for Gigabit Ethernet indicate that the delay is small: Only 521 sec round-trip delay
for near nodes (see Fig. 4) and 538 sec round-trip delay for far nodes.
For three machines with only one controller node operational and running on-top-of Gigabit
Ethernet, a round-trip delay of approximately 567 sec was found for near nodes and
approximately 578 sec round-trip delay for far nodes (Daoud et al., 2004b).
When non-real-time traffic (of the same nature discussed in (Daoud et al., 2003)) is applied
in order to jam the control traffic in all three scenarios, a considerable delay is measured.
This delay is too large and causes a complete system failure because of the violation of the
time constraint of one sampling period. Because of the 3 msec delay that appears in these
circumstances with 2 OFF controllers and only 1 ON controller, explicit messaging must be
prevented. Explicit messaging here refers to a mixture of non-real-time load of HTTP, FTP,
e-mail check and telnet sessions. This is in contrast with “implicit messaging” of real-time
control load.

Machine
Speed (rps)

Maximum
Permissible
Delay (s)

Number of
Machines

Number of
OFF

Controllers

Maximum
Measured
Delay (s)

1 694 1 0 501
1 694 2 1 538
1 694 3 2 578
1 694 4 3 682
1 694 5 4 0.266s

1.2 579 3 2 536
1.2 579 4 3 545
1.3 534 2 1 509
1.3 534 3 2 534
1.3 534 4 3 545
1.4 496 1 0 476
1.4 496 2 1 501
1.5 463 1 0 476

Table 1. OPNET Simulation Results for In-Line Light Traffic Machine Model (Daoud et al.,
2005)

This combination of non-real-time traffic loads simulates a real overhead jamming load
introduced by the operator or chief engineer (specially FTP loads). This constraint is quiet
acceptable in critical operation and preventing all kinds of non-real-time traffic is a
justifiable sacrifice (Daoud et al., 2005). Final results are tabulated in Table 1.

5.3 In-Line Production Heavy Traffic Models Simulation Results
In this section, a simulation study of heavy traffic machines model consisting of 48 sensors, 1
controller and 4 actuators working in-line, is conducted using OPNET. This NCS machine is
simulated as switched Star Gigabit Ethernet LAN. Sensors are sources of traffic. The
Controller is an intermediate intelligent node. Actuators are sinks of traffic. Having 52 real-
time packet generation and consumption nodes (48 sensors and 4 actuators) produces a
traffic of 74,800 packet per second on the ether channel. This is because the system is
running at a speed of 1 revolution per second (rps) to produce 60 strokes per minute
(Bossar). Each revolution is encrypted into 1,440 electric pulses, which means that the
sampling frequency is 1,440Hz (sampling period of 694s). The number of packets (74,800) is
the multiplication of the number of nodes (52) by the sampling frequency (1,440) (Daoud et
al., 2003).
The most critical scenarios are studied. In these simulations, there is only one active
controller while all other controllers on the same line are out of service. Studies for 2, 3 and 4
in-line production machines are done. In all simulations, only one controller is functional
and accommodates the control traffic of all 2, 3, or 4 machines on the production line. It was
found that the system can tolerate the failure of a maximum of 2 failed controllers in a 3-
machine production line. In the case of a 4-machine production line with only one functional
controller and 3 failed controllers, the deadline of 694s (1 sampling period) is violated
(Daoud & Amer, 2007).
Accordingly, it is again recommended to disable non-real-time loads during critical mode
operation. In other control schemes that do not have the capabilities mentioned in this
study, the production line is switched OFF as soon as one controller fails.

Delay at actuator node Delay at controller node
Fig. 4. OPNET Results for Two-Machine Production Line (Heavy Traffic)

In all cases, end-to-end delays are measured. These delays includes all types of data
encapsulation/de-capsulation on different network layers at all nodes. They also include

www.intechopen.com

Performance and Reliability of Fault-Tolerant Ethernet Networked Control Systems 275

Other simulations investigate Gigabit Ethernet performance with more failed controllers on
more machines in-line with only one functioning machine controller. In this case, the traffic
of the failed controllers is deviated to the operational controller. Other simulations are run to
test machine speed increase. As explained in the previous section, the nominal machine
speed tested is 1 revolution per second (1,440Hz).
Non-real-time traffic (as in (Daoud et al., 2003)) is added in the three simulations. This is to
verify whether or not the system can still function and also if it can accommodate real and
non-real-time traffic.
Let the sensors/actuators of the machine with the operational controller be called near
sensors/actuators. Also, let the sensors/actuators of the machine with the failed controller
be called far sensors/actuators (Daoud, 2004a).
Results for Fast Ethernet indicate that the delay is too high. The real-time delay a packet
faces traveling from the near sensor to the controller and then to the near actuator is around
732 sec. This is the sum of the delay the real-time packet faces traveling from sensor to
controller and the delay it faces traveling from controller to actuator. For the far sensors and
actuators, the delay is again too large: around 827 sec.
Results for Gigabit Ethernet indicate that the delay is small: Only 521 sec round-trip delay
for near nodes (see Fig. 4) and 538 sec round-trip delay for far nodes.
For three machines with only one controller node operational and running on-top-of Gigabit
Ethernet, a round-trip delay of approximately 567 sec was found for near nodes and
approximately 578 sec round-trip delay for far nodes (Daoud et al., 2004b).
When non-real-time traffic (of the same nature discussed in (Daoud et al., 2003)) is applied
in order to jam the control traffic in all three scenarios, a considerable delay is measured.
This delay is too large and causes a complete system failure because of the violation of the
time constraint of one sampling period. Because of the 3 msec delay that appears in these
circumstances with 2 OFF controllers and only 1 ON controller, explicit messaging must be
prevented. Explicit messaging here refers to a mixture of non-real-time load of HTTP, FTP,
e-mail check and telnet sessions. This is in contrast with “implicit messaging” of real-time
control load.

Machine
Speed (rps)

Maximum
Permissible
Delay (s)

Number of
Machines

Number of
OFF

Controllers

Maximum
Measured
Delay (s)

1 694 1 0 501
1 694 2 1 538
1 694 3 2 578
1 694 4 3 682
1 694 5 4 0.266s

1.2 579 3 2 536
1.2 579 4 3 545
1.3 534 2 1 509
1.3 534 3 2 534
1.3 534 4 3 545
1.4 496 1 0 476
1.4 496 2 1 501
1.5 463 1 0 476

Table 1. OPNET Simulation Results for In-Line Light Traffic Machine Model (Daoud et al.,
2005)

This combination of non-real-time traffic loads simulates a real overhead jamming load
introduced by the operator or chief engineer (specially FTP loads). This constraint is quiet
acceptable in critical operation and preventing all kinds of non-real-time traffic is a
justifiable sacrifice (Daoud et al., 2005). Final results are tabulated in Table 1.

5.3 In-Line Production Heavy Traffic Models Simulation Results
In this section, a simulation study of heavy traffic machines model consisting of 48 sensors, 1
controller and 4 actuators working in-line, is conducted using OPNET. This NCS machine is
simulated as switched Star Gigabit Ethernet LAN. Sensors are sources of traffic. The
Controller is an intermediate intelligent node. Actuators are sinks of traffic. Having 52 real-
time packet generation and consumption nodes (48 sensors and 4 actuators) produces a
traffic of 74,800 packet per second on the ether channel. This is because the system is
running at a speed of 1 revolution per second (rps) to produce 60 strokes per minute
(Bossar). Each revolution is encrypted into 1,440 electric pulses, which means that the
sampling frequency is 1,440Hz (sampling period of 694s). The number of packets (74,800) is
the multiplication of the number of nodes (52) by the sampling frequency (1,440) (Daoud et
al., 2003).
The most critical scenarios are studied. In these simulations, there is only one active
controller while all other controllers on the same line are out of service. Studies for 2, 3 and 4
in-line production machines are done. In all simulations, only one controller is functional
and accommodates the control traffic of all 2, 3, or 4 machines on the production line. It was
found that the system can tolerate the failure of a maximum of 2 failed controllers in a 3-
machine production line. In the case of a 4-machine production line with only one functional
controller and 3 failed controllers, the deadline of 694s (1 sampling period) is violated
(Daoud & Amer, 2007).
Accordingly, it is again recommended to disable non-real-time loads during critical mode
operation. In other control schemes that do not have the capabilities mentioned in this
study, the production line is switched OFF as soon as one controller fails.

Delay at actuator node Delay at controller node
Fig. 4. OPNET Results for Two-Machine Production Line (Heavy Traffic)

In all cases, end-to-end delays are measured. These delays includes all types of data
encapsulation/de-capsulation on different network layers at all nodes. They also include

www.intechopen.com

Factory Automation276

propagation delays on the communication network and the computational delay at the
controller node. Results are tabulated in Table 2. Sample OPNET results are shown in Fig. 4.

Machine
Speed
(rps)

Maximum
Permissible
Delay (s)

Number
of

Machines

Number of
OFF

Controllers

Maximum
Measured
Delay (s)

1 694 2 1 461
1 694 3 2 522
1 694 4 3 1ms

1.1 631 2 1 497
1.1 631 3 2 551
1.2 579 2 1 464
1.2 579 3 2 473
1.3 534 2 1 483
1.3 534 3 2 520
1.4 496 2 1 476
1.4 496 3 2 553
1.5 463 2 1 464

Table 2. OPNET Simulation Results for In-Line Heavy Traffic Machine Model (Daoud &
Amer, 2007)

6. Production Line Reliability

In the previous sections, fault-tolerant production lines were described and studied from a
communications/control point of view. It was shown, using OPNET simulations, that a
production line with several machines working in-line, can work in a degraded mode. Upon
the failure of a controller on one of the machines, the tasks of the failed controller are
executed by another controller on another machine. This reduces the production line’s down
time. This section shows how to estimate the Mean Time To Failure (MTTF) and how to use
it to find the most cost-effective way of increasing production line reliability.
Consider the following production line; it consists of two machines working in-line. Each
machine has a controller, smart sensors and smart actuators. The sampling frequency of
each machine is 1,440 Hz.. The machine will fail if the information delay from sensor to
controller to actuator exceeds 694 µsec. Also, if one of the two machines fails, the entire
production line fails.
In (Daoud et al., 2004b), fault-tolerance was introduced on a system consisting of two such
machines. Both machines were linked through Gigabit Ethernet. The Gigabit Ethernet
network connected all sensors, actuators and both controllers. It was shown that the failure
of one controller on either of the two machines could be tolerated. Special software detected
the failure of the controller and transferred its tasks to the remaining functional controller.
Non-real-time traffic of FTP, HTTP, telnet and e-mail was not permitted. Mathematical tools
are needed to justify this extra cost and prove that production line reliability will increase.
One such tool is Markov chains. This will be explained next.

6.1 Markov Model and Mean Time To Failure
Continuous-time Markov models have been widely used to predict the reliability and/or
availability of fault-tolerant systems (Billinton & Allan, 1983; Blanke et al., 2006; Johnson,
1989, Siewiorek & Swarz, 1998; Trivedi, 2002). The Markov model describing the system
being studied, is shown in Fig. 5. This same model is also found in (Arnold, 1973; Trivedi,
2002). State START is the starting state and represents the error-free situation. If one of the
two controllers fails, the system moves from state START to state ONE-FAIL. In this state,
both machines are still operating but only one controller is communicating with all sensors
and actuators on both machines. If this controller fails before the first one is repaired, the
system moves from state ONE-FAIL to state LINE-FAIL. This state is the failure state. The
transition rates for the Markov chain in Fig. 5 are explained next.

Fig. 5. Markov model

The system will move from state START to state ONE-FAIL when one of the two controllers
fails, assuming that the controller failure is detected and that the recovery software
successfully transfers control of both machines to the remaining operational controller.
Otherwise, the system moves directly from state START to state LINE-FAIL. This explains
the transition from state START to state LINE-FAIL. Let c be the probability of successful
detection and recovery. In the literature, the parameter c is known as the coverage and has to
be taken into account in the Markov model. One of the earliest papers that defined the
coverage is (Arnold, 1973). It defined the coverage as the proportion of faults from which a
system automatically recovers. In (Trivedi, 2002), it was shown that a small change in the
value of the coverage parameter had a big effect on system Mean Time To Failure (MTTF).
The importance of the coverage was further emphasized in (Amer & McCluskey, 1986,
1987a, 1987b, 1987c). Here, the controller software is responsible for detecting a controller
failure and switching the control of that machine to the operational controller on the other
machine. Consequently, the value of the coverage depends on the quality of the switching
software on each controller.
Assuming, for simplicity, that both controllers have the same failure rate λ, the transition
rate from state START to state ONE-FAIL will be equal to A=2cλ.
As mentioned above, the system will move from state START to state ONE-FAIL if a
controller failure is not detected or if the recovery software does not transfer control to the
operational controller. A software problem in one of the controllers, for example, can cause
sensor data to be incorrectly processed and the packet sent to the actuator will have
incorrect data but correct CRC. The actuator verifies the CRC, processes the data and the
system fails. Another potential problem that cannot be remedied by the fault-tolerant
architecture described here is as follows: Both controllers are operational but their inter-

www.intechopen.com

Performance and Reliability of Fault-Tolerant Ethernet Networked Control Systems 277

propagation delays on the communication network and the computational delay at the
controller node. Results are tabulated in Table 2. Sample OPNET results are shown in Fig. 4.

Machine
Speed
(rps)

Maximum
Permissible
Delay (s)

Number
of

Machines

Number of
OFF

Controllers

Maximum
Measured
Delay (s)

1 694 2 1 461
1 694 3 2 522
1 694 4 3 1ms

1.1 631 2 1 497
1.1 631 3 2 551
1.2 579 2 1 464
1.2 579 3 2 473
1.3 534 2 1 483
1.3 534 3 2 520
1.4 496 2 1 476
1.4 496 3 2 553
1.5 463 2 1 464

Table 2. OPNET Simulation Results for In-Line Heavy Traffic Machine Model (Daoud &
Amer, 2007)

6. Production Line Reliability

In the previous sections, fault-tolerant production lines were described and studied from a
communications/control point of view. It was shown, using OPNET simulations, that a
production line with several machines working in-line, can work in a degraded mode. Upon
the failure of a controller on one of the machines, the tasks of the failed controller are
executed by another controller on another machine. This reduces the production line’s down
time. This section shows how to estimate the Mean Time To Failure (MTTF) and how to use
it to find the most cost-effective way of increasing production line reliability.
Consider the following production line; it consists of two machines working in-line. Each
machine has a controller, smart sensors and smart actuators. The sampling frequency of
each machine is 1,440 Hz.. The machine will fail if the information delay from sensor to
controller to actuator exceeds 694 µsec. Also, if one of the two machines fails, the entire
production line fails.
In (Daoud et al., 2004b), fault-tolerance was introduced on a system consisting of two such
machines. Both machines were linked through Gigabit Ethernet. The Gigabit Ethernet
network connected all sensors, actuators and both controllers. It was shown that the failure
of one controller on either of the two machines could be tolerated. Special software detected
the failure of the controller and transferred its tasks to the remaining functional controller.
Non-real-time traffic of FTP, HTTP, telnet and e-mail was not permitted. Mathematical tools
are needed to justify this extra cost and prove that production line reliability will increase.
One such tool is Markov chains. This will be explained next.

6.1 Markov Model and Mean Time To Failure
Continuous-time Markov models have been widely used to predict the reliability and/or
availability of fault-tolerant systems (Billinton & Allan, 1983; Blanke et al., 2006; Johnson,
1989, Siewiorek & Swarz, 1998; Trivedi, 2002). The Markov model describing the system
being studied, is shown in Fig. 5. This same model is also found in (Arnold, 1973; Trivedi,
2002). State START is the starting state and represents the error-free situation. If one of the
two controllers fails, the system moves from state START to state ONE-FAIL. In this state,
both machines are still operating but only one controller is communicating with all sensors
and actuators on both machines. If this controller fails before the first one is repaired, the
system moves from state ONE-FAIL to state LINE-FAIL. This state is the failure state. The
transition rates for the Markov chain in Fig. 5 are explained next.

Fig. 5. Markov model

The system will move from state START to state ONE-FAIL when one of the two controllers
fails, assuming that the controller failure is detected and that the recovery software
successfully transfers control of both machines to the remaining operational controller.
Otherwise, the system moves directly from state START to state LINE-FAIL. This explains
the transition from state START to state LINE-FAIL. Let c be the probability of successful
detection and recovery. In the literature, the parameter c is known as the coverage and has to
be taken into account in the Markov model. One of the earliest papers that defined the
coverage is (Arnold, 1973). It defined the coverage as the proportion of faults from which a
system automatically recovers. In (Trivedi, 2002), it was shown that a small change in the
value of the coverage parameter had a big effect on system Mean Time To Failure (MTTF).
The importance of the coverage was further emphasized in (Amer & McCluskey, 1986,
1987a, 1987b, 1987c). Here, the controller software is responsible for detecting a controller
failure and switching the control of that machine to the operational controller on the other
machine. Consequently, the value of the coverage depends on the quality of the switching
software on each controller.
Assuming, for simplicity, that both controllers have the same failure rate λ, the transition
rate from state START to state ONE-FAIL will be equal to A=2cλ.
As mentioned above, the system will move from state START to state ONE-FAIL if a
controller failure is not detected or if the recovery software does not transfer control to the
operational controller. A software problem in one of the controllers, for example, can cause
sensor data to be incorrectly processed and the packet sent to the actuator will have
incorrect data but correct CRC. The actuator verifies the CRC, processes the data and the
system fails. Another potential problem that cannot be remedied by the fault-tolerant
architecture described here is as follows: Both controllers are operational but their inter-

www.intechopen.com

Factory Automation278

communication fails. Each controller assumes that the other has failed and takes control of
the entire production line. This conflict causes a production line failure. Consequently, the
transition rate from state START to state LINE-FAIL will be equal to B=(1-c)2λ.
If the failed controller is repaired while the system is in state ONE-FAIL, a transition occurs
to state START. Let the rate of this transition be D=µ. While in state ONE-FAIL, the failure of
the remaining controller (before the first one is repaired) will take the system to state LINE-
FAIL. Hence, the transition rate from state ONE-FAIL to state LINE-FAIL is equal to E=λ.
The Markov model in Fig. 5 can be used to calculate the reliability R(t) of the 1-out-of-2
system under study.

)()()(tPtPtR FAILONESTART (4)

where PSTART(t) is the probability of being in state START at time t and PONE-FAIL(t) is the
probability of being in state ONE-FAIL at time t. The model can also be used to obtain the
Mean Time To Failure (MTTFft) of the system. MTTFft can be calculated as follows (Billinton,
1983): First, the Stochastic Transitional Probability Matrix P for the model in Fig. 5 is
obtained:

100
)(1

)(1
EEDD
BABA

P (5)

where element pij is the transition rate from state i to state j. So, for example, p01 is equal to
A=2cλ as in Fig. 5. But state LINE-FAIL is an absorbing state. Consequently, the truncated
matrix Q is obtained from P by removing the rightmost column and the bottom row. So,

)(1
)(1

EDD
ABA

Q (6)

Let matrix M = [I-Q]-1

LBALD
LALED

M
/)(/

//)(
 (7)

where L = {(A+B)(D+E)}- AD. M is generally defined as the fundamental matrix in which
element mij is the average time spent in state j given that the system starts in state i before
being absorbed. Since the system under study starts in state START and is absorbed in state
LINE-FAIL,

MTTFft = m00 +m01 (8)

For the system under study in this research,

AEBDBE
EDAMTTF ft

 (9)

Expanding again in terms of λ, µ and c:

)])(2[(])][(1)(2[(
2

cc
cMTTF ft

 (10)

6.2 Improving MTTF – First Approach
This section shows how to use the Markov model to improve system MTTF in a cost-
effective manner. Let the 2-machine fault-tolerant production line described above, have the
following parameters:

λ1: controller failure rate
μ1: controller repair rate
c1: coverage

Increasing MTTF can be achieved by decreasing λ1, increasing μ1, increasing c1 or a
combination of the above. A possible answer to this question can be obtained by using
operations research techniques in order to obtain a triplet (λoptimal, coptimal, μoptimal) that will
lead to the highest MTTF. Practically, however, it may not be possible to find a controller
with the exact failure rate λoptimal and/or the coverage coptimal. Also, it may be difficult to find
a maintenance plan with µoptimal. Upon contacting the machine’s manufacturer, the factory
will be offered a few choices in terms of better software versions and/or better maintenance
plans. Better software will improve λ and c; the maintenance plan will affect µ. As
mentioned above, let the initial value of λ, μ and c be {λ1, c1, μ1}. Better software will change
these values to {λj, cj, μ1} for 2 ≤ j ≤ n. Here, n is the number of more sophisticated software
versions. Practically, n will be a small number. Changing the maintenance policy will
change μ1 to μk for 2 ≤ k ≤ m. Again, m will be a small number. In summary, system
parameters {λ1, c1, μ1} can only be changed to a small number of alternate triplets {λj, cj, μk}. If
n=3 and m=2, for example, the number of scenarios that need to be studied is (mn-1)=5.
Running the Markov model 5 times will produce 5 possible values for the improved MTTF.
Each scenario will obviously have a cost associated with it. Let

cost
MTTFMTTF oldimproved

MTTFold is obtained by plugging (λ1, c1, µ1) in the Markov model while MTTFimproved is
obtained using one of the other 5 triplets. η represents the improvement in system MTTF
with respect to cost. The triplet that produces the highest η is chosen.

6.3 Improving MTTF – Second Approach
In this more complex approach, it is shown that λ, µ and c are not totally independent of
each other. Let Qsoftware be the quality of the software installed on the controller and let

www.intechopen.com

Performance and Reliability of Fault-Tolerant Ethernet Networked Control Systems 279

communication fails. Each controller assumes that the other has failed and takes control of
the entire production line. This conflict causes a production line failure. Consequently, the
transition rate from state START to state LINE-FAIL will be equal to B=(1-c)2λ.
If the failed controller is repaired while the system is in state ONE-FAIL, a transition occurs
to state START. Let the rate of this transition be D=µ. While in state ONE-FAIL, the failure of
the remaining controller (before the first one is repaired) will take the system to state LINE-
FAIL. Hence, the transition rate from state ONE-FAIL to state LINE-FAIL is equal to E=λ.
The Markov model in Fig. 5 can be used to calculate the reliability R(t) of the 1-out-of-2
system under study.

)()()(tPtPtR FAILONESTART (4)

where PSTART(t) is the probability of being in state START at time t and PONE-FAIL(t) is the
probability of being in state ONE-FAIL at time t. The model can also be used to obtain the
Mean Time To Failure (MTTFft) of the system. MTTFft can be calculated as follows (Billinton,
1983): First, the Stochastic Transitional Probability Matrix P for the model in Fig. 5 is
obtained:

100
)(1

)(1
EEDD
BABA

P (5)

where element pij is the transition rate from state i to state j. So, for example, p01 is equal to
A=2cλ as in Fig. 5. But state LINE-FAIL is an absorbing state. Consequently, the truncated
matrix Q is obtained from P by removing the rightmost column and the bottom row. So,

)(1
)(1

EDD
ABA

Q (6)

Let matrix M = [I-Q]-1

LBALD
LALED

M
/)(/

//)(
 (7)

where L = {(A+B)(D+E)}- AD. M is generally defined as the fundamental matrix in which
element mij is the average time spent in state j given that the system starts in state i before
being absorbed. Since the system under study starts in state START and is absorbed in state
LINE-FAIL,

MTTFft = m00 +m01 (8)

For the system under study in this research,

AEBDBE
EDAMTTF ft

 (9)

Expanding again in terms of λ, µ and c:

)])(2[(])][(1)(2[(
2

cc
cMTTF ft

 (10)

6.2 Improving MTTF – First Approach
This section shows how to use the Markov model to improve system MTTF in a cost-
effective manner. Let the 2-machine fault-tolerant production line described above, have the
following parameters:

λ1: controller failure rate
μ1: controller repair rate
c1: coverage

Increasing MTTF can be achieved by decreasing λ1, increasing μ1, increasing c1 or a
combination of the above. A possible answer to this question can be obtained by using
operations research techniques in order to obtain a triplet (λoptimal, coptimal, μoptimal) that will
lead to the highest MTTF. Practically, however, it may not be possible to find a controller
with the exact failure rate λoptimal and/or the coverage coptimal. Also, it may be difficult to find
a maintenance plan with µoptimal. Upon contacting the machine’s manufacturer, the factory
will be offered a few choices in terms of better software versions and/or better maintenance
plans. Better software will improve λ and c; the maintenance plan will affect µ. As
mentioned above, let the initial value of λ, μ and c be {λ1, c1, μ1}. Better software will change
these values to {λj, cj, μ1} for 2 ≤ j ≤ n. Here, n is the number of more sophisticated software
versions. Practically, n will be a small number. Changing the maintenance policy will
change μ1 to μk for 2 ≤ k ≤ m. Again, m will be a small number. In summary, system
parameters {λ1, c1, μ1} can only be changed to a small number of alternate triplets {λj, cj, μk}. If
n=3 and m=2, for example, the number of scenarios that need to be studied is (mn-1)=5.
Running the Markov model 5 times will produce 5 possible values for the improved MTTF.
Each scenario will obviously have a cost associated with it. Let

cost
MTTFMTTF oldimproved

MTTFold is obtained by plugging (λ1, c1, µ1) in the Markov model while MTTFimproved is
obtained using one of the other 5 triplets. η represents the improvement in system MTTF
with respect to cost. The triplet that produces the highest η is chosen.

6.3 Improving MTTF – Second Approach
In this more complex approach, it is shown that λ, µ and c are not totally independent of
each other. Let Qsoftware be the quality of the software installed on the controller and let

www.intechopen.com

Factory Automation280

Qoperator represent the operator’s expertise. A better version of the software (higher Qsoftware)
will affect all three parameters simultaneously. Obviously, a better version of the software
will have a lower software failure rate, thereby lowering λ. Furthermore, this better version
is expected to have more sophisticated error detection and recovery mechanisms. This will
increase the coverage c. Finally, the diagnostics capabilities of the software should be
enhanced in this better version. This will reduce troubleshooting time, decrease the Repair
time and increase µ.
Another important factor is the operator’s expertise Qoperator. The controller is usually an
industrial PC (Daoud et al., 2003). The machine manufacturer may be able to supply the
hardware and software failure rates but the operator’s expertise has to be factored in the
calculation of the controller’s failure rate on site. The operator does not just use the
controller to operate the machine but also uses it for HTTP, FTP, e-mail, etc, beneficiating of
its capabilities as a PC. Operator errors (due to lack of experience) will increase the
controller failure rate. An experienced operator will make less mistakes while operating the
machines. Hence, λ will decrease. Furthermore, an experienced operator will require less
time to repair a controller, i.e., µ will increase.
In summary, an increase in Qsoftware produces a decrease in λ and an increase in c and µ. Also,
an increase in Qoperator reduces λ and increases µ. Next, it is shown how to use Qsoftware and
Qoperator to calculate λ, µ and c. The parameter λ can now be written as follows:

operatorsoftwarehardware (11)

The manufacturer determines λhardware. In general, let λsoftware = f(Qsoftware). The function f is
determined by the manufacturer. Alternatively, the manufacturer could just have a table
indicating the software failure rate for each of the software versions. Similarly, let λoperator =
g(Qoperator). The function g has to be determined on site. Regarding the repair rate and the
coverage, remember that, for an exponentially-distributed repair time, μ will be the inverse
of the Mean Time To Repair (MTTR). There are two cases to be considered here. First, the
factory does not stock controller spare parts on premises. Upon the occurrence of a
controller failure, the agent of the machine manufacturer imports the appropriate spare part.
A technician may also be needed to install this part. Several factors may therefore affect the
MTTR including the availability of the spare part in the manufacturer’s warehouse, customs,
etc. Customs may seriously affect the MTTR in the case of developing countries, for
example; in this case the MTTR will be in the order of two weeks. In summary, if the factory
does not stock spare parts on site, the MTTR will be dominated by travel time, customs, etc.
The effects of Qsoftware and Qoperator can be neglected.
Second, the factory does stock spare parts on site. If a local technician can handle the
problem, the repair time should be just several hours. However, this does depend on the
quality of the software and on the expertise of the technician. The better the diagnostic
capabilities of the software, the quicker it will take to locate the faulty component. On the
other hand, if the software cannot easily pinpoint the faulty component, the expertise of the
technician will be essential to quickly fix the problem. If a foreign technician is needed,
travel time has to be included in the repair time which will not be in the orders of several
hours anymore. Let

 localforeign techforeignPtechforeignP 1 (12)

μlocal is the expected repair rate in case the failure is repaired locally. µlocal is obviously a
function of Qsoftware and Qoperator. Let µlocal = h(Qsoftware, Qoperator). The function h has to be
determined on site. If a foreign technician is required, travel time and the technician’s
availability have to be taken into account. Again, here, the travel time is expected to
dominate the actual repair time on site; in other words, the effects of Qsoftware and Qoperator can
be neglected. The probability of requiring a foreign technician to repair a failure can be
calculated as a first approximation from the number of times a foreign technician was
required in the near past. The coverage parameter c has to be determined by the machine
manufacturer.
Finally, to calculate the MTTF, the options are not numerous. The production manager will
only have a few options to choose from. This approach is obviously more difficult to
implement than the previous one. The determination of the functions f, g and h is not an
easy task. On the other hand, using these functions permits the incorporation of the effect of
software quality and operator expertise on λ, c and μ. The Markov model is used again to
determine the MTTF for each triplet (λ, c, µ) and η determines the most cost-effective
scenario. More details can be found in (Amer & Daoud 2006b).

7. Modeling Repair and Calculating Average Speed

The Markov chain in Fig. 5 has an absorbing state, namely state LINE-FAIL. In order to
calculate system availability, the Markov chain should not have any absorbing states.
System instantaneous availability is defined as the probability that the system is functioning
properly at a certain time t. Conventional 1-out-of-2 Markov models usually model the
repair as a transition from state ONE-FAIL to state START with a rate µ and another
transition from state LINE-FAIL to state ONE-FAIL with a rate of 2µ (assuming that there
are two repair persons available) (Siewiorek & Swarz, 1998). If there is only one repair
person available (which is the realistic assumption in the context of developing countries),
the transition rate from state LINE-FAIL to state ONE-FAIL is equal to µ. Figure 6 is the
same Markov model as in Fig. 5 except for the extra transition from state LINE-FAIL back to
state START. This model has a better representation of the repair policies in developing
countries. In this improved model, the transition from state LINE-FAIL to state ONE-FAIL is
cancelled. This is more realistic, although unconventional. Since most of the repair time is
really travel time (time to import spare parts or time for a specialist to travel to the site), the
difference in the time to repair one controller or two controllers will be minimal. In this
model, the unavailability is equal to the probability of being in state LINE-FAIL while the
availability is equal to the sum of the probabilities of being in states START and ONE-FAIL.
These probabilities are going to be used next to calculate the average operating speed of the
production line.
In (Daoud et al., 2005), it was found that a fully operational fault-tolerant production line
with two machines can operate at a speed of 1.4S where S is the normal speed (1 revolution
per minute as mentioned above). If one controller fails, the other controller takes charge of
its duties and communicates with all sensors and actuators on both machines. The
maximum speed of operation in this case was 1.3S. Assuming λ is not affected by machine
speed, the average steady state speed Speed_Avss will be equal to:

)3.1()()4.1()(_ SPSPAvSpeed FAILssONESTARTssss (13)

www.intechopen.com

Performance and Reliability of Fault-Tolerant Ethernet Networked Control Systems 281

Qoperator represent the operator’s expertise. A better version of the software (higher Qsoftware)
will affect all three parameters simultaneously. Obviously, a better version of the software
will have a lower software failure rate, thereby lowering λ. Furthermore, this better version
is expected to have more sophisticated error detection and recovery mechanisms. This will
increase the coverage c. Finally, the diagnostics capabilities of the software should be
enhanced in this better version. This will reduce troubleshooting time, decrease the Repair
time and increase µ.
Another important factor is the operator’s expertise Qoperator. The controller is usually an
industrial PC (Daoud et al., 2003). The machine manufacturer may be able to supply the
hardware and software failure rates but the operator’s expertise has to be factored in the
calculation of the controller’s failure rate on site. The operator does not just use the
controller to operate the machine but also uses it for HTTP, FTP, e-mail, etc, beneficiating of
its capabilities as a PC. Operator errors (due to lack of experience) will increase the
controller failure rate. An experienced operator will make less mistakes while operating the
machines. Hence, λ will decrease. Furthermore, an experienced operator will require less
time to repair a controller, i.e., µ will increase.
In summary, an increase in Qsoftware produces a decrease in λ and an increase in c and µ. Also,
an increase in Qoperator reduces λ and increases µ. Next, it is shown how to use Qsoftware and
Qoperator to calculate λ, µ and c. The parameter λ can now be written as follows:

operatorsoftwarehardware (11)

The manufacturer determines λhardware. In general, let λsoftware = f(Qsoftware). The function f is
determined by the manufacturer. Alternatively, the manufacturer could just have a table
indicating the software failure rate for each of the software versions. Similarly, let λoperator =
g(Qoperator). The function g has to be determined on site. Regarding the repair rate and the
coverage, remember that, for an exponentially-distributed repair time, μ will be the inverse
of the Mean Time To Repair (MTTR). There are two cases to be considered here. First, the
factory does not stock controller spare parts on premises. Upon the occurrence of a
controller failure, the agent of the machine manufacturer imports the appropriate spare part.
A technician may also be needed to install this part. Several factors may therefore affect the
MTTR including the availability of the spare part in the manufacturer’s warehouse, customs,
etc. Customs may seriously affect the MTTR in the case of developing countries, for
example; in this case the MTTR will be in the order of two weeks. In summary, if the factory
does not stock spare parts on site, the MTTR will be dominated by travel time, customs, etc.
The effects of Qsoftware and Qoperator can be neglected.
Second, the factory does stock spare parts on site. If a local technician can handle the
problem, the repair time should be just several hours. However, this does depend on the
quality of the software and on the expertise of the technician. The better the diagnostic
capabilities of the software, the quicker it will take to locate the faulty component. On the
other hand, if the software cannot easily pinpoint the faulty component, the expertise of the
technician will be essential to quickly fix the problem. If a foreign technician is needed,
travel time has to be included in the repair time which will not be in the orders of several
hours anymore. Let

 localforeign techforeignPtechforeignP 1 (12)

μlocal is the expected repair rate in case the failure is repaired locally. µlocal is obviously a
function of Qsoftware and Qoperator. Let µlocal = h(Qsoftware, Qoperator). The function h has to be
determined on site. If a foreign technician is required, travel time and the technician’s
availability have to be taken into account. Again, here, the travel time is expected to
dominate the actual repair time on site; in other words, the effects of Qsoftware and Qoperator can
be neglected. The probability of requiring a foreign technician to repair a failure can be
calculated as a first approximation from the number of times a foreign technician was
required in the near past. The coverage parameter c has to be determined by the machine
manufacturer.
Finally, to calculate the MTTF, the options are not numerous. The production manager will
only have a few options to choose from. This approach is obviously more difficult to
implement than the previous one. The determination of the functions f, g and h is not an
easy task. On the other hand, using these functions permits the incorporation of the effect of
software quality and operator expertise on λ, c and μ. The Markov model is used again to
determine the MTTF for each triplet (λ, c, µ) and η determines the most cost-effective
scenario. More details can be found in (Amer & Daoud 2006b).

7. Modeling Repair and Calculating Average Speed

The Markov chain in Fig. 5 has an absorbing state, namely state LINE-FAIL. In order to
calculate system availability, the Markov chain should not have any absorbing states.
System instantaneous availability is defined as the probability that the system is functioning
properly at a certain time t. Conventional 1-out-of-2 Markov models usually model the
repair as a transition from state ONE-FAIL to state START with a rate µ and another
transition from state LINE-FAIL to state ONE-FAIL with a rate of 2µ (assuming that there
are two repair persons available) (Siewiorek & Swarz, 1998). If there is only one repair
person available (which is the realistic assumption in the context of developing countries),
the transition rate from state LINE-FAIL to state ONE-FAIL is equal to µ. Figure 6 is the
same Markov model as in Fig. 5 except for the extra transition from state LINE-FAIL back to
state START. This model has a better representation of the repair policies in developing
countries. In this improved model, the transition from state LINE-FAIL to state ONE-FAIL is
cancelled. This is more realistic, although unconventional. Since most of the repair time is
really travel time (time to import spare parts or time for a specialist to travel to the site), the
difference in the time to repair one controller or two controllers will be minimal. In this
model, the unavailability is equal to the probability of being in state LINE-FAIL while the
availability is equal to the sum of the probabilities of being in states START and ONE-FAIL.
These probabilities are going to be used next to calculate the average operating speed of the
production line.
In (Daoud et al., 2005), it was found that a fully operational fault-tolerant production line
with two machines can operate at a speed of 1.4S where S is the normal speed (1 revolution
per minute as mentioned above). If one controller fails, the other controller takes charge of
its duties and communicates with all sensors and actuators on both machines. The
maximum speed of operation in this case was 1.3S. Assuming λ is not affected by machine
speed, the average steady state speed Speed_Avss will be equal to:

)3.1()()4.1()(_ SPSPAvSpeed FAILssONESTARTssss (13)

www.intechopen.com

Factory Automation282

where PSTARTss and PONE-FAILss are the steady state probabilities of being in states START and
ONE-FAIL respectively. If the machines had been operated at normal speed,

 SPSPAvSpeed FAILssONESTARTssss _ (14)

Fig. 6. Improved Markov model

Equations 13 and 14 can be used to estimate the increase in production when the machines
are operated at higher-than-normal speeds. It is important to note here that machines are not
usually operated at their maximum speed on a regular basis but only from time to time in
order to obtain a higher turn-over. More information regarding this topic can be found in
(Amer et al., 2005).

8. TMR Sensors

In the production line studied above, the sensors, switches and actuators were single points
of failure. Introducing redundancy at the controller level may not be enough if the failure
rate of the sensors/switches/actuators is relatively high especially since there are 32 sensors,
8 actuators, 3 switches and just two controllers. Introducing fault tolerance at the sensor
level will certainly increase reliability. Triple Modular Redundancy (TMR) is a well-known
fault tolerance technique (Johnson, 1989; Siewiorek & Swarz, 1998). Each sensor is
triplicated. The three identical sensors send the same data to the controller. The controller
compares the data; if the three messages are within the permissible tolerance range, the
message is processed. If one of the three messages is different than the other two, it is
concluded that the sensor responsible for sending this message has failed and its data is
discarded. One of the other two identical messages is processed. This is known as masking
redundancy (Johnson, 1989; Siewiorek & Swarz, 1998). The system does not fail even though
one of its components is no longer operational. Triplicating each sensor in a light-traffic
machine means that the machine will have 48 (=16*3) sensors, one controller and 4 actuators.
The first important consequence of this extra hardware is the increased traffic on the
network. The number of packets produced by sensors will be tripled. A machine with 48
sensors, one controller and 4 actuators was simulated and studied (Daoud et al. 2003); this is
the heavy-traffic machine. The OPNET simulations in (Daoud et al., 2003) indicated that
Gigabit Ethernet was able to accommodate both control and communication loads. Another
important issue regarding the triplication of the sensors is cost-effectiveness. From a
reliability point of view, triplicating sensors is expected to increase the system Mean Time

Between Failures (MTBF) and consequently, decrease the down time. However, the cost of
adding fault tolerance has to be taken into account. This cost includes the extra sensors, the
wiring, bigger switches and software modifications. The software is now required to handle
the “voting” process; the messages from each three identical sensors have to be compared. If
the three messages are within permissible tolerance ranges, one message is processed. If one
of the messages is different from the other two, one of the two valid messages is used. The
sensor that sent the corrupted message is disregarded till being repaired. If a second sensor
from this group fails, the software will not be able to detect which of the sensors has failed
and the production line has to be stopped. It is the software’s responsibility to alert the
operator using Human Machine Interface (HMI) about the location of the first
malfunctioning sensor and to stop the production line upon the failure of the second sensor.
System reliability is investigated next in order to find out whether or not the extra cost is
justified.

Fig. 7. RBD for Two-Cont Configuration

Reliability Block Diagrams (RBDs) can be used to calculate system reliability (Siewiorek &
Swarz, 1998). Three configurations will be studied and compared. In the first configuration,
there is no fault tolerance. Any sensor, controller, switch or actuator on either machine is a
single point of failure. For exponentially-distributed failure times, the system failure rate is
the sum of the failure rates of all its components. Let this configuration be the Simplex
configuration. If fault tolerance is introduced at the controller level only (as in (Daoud et al.,
2004b)), this configuration will be called Two-Cont. Figure 7 shows the RBD of the Two-Cont
production line with two light-traffic machines. It is clear that fault tolerance only exists at
the controller level. Figure 8 describes the RBD of the same production line but with two
heavy-traffic machines. Now, every sensor is a TMR system and will fail when two of its
sensors fail (2/3 system). Let this configuration be called the TMR configuration. Only the
actuators and the switches constitute single points of failure. Instead of calculating system
reliability, another approach is taken here, namely the Mission Time (MT). MT(rmin) is the
time at which system reliability falls below rmin (Johnson, 1989; Siewiorek & Swarz, 1998).
rmin is determined by production management and represents the minimum acceptable
reliability for the production line. The production line will run continuously for a period of
MT. Maintenance will then be performed; if one of the controllers has failed, it is repaired as
well as any failed sensor. rmin is chosen such that the probability of having a system failure
during MT is minimal.

www.intechopen.com

Performance and Reliability of Fault-Tolerant Ethernet Networked Control Systems 283

where PSTARTss and PONE-FAILss are the steady state probabilities of being in states START and
ONE-FAIL respectively. If the machines had been operated at normal speed,

 SPSPAvSpeed FAILssONESTARTssss _ (14)

Fig. 6. Improved Markov model

Equations 13 and 14 can be used to estimate the increase in production when the machines
are operated at higher-than-normal speeds. It is important to note here that machines are not
usually operated at their maximum speed on a regular basis but only from time to time in
order to obtain a higher turn-over. More information regarding this topic can be found in
(Amer et al., 2005).

8. TMR Sensors

In the production line studied above, the sensors, switches and actuators were single points
of failure. Introducing redundancy at the controller level may not be enough if the failure
rate of the sensors/switches/actuators is relatively high especially since there are 32 sensors,
8 actuators, 3 switches and just two controllers. Introducing fault tolerance at the sensor
level will certainly increase reliability. Triple Modular Redundancy (TMR) is a well-known
fault tolerance technique (Johnson, 1989; Siewiorek & Swarz, 1998). Each sensor is
triplicated. The three identical sensors send the same data to the controller. The controller
compares the data; if the three messages are within the permissible tolerance range, the
message is processed. If one of the three messages is different than the other two, it is
concluded that the sensor responsible for sending this message has failed and its data is
discarded. One of the other two identical messages is processed. This is known as masking
redundancy (Johnson, 1989; Siewiorek & Swarz, 1998). The system does not fail even though
one of its components is no longer operational. Triplicating each sensor in a light-traffic
machine means that the machine will have 48 (=16*3) sensors, one controller and 4 actuators.
The first important consequence of this extra hardware is the increased traffic on the
network. The number of packets produced by sensors will be tripled. A machine with 48
sensors, one controller and 4 actuators was simulated and studied (Daoud et al. 2003); this is
the heavy-traffic machine. The OPNET simulations in (Daoud et al., 2003) indicated that
Gigabit Ethernet was able to accommodate both control and communication loads. Another
important issue regarding the triplication of the sensors is cost-effectiveness. From a
reliability point of view, triplicating sensors is expected to increase the system Mean Time

Between Failures (MTBF) and consequently, decrease the down time. However, the cost of
adding fault tolerance has to be taken into account. This cost includes the extra sensors, the
wiring, bigger switches and software modifications. The software is now required to handle
the “voting” process; the messages from each three identical sensors have to be compared. If
the three messages are within permissible tolerance ranges, one message is processed. If one
of the messages is different from the other two, one of the two valid messages is used. The
sensor that sent the corrupted message is disregarded till being repaired. If a second sensor
from this group fails, the software will not be able to detect which of the sensors has failed
and the production line has to be stopped. It is the software’s responsibility to alert the
operator using Human Machine Interface (HMI) about the location of the first
malfunctioning sensor and to stop the production line upon the failure of the second sensor.
System reliability is investigated next in order to find out whether or not the extra cost is
justified.

Fig. 7. RBD for Two-Cont Configuration

Reliability Block Diagrams (RBDs) can be used to calculate system reliability (Siewiorek &
Swarz, 1998). Three configurations will be studied and compared. In the first configuration,
there is no fault tolerance. Any sensor, controller, switch or actuator on either machine is a
single point of failure. For exponentially-distributed failure times, the system failure rate is
the sum of the failure rates of all its components. Let this configuration be the Simplex
configuration. If fault tolerance is introduced at the controller level only (as in (Daoud et al.,
2004b)), this configuration will be called Two-Cont. Figure 7 shows the RBD of the Two-Cont
production line with two light-traffic machines. It is clear that fault tolerance only exists at
the controller level. Figure 8 describes the RBD of the same production line but with two
heavy-traffic machines. Now, every sensor is a TMR system and will fail when two of its
sensors fail (2/3 system). Let this configuration be called the TMR configuration. Only the
actuators and the switches constitute single points of failure. Instead of calculating system
reliability, another approach is taken here, namely the Mission Time (MT). MT(rmin) is the
time at which system reliability falls below rmin (Johnson, 1989; Siewiorek & Swarz, 1998).
rmin is determined by production management and represents the minimum acceptable
reliability for the production line. The production line will run continuously for a period of
MT. Maintenance will then be performed; if one of the controllers has failed, it is repaired as
well as any failed sensor. rmin is chosen such that the probability of having a system failure
during MT is minimal.

www.intechopen.com

Factory Automation284

Fig. 8. RBD for TMR Configuration

It is assumed here that the production line is totally fault-free after maintenance. If rmin is
high enough, there will be no unscheduled down time and no loss of production. Of course,
if rmin is very high, MT will decrease and the down time will increase. Production can of
course be directly related to cost. Let Rline be the reliability of the production line. Rsensor,
Rswitch, Rcontroller and Ractuator will be the reliabilities of the sensor, switch, controller and
actuator, respectively. For exponentially-distributed failure times: R = e-t. R is the
component reliability (sensor, controller, ...) and λ is its failure rate (which is constant
(Johnson, 1989; Siewiorek & Swarz, 1998)). Assume for simplicity that the switches are very
reliable when compared to the sensors, actuators or controllers and that their probability of
failure can be neglected. Furthermore, assume that all sensors on both machines have an
identical reliability. The same applies for the controllers and the actuators. Next, the
reliabilities of the production line will be calculated for the three configurations: Simplex,
Two-Cont and TMR.
In the Simplex mode, there is no fault tolerance at all and any sensor, controller or actuator
failure causes a system failure. Hence:

))()((8232
actuatorcontrollersensorline RRRR (15)

Remember that each machine has 16 sensors, one controller and 4 actuators and the system
(production line) consists of two machines. If fault tolerance is introduced at the controller
level (as in (Daoud et al., 2004b)

 8232 11 actuatorcontrollersensorline RRRR (16)

The next level of fault tolerance is the introduction of Triple Modular Redundancy at the
sensor level. Each of the 32 sensors will now be a sensor assembly that consists of three
identical sensors. Hence

 823232 1123 actuatorcontrollersensorsensorline RRRRR (17)

Equations 15, 16 and 17 are then used to determine MT for a specific value of Rline for each of
the three configurations. Hence, the cost-effectiveness of the added fault-tolerance can be
quantitatively examined. More details can be found in (Amer & Daoud, 2008).

9. Conclusion

This chapter has discussed the performance and reliability of fault-tolerant Ethernet
Networked Control Systems. The use of Gigabit Ethernet in networked control systems was
investigated using the OPNET simulator. Real-time traffic and non-real time traffic were
integrated without changing the IEEE 802.3 protocol packet format. In a mixed traffic
industrial environment, it was found that standard Gigabit Ethernet switches succeeded in
meeting the required time constraints. The maximum speed of operation of individual
machines and fault tolerant production-lines was also studied.
The reliability and availability of fault tolerant production lines was addressed next. It was
shown how to use Markov models to find the most cost-effective way of increasing the
Mean Time To Failure MTTF. Improved techniques for modeling repair were also discussed.
Finally, it was shown how to introduce fault tolerance at the sensor level in order to increase
production line mission time.

10. References

Amer, H.H. & McCluskey, E.J. (1986). "Calculation of the Coverage Parameter for the Reliability
Modeling of Fault-tolerant Computer Systems", Proc. Intern. Symp. on Circuits and
Systems ISCAS, pp. 1050-1053, San Jose, CA, U.S.A., May 1986.

Amer, H.H. & McCluskey, E.J. (1987a). "Weighted Coverage in Fault-tolerant Systems", Proc.
Reliability and Maintainability Symp. RAMS, pp.187-191, Philadelphia, PA, U.S.A.,
January 1987.

Amer, H.H. & McCluskey, E.J. (1987b). "Latent Failures and Coverage in Fault-tolerant
Systems", Proc. Phoenix Conf. on Computers and Communications, Scottsdale, pp. 89-93,
AZ, U.S.A., February 1987.

Amer, H.H. & McCluskey, E.J. (1987c). "Calculation of Coverage Parameter", IEEE Trans.
Reliability, June 1987, pp. 194-198.

Amer, H.H.; Moustafa, M.S. & Daoud, R.M. (2005). “Optimum Machine Performance In
Fault-Tolerant Networked Control Systems”, Proceedings of the IEEE EUROCON
Conference, pp. 346-349, Belgrade, Serbia & Montenegro, November 2005.

Amer, H.H.; Moustafa, M.S. & Daoud, R.M. (2006a). “Availability Of Pyramid Industrial
Networks”, Proceedings of the Canadian Conference on Electrical and Computer
Engineering CCECE, pp. 1862-1865, Ottawa, Canada, May 2006.

Amer, H.H. & Daoud, R.M. (2006b). “Parameter Determination for the Markov Modeling of
Two-Machine Production Lines” Proceedings of the International IEEE Conference on
Industrial Informatics INDIN, pp. 1178-1182, Singapore, August 2006.

Amer, H.H. & Daoud, R.M. (2008). “Increasing Network Reliability by Using Fault-Tolerant
Sensors”, International Journal of Factory Automation, Robotics and Soft Computing,
January 2008, pp. 71-76.

Arnold, T.F. (1973). “The concept of coverage and its effect on the reliability model of a
repairable system,” IEEE Trans. On Computers, vol. C-22, No. 3, March 1973.

Baillieul, J. & Antsaklis, P.J. (2007). “Control and Communication Challenges in Networked
Real-Time Systems”, Proceedings of the IEEE, Vol. 95, No. 1, January 2007, pp. 9-28.

Billinton, R. & Allan, R. (1983) “Reliability Evaluation of Engineering Systems: Concepts and
Techniques”, Pitman.

www.intechopen.com

Performance and Reliability of Fault-Tolerant Ethernet Networked Control Systems 285

Fig. 8. RBD for TMR Configuration

It is assumed here that the production line is totally fault-free after maintenance. If rmin is
high enough, there will be no unscheduled down time and no loss of production. Of course,
if rmin is very high, MT will decrease and the down time will increase. Production can of
course be directly related to cost. Let Rline be the reliability of the production line. Rsensor,
Rswitch, Rcontroller and Ractuator will be the reliabilities of the sensor, switch, controller and
actuator, respectively. For exponentially-distributed failure times: R = e-t. R is the
component reliability (sensor, controller, ...) and λ is its failure rate (which is constant
(Johnson, 1989; Siewiorek & Swarz, 1998)). Assume for simplicity that the switches are very
reliable when compared to the sensors, actuators or controllers and that their probability of
failure can be neglected. Furthermore, assume that all sensors on both machines have an
identical reliability. The same applies for the controllers and the actuators. Next, the
reliabilities of the production line will be calculated for the three configurations: Simplex,
Two-Cont and TMR.
In the Simplex mode, there is no fault tolerance at all and any sensor, controller or actuator
failure causes a system failure. Hence:

))()((8232
actuatorcontrollersensorline RRRR (15)

Remember that each machine has 16 sensors, one controller and 4 actuators and the system
(production line) consists of two machines. If fault tolerance is introduced at the controller
level (as in (Daoud et al., 2004b)

 8232 11 actuatorcontrollersensorline RRRR (16)

The next level of fault tolerance is the introduction of Triple Modular Redundancy at the
sensor level. Each of the 32 sensors will now be a sensor assembly that consists of three
identical sensors. Hence

 823232 1123 actuatorcontrollersensorsensorline RRRRR (17)

Equations 15, 16 and 17 are then used to determine MT for a specific value of Rline for each of
the three configurations. Hence, the cost-effectiveness of the added fault-tolerance can be
quantitatively examined. More details can be found in (Amer & Daoud, 2008).

9. Conclusion

This chapter has discussed the performance and reliability of fault-tolerant Ethernet
Networked Control Systems. The use of Gigabit Ethernet in networked control systems was
investigated using the OPNET simulator. Real-time traffic and non-real time traffic were
integrated without changing the IEEE 802.3 protocol packet format. In a mixed traffic
industrial environment, it was found that standard Gigabit Ethernet switches succeeded in
meeting the required time constraints. The maximum speed of operation of individual
machines and fault tolerant production-lines was also studied.
The reliability and availability of fault tolerant production lines was addressed next. It was
shown how to use Markov models to find the most cost-effective way of increasing the
Mean Time To Failure MTTF. Improved techniques for modeling repair were also discussed.
Finally, it was shown how to introduce fault tolerance at the sensor level in order to increase
production line mission time.

10. References

Amer, H.H. & McCluskey, E.J. (1986). "Calculation of the Coverage Parameter for the Reliability
Modeling of Fault-tolerant Computer Systems", Proc. Intern. Symp. on Circuits and
Systems ISCAS, pp. 1050-1053, San Jose, CA, U.S.A., May 1986.

Amer, H.H. & McCluskey, E.J. (1987a). "Weighted Coverage in Fault-tolerant Systems", Proc.
Reliability and Maintainability Symp. RAMS, pp.187-191, Philadelphia, PA, U.S.A.,
January 1987.

Amer, H.H. & McCluskey, E.J. (1987b). "Latent Failures and Coverage in Fault-tolerant
Systems", Proc. Phoenix Conf. on Computers and Communications, Scottsdale, pp. 89-93,
AZ, U.S.A., February 1987.

Amer, H.H. & McCluskey, E.J. (1987c). "Calculation of Coverage Parameter", IEEE Trans.
Reliability, June 1987, pp. 194-198.

Amer, H.H.; Moustafa, M.S. & Daoud, R.M. (2005). “Optimum Machine Performance In
Fault-Tolerant Networked Control Systems”, Proceedings of the IEEE EUROCON
Conference, pp. 346-349, Belgrade, Serbia & Montenegro, November 2005.

Amer, H.H.; Moustafa, M.S. & Daoud, R.M. (2006a). “Availability Of Pyramid Industrial
Networks”, Proceedings of the Canadian Conference on Electrical and Computer
Engineering CCECE, pp. 1862-1865, Ottawa, Canada, May 2006.

Amer, H.H. & Daoud, R.M. (2006b). “Parameter Determination for the Markov Modeling of
Two-Machine Production Lines” Proceedings of the International IEEE Conference on
Industrial Informatics INDIN, pp. 1178-1182, Singapore, August 2006.

Amer, H.H. & Daoud, R.M. (2008). “Increasing Network Reliability by Using Fault-Tolerant
Sensors”, International Journal of Factory Automation, Robotics and Soft Computing,
January 2008, pp. 71-76.

Arnold, T.F. (1973). “The concept of coverage and its effect on the reliability model of a
repairable system,” IEEE Trans. On Computers, vol. C-22, No. 3, March 1973.

Baillieul, J. & Antsaklis, P.J. (2007). “Control and Communication Challenges in Networked
Real-Time Systems”, Proceedings of the IEEE, Vol. 95, No. 1, January 2007, pp. 9-28.

Billinton, R. & Allan, R. (1983) “Reliability Evaluation of Engineering Systems: Concepts and
Techniques”, Pitman.

www.intechopen.com

Factory Automation286

Blanke, M.; Kinnaert, M.; Lunze, J. & Staroswiecki, M. (2006). “Diagnosis and Fault-Tolerant
Control”, Springer-Verlag.

Bossar Horizontal Machinery. Official Site: www.bossar.es
Brahimi, B.; Aubrun, C. & Rondeau, E. (2006). “Modelling and Simulation of Scheduling

Policies Implemented in Ethernet Switch by Using Coloured Petri Nets,”
Proceedings of the 11th IEEE International Conference on Emerging Technologies and
Factory Automation ETFA, Prague, Czech Republic, September 2006.

Brahimi, B. (2007). “Proposition d’une approche intégrée basée sur les réseaux de Petri de
Haut Niveau pour simuler et évaluer les systèmes contrôlés en réseau,” PhD
Thesis, Université Henri Poincaré, Nancy I, December 2007.

Bushnell, L. (2001). “Networks and Control”, IEEE Control Systems Magazine, vol. 21, no. 1,
2001, pp. 22-23.

Clauset, A., Tanner, H.G., Abdallah, C.T., & Byrne, R.H. (2008). “Controlling Across
Complex Networks – Emerging Links Between Networks and Control”, Annual
Reviews in Control , Vol. 32, No. 2, pp. 183–192, December 2008.

ControlNet, Official Site: http://www.controlnet.org
Daoud, R.M.; Elsayed, H.M.; Amer, H.H. & Eid, S.Z. (2003). “Performance of Fast and

Gigabit Ethernet in Networked Control Systems,” Proceedings of the IEEE
International Mid-West Symposium on Circuits and Systems, MWSCAS, Cairo, Egypt,
December 2003.

Daoud, R.M. (2004a). Performance of Gigabit Ethernet in Networked Control Systems, MSc
Thesis, Electronics and Communications Department, Faculty of Engineering, Cairo
University, 2004.

Daoud, R.M.; Elsayed, H.M. & Amer, H.H. (2004b). “Gigabit Ethernet for Redundant
Networked Control Systems, Proceedings of the IEEE International Conference on
Industrial Technology ICIT, December 2004, Hammamet, Tunis.

Daoud, R.M., Amer, H.H. & Elsayed, H.M. (2005). “Fault-Tolerant Networked Control
Systems under Varying Load,” IEEE Mid-Summer Workshop on Soft Computing in
Industrial Applications, SMCia, Espoo, Finland, June 2005.

Daoud, R.M. & Amer, H.H. (2007). “Ethernet for Heavy Traffic Networked Control
Systems”, International Journal of Factory Automation, Robotics and Soft Computing,
January 2007, pp. 34-39.

Daoud, R.M. (2008). Wireless and Wired Ethernet for Intelligent Transportation Systems, DSc
Dissertation, LAMIH-SP, Universite de Valenciennes et du Hainaut Cambresis,
France, 2008.

Decotignie, J.-D. (2005). “Ethernet-Based Real-Time and Industrial Communications,”
Proceedings of the IEEE, vol. 93, No. 6, June 2005.

Eker, J. & Cervin, A. (1999). “A Matlab Toolbox for Real-Time and Control Systems Co-
Design,” 6th International Conference on Real-Time Computing Systems and Applications,
Hong Kong, P.R. China, December 1999.

EtherNet/IP Performance and Application Guide, Allen-Bradley, Rockwell Automation,
Application Solution.

Felser, M. (2005). “Real-Time Ethernet – Industry Prospective,” Proceedings of the IEEE, vol.
93, No. 6, June 2005.

Georges, J.-P. (2005). “Systèmes contrôles en réseau: Evaluation de performances
d’architectures Ethernet commutées,” PhD thesis, Centre de Recherche en
Automatique de Nancy CRAN, November 2005.

Georges, J.P.; Vatanski, N.; Rondeau, E. & Jämsä-Jounela, S.-L. (2006). “Use of Upper Bound
Delay Estimate in Stability Analysis and Robust Control Compensation in
Networked Control Systems,” 12th IFAC Symposium on Information Control Problems
in Manufacturing, INCOM, St-Etienne, France, May 2006.

Grieu, J. (2004). “Analyse et évaluation de techniques de commutation Ethernet pour
l’interconnexion des systèmes avioniques,” PhD Thesis, Institut National
Polytechnique de Toulouse, Ecole doctorale informatique et telecommunications,
September 2004.

IEEE Std 802.3, 2000 Edition
Jasperneite, J. & Elsayed, E. (2004). “Investigations on a Distributed Time-triggered Ethernet

Realtime Protocol used by PROFINET,” 3rd International Workshop on Real-Time
Networks (RTN 2004), Catania, Sicily, Italy , Jun 2004.

Johnson, B. W. (1989). “Design and Analysis of Fault-Tolerant Digital Systems”, Addison-
Wesley.

Hespanha, J.P. , Naghshtabrizi, P. & Xu, Y (2007). “A Survey of Recent Results in Networked
Control Systems”, Proceedings of the IEEE, Vol. 95, No. 1, January 2007, pp. 138-162.

Kumar, P.R. (2001). “New Technological Vistas for Systems and Control: The Example of
Wireless Networks,” IEEE Control Systems Magazine, vol. 21, no. 1, 2001, pp. 24-37.

Lee, S.-H. & Cho, K.-H. (2001). “Congestion Control of High-Speed Gigabit-Ethernet
Networks for Industrial Applications,” Proc. IEEE ISIE, Pusan, Korea, pp. 260-265,
June 2001.

Lian, F.L.; Moyne, J.R. & Tilbury, D.M. (1999). “Performance Evaluation of Control
Networks: Ethernet, ControlNet, and DeviceNet,” Tech. Rep. UM-MEAM-99-02,
February 1999. Available: http://www.eecs.umich.edu/~impact

Lian, F.L.; Moyne, J.R. & Tilbury, D.M. (2001a). “Performance Evaluation of Control
Networks: Ethernet, ControlNet, and DeviceNet,” IEEE Control Systems Magazine,
Vol. 21, No. 1, pp.66-83, February 2001.

Lian, F.L.; Moyne, J.R. & Tilbury, D.M. (2001b). “Networked Control Systems Toolkit: A
Simulation Package for Analysis and Design of Control Systems with Network
Communication,” Tech. Rep., UM-ME-01-04, July 2001.
Available: http://www.eecs.umich.edu/~impact

Lounsbury, B. & Westerman, J. (2001). “Ethernet: Surviving the Manufacturing and
Industrial Environment,” Allen-Bradley white paper, May 2001.

Marsal, G. (2006a). “Evaluation of time performances of Ethernet-based Automation
Systems by simulation of High-level Petri Nets,” PhD Thesis, Ecole Normale
Superieure De Cachan, December 2006.

Marsal, G.; Denis, B.; Faur, J.-M. & Frey, G. (2006b). “Evaluation of Response Time in
Ethernet-based Automation Systems,” Proceedings of the 11th IEEE International
Conference on Emerging Technologies and Factory Automation, ETFA, Prague, Czech
Republic, September 2006, pp. 380-387.

Meditch, J.S. & Lea, C.-T. (1983). “Stability and Optimization of the CSMA and CSMA/CD
Channels,” IEEE Trans. Comm., Vol. 31, No. 6 , June 1983, pp. 763-774.

www.intechopen.com

Performance and Reliability of Fault-Tolerant Ethernet Networked Control Systems 287

Blanke, M.; Kinnaert, M.; Lunze, J. & Staroswiecki, M. (2006). “Diagnosis and Fault-Tolerant
Control”, Springer-Verlag.

Bossar Horizontal Machinery. Official Site: www.bossar.es
Brahimi, B.; Aubrun, C. & Rondeau, E. (2006). “Modelling and Simulation of Scheduling

Policies Implemented in Ethernet Switch by Using Coloured Petri Nets,”
Proceedings of the 11th IEEE International Conference on Emerging Technologies and
Factory Automation ETFA, Prague, Czech Republic, September 2006.

Brahimi, B. (2007). “Proposition d’une approche intégrée basée sur les réseaux de Petri de
Haut Niveau pour simuler et évaluer les systèmes contrôlés en réseau,” PhD
Thesis, Université Henri Poincaré, Nancy I, December 2007.

Bushnell, L. (2001). “Networks and Control”, IEEE Control Systems Magazine, vol. 21, no. 1,
2001, pp. 22-23.

Clauset, A., Tanner, H.G., Abdallah, C.T., & Byrne, R.H. (2008). “Controlling Across
Complex Networks – Emerging Links Between Networks and Control”, Annual
Reviews in Control , Vol. 32, No. 2, pp. 183–192, December 2008.

ControlNet, Official Site: http://www.controlnet.org
Daoud, R.M.; Elsayed, H.M.; Amer, H.H. & Eid, S.Z. (2003). “Performance of Fast and

Gigabit Ethernet in Networked Control Systems,” Proceedings of the IEEE
International Mid-West Symposium on Circuits and Systems, MWSCAS, Cairo, Egypt,
December 2003.

Daoud, R.M. (2004a). Performance of Gigabit Ethernet in Networked Control Systems, MSc
Thesis, Electronics and Communications Department, Faculty of Engineering, Cairo
University, 2004.

Daoud, R.M.; Elsayed, H.M. & Amer, H.H. (2004b). “Gigabit Ethernet for Redundant
Networked Control Systems, Proceedings of the IEEE International Conference on
Industrial Technology ICIT, December 2004, Hammamet, Tunis.

Daoud, R.M., Amer, H.H. & Elsayed, H.M. (2005). “Fault-Tolerant Networked Control
Systems under Varying Load,” IEEE Mid-Summer Workshop on Soft Computing in
Industrial Applications, SMCia, Espoo, Finland, June 2005.

Daoud, R.M. & Amer, H.H. (2007). “Ethernet for Heavy Traffic Networked Control
Systems”, International Journal of Factory Automation, Robotics and Soft Computing,
January 2007, pp. 34-39.

Daoud, R.M. (2008). Wireless and Wired Ethernet for Intelligent Transportation Systems, DSc
Dissertation, LAMIH-SP, Universite de Valenciennes et du Hainaut Cambresis,
France, 2008.

Decotignie, J.-D. (2005). “Ethernet-Based Real-Time and Industrial Communications,”
Proceedings of the IEEE, vol. 93, No. 6, June 2005.

Eker, J. & Cervin, A. (1999). “A Matlab Toolbox for Real-Time and Control Systems Co-
Design,” 6th International Conference on Real-Time Computing Systems and Applications,
Hong Kong, P.R. China, December 1999.

EtherNet/IP Performance and Application Guide, Allen-Bradley, Rockwell Automation,
Application Solution.

Felser, M. (2005). “Real-Time Ethernet – Industry Prospective,” Proceedings of the IEEE, vol.
93, No. 6, June 2005.

Georges, J.-P. (2005). “Systèmes contrôles en réseau: Evaluation de performances
d’architectures Ethernet commutées,” PhD thesis, Centre de Recherche en
Automatique de Nancy CRAN, November 2005.

Georges, J.P.; Vatanski, N.; Rondeau, E. & Jämsä-Jounela, S.-L. (2006). “Use of Upper Bound
Delay Estimate in Stability Analysis and Robust Control Compensation in
Networked Control Systems,” 12th IFAC Symposium on Information Control Problems
in Manufacturing, INCOM, St-Etienne, France, May 2006.

Grieu, J. (2004). “Analyse et évaluation de techniques de commutation Ethernet pour
l’interconnexion des systèmes avioniques,” PhD Thesis, Institut National
Polytechnique de Toulouse, Ecole doctorale informatique et telecommunications,
September 2004.

IEEE Std 802.3, 2000 Edition
Jasperneite, J. & Elsayed, E. (2004). “Investigations on a Distributed Time-triggered Ethernet

Realtime Protocol used by PROFINET,” 3rd International Workshop on Real-Time
Networks (RTN 2004), Catania, Sicily, Italy , Jun 2004.

Johnson, B. W. (1989). “Design and Analysis of Fault-Tolerant Digital Systems”, Addison-
Wesley.

Hespanha, J.P. , Naghshtabrizi, P. & Xu, Y (2007). “A Survey of Recent Results in Networked
Control Systems”, Proceedings of the IEEE, Vol. 95, No. 1, January 2007, pp. 138-162.

Kumar, P.R. (2001). “New Technological Vistas for Systems and Control: The Example of
Wireless Networks,” IEEE Control Systems Magazine, vol. 21, no. 1, 2001, pp. 24-37.

Lee, S.-H. & Cho, K.-H. (2001). “Congestion Control of High-Speed Gigabit-Ethernet
Networks for Industrial Applications,” Proc. IEEE ISIE, Pusan, Korea, pp. 260-265,
June 2001.

Lian, F.L.; Moyne, J.R. & Tilbury, D.M. (1999). “Performance Evaluation of Control
Networks: Ethernet, ControlNet, and DeviceNet,” Tech. Rep. UM-MEAM-99-02,
February 1999. Available: http://www.eecs.umich.edu/~impact

Lian, F.L.; Moyne, J.R. & Tilbury, D.M. (2001a). “Performance Evaluation of Control
Networks: Ethernet, ControlNet, and DeviceNet,” IEEE Control Systems Magazine,
Vol. 21, No. 1, pp.66-83, February 2001.

Lian, F.L.; Moyne, J.R. & Tilbury, D.M. (2001b). “Networked Control Systems Toolkit: A
Simulation Package for Analysis and Design of Control Systems with Network
Communication,” Tech. Rep., UM-ME-01-04, July 2001.
Available: http://www.eecs.umich.edu/~impact

Lounsbury, B. & Westerman, J. (2001). “Ethernet: Surviving the Manufacturing and
Industrial Environment,” Allen-Bradley white paper, May 2001.

Marsal, G. (2006a). “Evaluation of time performances of Ethernet-based Automation
Systems by simulation of High-level Petri Nets,” PhD Thesis, Ecole Normale
Superieure De Cachan, December 2006.

Marsal, G.; Denis, B.; Faur, J.-M. & Frey, G. (2006b). “Evaluation of Response Time in
Ethernet-based Automation Systems,” Proceedings of the 11th IEEE International
Conference on Emerging Technologies and Factory Automation, ETFA, Prague, Czech
Republic, September 2006, pp. 380-387.

Meditch, J.S. & Lea, C.-T. (1983). “Stability and Optimization of the CSMA and CSMA/CD
Channels,” IEEE Trans. Comm., Vol. 31, No. 6 , June 1983, pp. 763-774.

www.intechopen.com

Factory Automation288

Morriss, S.B. (1995). “Automated Manufacturing Systems Actuators, Controls, Sensors, and
Robotics”, McGraw-Hill.

Nilsson, J., “Real-Time Control Systems with Delays,” PhD thesis, Department of Automatic
Control, Lund Institute of Technology, Lund, Sweden, 1998.

ODVA, “Volume 1: CIP Common,” Available:
http://www.odva.org/10_2/03_events/03_ethernet-homepage.htm

ODVA, “Volume 2: EtherNet/IP Adaptation on CIP,” Available:
http://www.odva.org/10_2/03_events/03_ethernet-homepage.htm

Opnet, Official Site for OPNET http://opnet.com
Siewiorek, D.P. & Swarz, R.S. (1998). “Reliable Computer Systems – Design and Evaluation,” A

K Peters, Natick, Massachusetts.
Skeie, T.; Johannessen, S. & Brunner, C. (2002). “Ethernet in Substation Automation,” IEEE

Control Syst., Vol. 22, no. 3, June 2002, pp. 43-51.
Soloman, S. (1994). “Sensors and Control Systems in Manufacturing,” McGraw-Hill.
Sundararaman, B.; Buy, U. & Kshemkalyani, A.D. (2005). “Clock Synchronization for

Wireless Sensor Networks: a survey,” Ad Hoc Networks, vol. 3, 2005, pp. 281-323.
Thomesse, J.-P. (2005). “Fieldbus Technology in Industrial Automation”, Proceedings of the

IEEE, Vol. 93, No. 6, June 2005, pp. 1073-1101.
Tolly, K. (1997). “The Great Networking Correction: Frames Reaffirmed,” Industry Report, The

Tolly Group, IEEE Internet Computing, 1997.
Trivedi, K.S. (2002). “Probability and Statistics with Reliability, Queuing, and Computer Science

Applications”, Wiley, New York.
Vatanski, N.; Georges, J.P.; Aubrun, C.; Rondeau, E. & Jämsä-Jounela, S.-L. (2006). “Control

Compensation Based on Upper Bound Delay in Networked Control Systems,” 17th
International Symposium on Mathematical Theory of Networks and Systems, MTNS,
Kyoto, Japan, July 2006.

Walsh, G.C. & Ye, H. (2001). “Scheduling of Networked Control Systems,” IEEE Control
Systems Magazine, vol. 21, no. 1, February 2001, pp. 57-65.

Wang, J. & Keshav, S. (1999). “Efficient and Accurate Ethernet Simulation,” Cornell Network
Research Group (C/NRG), Department of Computer Science, Cornell University,
May 1999.

Wittenmark, B.; Bastian, B. & Nilsson, J. (1998). “Analysis of Time Delays in Synchronous
and Asynchronous Control Loops,” Lund Institute of Technology, 37th CDC,
Tampa, December 1998.

Yang, T.C. (2006). “Networked Control System: a Brief Survey”, IEE Proceedings-Control
Theory and Applications., Vol. 153, No. 4, July 2006, pp. 403-412.

Zhang, W.; Branicky, M.S. & Phillips, S.M. (2001). “Stability of Networked Control Systems,”
IEEE Control Systems Magazine, vol. 21, no. 1, February 2001, pp. 84-99.

www.intechopen.com

Factory Automation

Edited by Javier Silvestre-Blanes

ISBN 978-953-307-024-7

Hard cover, 602 pages

Publisher InTech

Published online 01, March, 2010

Published in print edition March, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Factory automation has evolved significantly in the last few decades, and is today a complex, interdisciplinary,

scientific area. In this book a selection of papers on topics related to factory automation is presented, covering

a broad spectrum, so that the reader may become familiar with the various fields, and also study them in more

depth where required. Within various chapters in this book, special attention is given to distributed applications

and their use of networks, since it is one of the most relevant subjects in the evolution of factory automation.

Different Medium Access Control and networks are analyzed, while Ethernet and Wireless networks are looked

at in more detail, since they are among the hottest topics in recent research. Another important subject is

everything concerning the increase in the complexity of factory automation, and the need for flexibility and

interoperability. Finally the use of multi-agent systems, advanced control, formal methods, or the application in

this field of RFID, are additional examples of the ideas and disciplines that experts around the world have

analyzed in their work.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Ramez M. Daoud, Hassanein H. Amer and Hany M. ElSayed (2010). Performance and Reliability of Fault-

Tolerant Ethernet Networked Control Systems, Factory Automation, Javier Silvestre-Blanes (Ed.), ISBN: 978-

953-307-024-7, InTech, Available from: http://www.intechopen.com/books/factory-automation/performance-

and-reliability-of-fault-tolerant-ethernet-networked-control-systems

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

