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1. Introduction    
 

The industrial automation is directly related to the technological development of 
information. Better hardware solutions, as well as improvements in software development 
methodologies have made possible the rapid development of the productive process 
control. In this Chapter, it is proposed an architecture that permits to join two technologies 
in the same hardware (Industrial Network) and software context (Multiagent Systems – 
MAS). We show a multiagent architecture which uses an algorithm-based Artificial Neural 
Network (ANN) to learn about fault problem patterns, detect faults, and adapt algorithms 
that can be used in these fault situations. We also present a dynamic Function Block (FB) 
parameter exchange strategy which allows agent allocation in fieldbus. This proposed 
architecture reduces the supervisor intervention to select and implement an appropriate 
structure of function block algorithms. Furthermore, these algorithms, when implemented 
into device function blocks, provide a solution at fieldbus level, reducing data traffic 
between gateway and device, and speeding up the process of dealing with the problem. We 
also present some examples for our approach. The first one introduces FBSIMU which 
simulates Foundation Fieldbus function blocks architecture. This software has a controlled 
process and allocates the MAS to detect and correct faults. The second example shows a 
multiagent architecture that implements the neural network change in a laboratory test 
process which imitates fault scenarios. 
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2. Theoretical Foundation 
 

2.1 Foundation Fieldbus Protocol 
The term FOUNDATION Fieldbus (FF) indicates the protocol specified by the Fieldbus 
Foundation and standardized by IEC1 standards number 61158 (IEC, 2000) and 61784 at 
profile CPF2 - 1/1 (IEC, 2003). It is a digital, serial, bidirectional, and distributed protocol, 
which interconnects field devices such as sensors, actuators and controllers. Basically, this 
protocol can be classified as a LAN (Local Area Network) for instruments used in process 
and industrial automation, with the ability to distribute the control application through a 
network. 
This protocol is based on the ISO/OSI (International Organization for 
Standardization/Open System Interconnection) seven layer reference model (ISO, 1994). 
Although being based on the ISO/OSI model, the FF does not use the network layer, the 
transport layer, the section layer, nor the presentation layer, because it is restricted to local 
applications. The entire network structure of the FF concentrates on the physical layer, the 
data link layer (DLL) and the application layer. Besides these three implemented layers, the 
protocol defines an additional layer named User Application Layer. 
The FF Physical Layer, named H1, uses a shielded twisted pair cable as communication 
medium. The H1 specifies a 31.25 kBit/s bit rate with Manchester codification over a bus 
powered channel. The network topology configuration is flexible: it is typically configured 
with a trunk and several spurs, attending certain physical and electrical limitations 
regarding maximum spur lengths and number of transmitters. 
The DLL carries the transmission control of all messages on the fieldbus and its protocol 
grants to the FF network temporal determinism for critic process control data. The 
communication is based on a master–slave model with a central communication scheduler 
(master), named Link Active Scheduler or LAS. This node performs the medium access 
control (MAC). Two types of DLL layer are standardized: Basic and Link Master. A Basic 
DLL transmitter does not have LAS capabilities, it operates passively as a communication 
slave. A Link Master DLL transmitter, on the other hand, can execute LAS functions and 
thus, if the active LAS node fails, become the LAS node. The FF Data Link Layer supports 
two transmission policies: one addressed to scheduled cyclic data, and another to sporadic 
(unscheduled) background data. These two communication policies share the physical bus, 
but they are sequentially segmented in cyclic time slots or periods. In the scheduled 
communication period, most process variables generated by periodic processes are 
transmitted cyclically according to a static global schedule table loaded on the LAS node. 
This cyclic transmission mode has higher priority over acyclic transmission modes. A 
periodic process can be defined as a process initiated at predetermined points in time, also 
called a time-triggered process. 
The period for the network cyclic process is typically from tenths to hundreds of 
milliseconds, and it is mandatory to consider that the generated data must be delivered 
before the next data is available. This type of periodic data is usually related to 
measurement and control variables (Cavalieri et al., 1993). 

1 International Electrotechnical Commission 
2 Communication Profile Family

Sporadic or unscheduled communication is used to transmit non periodic, or aperiodic, 
data, generated by sporadic processes not directly related to the control loop cycles, but to 
user configuration actions and data supervision efforts. The unscheduled transmissions are 
dispatched under a token pass scheme. A token that circulates among all active nodes on the 
bus is used in FF protocol. 
Once a transmitter receives the token, it is granted the right to send pending aperiodic 
messages with a minimum priority for a specific time period. Non periodic (or event-
triggered) processes are initiated as soon as specific events are noted (Pop et al., 2002). The 
event-triggered processes are unpredictable and usually related to alarm notifications, 
configuration data and user commands as cited before. Although acyclic traffic is less 
frequent than the cyclic one, the acyclic data should also be delivered prior to a given 
deadline, according to the system requirements. For a description of the MAC operation on 
both cyclic and acyclic phases, refer to Hong & Ko (2001), Wang et al. (2002), Petalidis & Gill 
(1998). 
The FF User Layer is directly related to the process automation tasks, and it is based on 
distributed control or monitoring strategies composed of Function Blocks (FB). Function 
Blocks are User Layer elements that encapsulate basic automation functions and 
consequently make the configuration of a distributed industrial application modular and 
simplified (Chen et al., 2002). Distributed among the transmitters, the FBs have their inputs 
and outputs linked to other blocks in order to perform distributed closed control loop 
schemes. When blocks from different transmitters are linked together, a remote link is 
configured and mapped to a cyclic message. Considering that all cyclic messages should be 
released in a predetermined instant defined on a schedule table, and that they carry data 
generated by the FBs, it is adequate to synchronize the execution of the FB set on the system 
with the referred cyclic transmissions schedule table. This solution leads to the concept of 
joint scheduling (Ferreiro et al., 1997). 
The Foundation Fieldbus standardized a set of ten basic function blocks (Fieldbus 
Foundation, 1999a), a complementary set of eleven advanced control blocks (Fieldbus 
Foundation, 1999b), and a special flexible function block intended to be fully configurable 
by the user, i.e., internal ladder logic and parameter set (Fieldbus Foundation, 1999c). The 
standard and advanced block sets provide mathematical and engineering calculations 
necessary to configure typical industrial control loop strategies, while the flexible function 
block can be applied to custom or advanced controls or to complex interlocking logics based 
on ladder nets. It is important to mention, however, that the standard is open at this point, 
permitting the integration of ‘‘user-defined’’ custom function blocks in order to enhance the 
capabilities of FF control system, and make the integration of novel control techniques 
possible. 

 
2.2 Multiagent systems 
An agent is a computer system, a paradigm to the development of software applications that 
is situated in some environment and is capable of autonomous action in that environment in 
order to meet its design objectives (Russell & Norvig, 2003). In a few words, a multiagent 
system (MAS) is a problem of placing the agents together (organized as a society). The 
application components of a multiagent system are agents. Several different multiagent 
architectures can be found in the literature including applications in automation (Weyns et 
al., 2005; Weyns & Holvoet, 2007; Seilonen et al., 2002; Feng et al., 2007). In a MAS, control is 
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2. Theoretical Foundation 
 

2.1 Foundation Fieldbus Protocol 
The term FOUNDATION Fieldbus (FF) indicates the protocol specified by the Fieldbus 
Foundation and standardized by IEC1 standards number 61158 (IEC, 2000) and 61784 at 
profile CPF2 - 1/1 (IEC, 2003). It is a digital, serial, bidirectional, and distributed protocol, 
which interconnects field devices such as sensors, actuators and controllers. Basically, this 
protocol can be classified as a LAN (Local Area Network) for instruments used in process 
and industrial automation, with the ability to distribute the control application through a 
network. 
This protocol is based on the ISO/OSI (International Organization for 
Standardization/Open System Interconnection) seven layer reference model (ISO, 1994). 
Although being based on the ISO/OSI model, the FF does not use the network layer, the 
transport layer, the section layer, nor the presentation layer, because it is restricted to local 
applications. The entire network structure of the FF concentrates on the physical layer, the 
data link layer (DLL) and the application layer. Besides these three implemented layers, the 
protocol defines an additional layer named User Application Layer. 
The FF Physical Layer, named H1, uses a shielded twisted pair cable as communication 
medium. The H1 specifies a 31.25 kBit/s bit rate with Manchester codification over a bus 
powered channel. The network topology configuration is flexible: it is typically configured 
with a trunk and several spurs, attending certain physical and electrical limitations 
regarding maximum spur lengths and number of transmitters. 
The DLL carries the transmission control of all messages on the fieldbus and its protocol 
grants to the FF network temporal determinism for critic process control data. The 
communication is based on a master–slave model with a central communication scheduler 
(master), named Link Active Scheduler or LAS. This node performs the medium access 
control (MAC). Two types of DLL layer are standardized: Basic and Link Master. A Basic 
DLL transmitter does not have LAS capabilities, it operates passively as a communication 
slave. A Link Master DLL transmitter, on the other hand, can execute LAS functions and 
thus, if the active LAS node fails, become the LAS node. The FF Data Link Layer supports 
two transmission policies: one addressed to scheduled cyclic data, and another to sporadic 
(unscheduled) background data. These two communication policies share the physical bus, 
but they are sequentially segmented in cyclic time slots or periods. In the scheduled 
communication period, most process variables generated by periodic processes are 
transmitted cyclically according to a static global schedule table loaded on the LAS node. 
This cyclic transmission mode has higher priority over acyclic transmission modes. A 
periodic process can be defined as a process initiated at predetermined points in time, also 
called a time-triggered process. 
The period for the network cyclic process is typically from tenths to hundreds of 
milliseconds, and it is mandatory to consider that the generated data must be delivered 
before the next data is available. This type of periodic data is usually related to 
measurement and control variables (Cavalieri et al., 1993). 

1 International Electrotechnical Commission 
2 Communication Profile Family

Sporadic or unscheduled communication is used to transmit non periodic, or aperiodic, 
data, generated by sporadic processes not directly related to the control loop cycles, but to 
user configuration actions and data supervision efforts. The unscheduled transmissions are 
dispatched under a token pass scheme. A token that circulates among all active nodes on the 
bus is used in FF protocol. 
Once a transmitter receives the token, it is granted the right to send pending aperiodic 
messages with a minimum priority for a specific time period. Non periodic (or event-
triggered) processes are initiated as soon as specific events are noted (Pop et al., 2002). The 
event-triggered processes are unpredictable and usually related to alarm notifications, 
configuration data and user commands as cited before. Although acyclic traffic is less 
frequent than the cyclic one, the acyclic data should also be delivered prior to a given 
deadline, according to the system requirements. For a description of the MAC operation on 
both cyclic and acyclic phases, refer to Hong & Ko (2001), Wang et al. (2002), Petalidis & Gill 
(1998). 
The FF User Layer is directly related to the process automation tasks, and it is based on 
distributed control or monitoring strategies composed of Function Blocks (FB). Function 
Blocks are User Layer elements that encapsulate basic automation functions and 
consequently make the configuration of a distributed industrial application modular and 
simplified (Chen et al., 2002). Distributed among the transmitters, the FBs have their inputs 
and outputs linked to other blocks in order to perform distributed closed control loop 
schemes. When blocks from different transmitters are linked together, a remote link is 
configured and mapped to a cyclic message. Considering that all cyclic messages should be 
released in a predetermined instant defined on a schedule table, and that they carry data 
generated by the FBs, it is adequate to synchronize the execution of the FB set on the system 
with the referred cyclic transmissions schedule table. This solution leads to the concept of 
joint scheduling (Ferreiro et al., 1997). 
The Foundation Fieldbus standardized a set of ten basic function blocks (Fieldbus 
Foundation, 1999a), a complementary set of eleven advanced control blocks (Fieldbus 
Foundation, 1999b), and a special flexible function block intended to be fully configurable 
by the user, i.e., internal ladder logic and parameter set (Fieldbus Foundation, 1999c). The 
standard and advanced block sets provide mathematical and engineering calculations 
necessary to configure typical industrial control loop strategies, while the flexible function 
block can be applied to custom or advanced controls or to complex interlocking logics based 
on ladder nets. It is important to mention, however, that the standard is open at this point, 
permitting the integration of ‘‘user-defined’’ custom function blocks in order to enhance the 
capabilities of FF control system, and make the integration of novel control techniques 
possible. 

 
2.2 Multiagent systems 
An agent is a computer system, a paradigm to the development of software applications that 
is situated in some environment and is capable of autonomous action in that environment in 
order to meet its design objectives (Russell & Norvig, 2003). In a few words, a multiagent 
system (MAS) is a problem of placing the agents together (organized as a society). The 
application components of a multiagent system are agents. Several different multiagent 
architectures can be found in the literature including applications in automation (Weyns et 
al., 2005; Weyns & Holvoet, 2007; Seilonen et al., 2002; Feng et al., 2007). In a MAS, control is 
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decentralized, i.e., none of the system components has global control over the system or 
global knowledge about the distributed system.  
The main reason for the use of agents in these environments is that these applications need 
distributed interpretation and distributed planning by means of intelligent sensors.  
Furthermore, distributed multiagent systems are an appropriate concept for many fields of 
industrial automation like monitoring, fault diagnosis, simulation and control, as they give 
several advantages for these applications. They allow distributed data collection while 
maintaining a high level of scalability and flexibility, once they keep network load low 
through an adequate pre-processing. They also provide on-site reactivity and intelligence 
that is required in various remote control scenarios, since the network channel is not capable 
of transporting each and every control command. Finally they offer an abstraction level 
when accessing proprietary devices for monitoring and control, and they are often easier to 
integrate into existing applications than, for example, a service oriented architecture (Theiss 
et al., 2008).  
Applications of agent technology in the research of process automation systems have not 
been as numerous as many other industrial application domains. Neither the way to apply 
agent technology in process automation nor the possible utility of it has been so evident in 
process automation than in other fields. However, some promising research has been 
reported and some experiences from other fields might also have applicability in process 
automation (Seilonen et al., 2002). 
Autonomy, high encapsulation and reactivity of agents motivate their usage in large 
automation systems. The application area of multiagent systems includes power supply 
systems, manufacturing systems, building automation and mobile applications (Jennings & 
Bussmann, 2002). The agent functionality comprises monitoring and diagnosis (e.g., Taylor 
& Sayda, 2003; Albert et al., 2003; Pirttioja et al., 2005), control, scheduling, modelling and 
simulation of these applications. The agents primarily operate on management level 
(Schoop et al., 2002) and use web-based technologies like web services and OSGi (Fei-Yue et 
al., 2005). This allows them to use the PCs and servers as hosts, making the performance, 
memory usage and real-time issues negligible. 
As a conclusion to the current research about agent applications in process automation and 
other control applications, one could state that agents have generally been applied either for 
higher-level, non real-time and event-based operations, or for integration purposes. The 
state-of-the-art research regarding MAS applications in process automation leaves some 
questions unanswered behind. Research has mainly focused on control functions and the 
functional role of MAS in process automation. Other functions, e.g., monitoring and 
information access, have received less attention (Seilonen, 2006). Furthermore, in many cases 
these models do not address the issue of deterministic response times. Unlike the 
aforementioned studies, we have shown MAS architecture which enables the 
implementation of control configuration at the fieldbus level. We believe this is the main 
contribution of our work. A similar study was proposed by Brennan et al. (2002). However, 
in our study we aggregate machine learning through an Artificial Neural Network (ANN) 
and FIPA (Foundations of Intelligent Physical Agents) compliant agents. Moreover, our 
implementation raises a basic agent feature: adaptation. The function block allocation will 
change to adapt to a type of problem, without user intervention. 

 
 

3. Function Block Intelligent Algorithms 
 

Smart configuration strategies are implemented by intelligent algorithms that are 
incorporated to the sensors using the standard function blocks. These blocks have basic 
functions that, when combined, are able to implement the artificial neural network for 
example. The organization of function blocks is essential to the success of this type of 
process. 
The protocol found to better suit these demands was the Foundation Fieldbus protocol, 
because its system is gifted with the capacity of distributing the control of the process in the 
field, i.e. the sensors and actuators have embedded processors which can execute the 
algorithms in a distributed way. 
Many projects have been developed using Foundation Fieldbus protocol and function 
blocks. In ours laboratories (LAMP - Petroleum Measurement and Evaluation Laboratory in 
Federal University of Rio Grande do Norte) some intelligent algorithms were implemented 
using mainly neural networks. 
In Silva et al. (2006), we can see a solution to execute artificial neural network algorithms in 
the environment of networks to Foundation Fieldbus industrial automation, based on 
standardized function blocks. This strategy involves two function blocks: arithmetic and 
characterizer. They must be configured and linked in such a way that the set behaves as an 
artificial neuron (Haykin, 1999). In the arithmetic block, the Algorithm Type parameter must 
be chosen as Traditional Adder and the gains of the inputs must be filled according to the 
training performed, as well as the bias values. 
By linking the output of an arithmetic function block to the input of a signal characterizer 
function block, configured as described above, we have an artificial neuron in the FF 
environment. And by linking of these neurons, neural networks are built. 
With another neural network function block, configuration of the agents can compensate the 
error as it is seen in Cagni et al. (2005). In his work the implementation of the self-
calibration, self-compensation and self-validation algorithms for Foundation Fieldbus 
sensors are presented using standard function blocks. 
The deterioration of the sensors can make the sensor measurement precision decrease in 
time, until another calibration of the sensor is made. The lack of precision and the 
calibration process can be economically disadvantageous to the industries. Determining 
what is the best calibration period for a sensor is the main focus of interest of this research. 
With this purpose, some based-neural network algorithms were created to increase the 
precision and the reliability of data collected by the sensors and to optimize the calibration 
periods. These algorithms are the self-compensation, self-calibration and self-validation 
ones.  
The addition of noise is another very common problem during the process of extracting 
information generated by a sensor installed in a field network. In Costa et al. (2003), the 
implementation of a system is proposed so that, beginning from software embedded in a 
DSP (Digital Signal Processor), interacts with fieldbus devices connected through a 
Foundation Fieldbus network. This approach, based on the technique of Independent 
Component Analysis (ICA), presents an efficient solution to the problem of extraction of the 
noise derived from the sensor. In other work, Fernandes et al. (2007) presents an approach to 
process fault detection and isolation (FDI) system applied to a level control system 
connected with an industrial network Foundation Fieldbus. The FDI system was developed 
using artificial neural networks (ANN). Basically, the FDI system was divided in two parts: 
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decentralized, i.e., none of the system components has global control over the system or 
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distributed interpretation and distributed planning by means of intelligent sensors.  
Furthermore, distributed multiagent systems are an appropriate concept for many fields of 
industrial automation like monitoring, fault diagnosis, simulation and control, as they give 
several advantages for these applications. They allow distributed data collection while 
maintaining a high level of scalability and flexibility, once they keep network load low 
through an adequate pre-processing. They also provide on-site reactivity and intelligence 
that is required in various remote control scenarios, since the network channel is not capable 
of transporting each and every control command. Finally they offer an abstraction level 
when accessing proprietary devices for monitoring and control, and they are often easier to 
integrate into existing applications than, for example, a service oriented architecture (Theiss 
et al., 2008).  
Applications of agent technology in the research of process automation systems have not 
been as numerous as many other industrial application domains. Neither the way to apply 
agent technology in process automation nor the possible utility of it has been so evident in 
process automation than in other fields. However, some promising research has been 
reported and some experiences from other fields might also have applicability in process 
automation (Seilonen et al., 2002). 
Autonomy, high encapsulation and reactivity of agents motivate their usage in large 
automation systems. The application area of multiagent systems includes power supply 
systems, manufacturing systems, building automation and mobile applications (Jennings & 
Bussmann, 2002). The agent functionality comprises monitoring and diagnosis (e.g., Taylor 
& Sayda, 2003; Albert et al., 2003; Pirttioja et al., 2005), control, scheduling, modelling and 
simulation of these applications. The agents primarily operate on management level 
(Schoop et al., 2002) and use web-based technologies like web services and OSGi (Fei-Yue et 
al., 2005). This allows them to use the PCs and servers as hosts, making the performance, 
memory usage and real-time issues negligible. 
As a conclusion to the current research about agent applications in process automation and 
other control applications, one could state that agents have generally been applied either for 
higher-level, non real-time and event-based operations, or for integration purposes. The 
state-of-the-art research regarding MAS applications in process automation leaves some 
questions unanswered behind. Research has mainly focused on control functions and the 
functional role of MAS in process automation. Other functions, e.g., monitoring and 
information access, have received less attention (Seilonen, 2006). Furthermore, in many cases 
these models do not address the issue of deterministic response times. Unlike the 
aforementioned studies, we have shown MAS architecture which enables the 
implementation of control configuration at the fieldbus level. We believe this is the main 
contribution of our work. A similar study was proposed by Brennan et al. (2002). However, 
in our study we aggregate machine learning through an Artificial Neural Network (ANN) 
and FIPA (Foundations of Intelligent Physical Agents) compliant agents. Moreover, our 
implementation raises a basic agent feature: adaptation. The function block allocation will 
change to adapt to a type of problem, without user intervention. 
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incorporated to the sensors using the standard function blocks. These blocks have basic 
functions that, when combined, are able to implement the artificial neural network for 
example. The organization of function blocks is essential to the success of this type of 
process. 
The protocol found to better suit these demands was the Foundation Fieldbus protocol, 
because its system is gifted with the capacity of distributing the control of the process in the 
field, i.e. the sensors and actuators have embedded processors which can execute the 
algorithms in a distributed way. 
Many projects have been developed using Foundation Fieldbus protocol and function 
blocks. In ours laboratories (LAMP - Petroleum Measurement and Evaluation Laboratory in 
Federal University of Rio Grande do Norte) some intelligent algorithms were implemented 
using mainly neural networks. 
In Silva et al. (2006), we can see a solution to execute artificial neural network algorithms in 
the environment of networks to Foundation Fieldbus industrial automation, based on 
standardized function blocks. This strategy involves two function blocks: arithmetic and 
characterizer. They must be configured and linked in such a way that the set behaves as an 
artificial neuron (Haykin, 1999). In the arithmetic block, the Algorithm Type parameter must 
be chosen as Traditional Adder and the gains of the inputs must be filled according to the 
training performed, as well as the bias values. 
By linking the output of an arithmetic function block to the input of a signal characterizer 
function block, configured as described above, we have an artificial neuron in the FF 
environment. And by linking of these neurons, neural networks are built. 
With another neural network function block, configuration of the agents can compensate the 
error as it is seen in Cagni et al. (2005). In his work the implementation of the self-
calibration, self-compensation and self-validation algorithms for Foundation Fieldbus 
sensors are presented using standard function blocks. 
The deterioration of the sensors can make the sensor measurement precision decrease in 
time, until another calibration of the sensor is made. The lack of precision and the 
calibration process can be economically disadvantageous to the industries. Determining 
what is the best calibration period for a sensor is the main focus of interest of this research. 
With this purpose, some based-neural network algorithms were created to increase the 
precision and the reliability of data collected by the sensors and to optimize the calibration 
periods. These algorithms are the self-compensation, self-calibration and self-validation 
ones.  
The addition of noise is another very common problem during the process of extracting 
information generated by a sensor installed in a field network. In Costa et al. (2003), the 
implementation of a system is proposed so that, beginning from software embedded in a 
DSP (Digital Signal Processor), interacts with fieldbus devices connected through a 
Foundation Fieldbus network. This approach, based on the technique of Independent 
Component Analysis (ICA), presents an efficient solution to the problem of extraction of the 
noise derived from the sensor. In other work, Fernandes et al. (2007) presents an approach to 
process fault detection and isolation (FDI) system applied to a level control system 
connected with an industrial network Foundation Fieldbus. The FDI system was developed 
using artificial neural networks (ANN). Basically, the FDI system was divided in two parts: 
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the first corresponds to neural identification of the plant model; and the second, to the 
detection and isolation of faults in process. 

 
4. Foundation Fieldbus Simulated Environment 
 

The basic concept of the FBSIMU (Foundation Fieldbus Simulated Environment) 
architecture is to map each Function Block, as well as the plant, in an independent 
LabVIEW3 application, also named Virtual Instrument (VI). The configuration of the whole 
system is centralized in the FBSIMU.CONF module. This module’s graphical user interface 
is inspired by commercial fieldbus configuration tools. As mentioned before, the FBSIMU is 
focused on the function block application layer and it is composed exclusively of software 
according to a modular and extensible architecture. The simulator was developed in 
LabVIEW using the G graphical programming language, ‘‘native’’ language in this 
environment. Each FBSIMU module or software unit simulates an element or a structure of 
a real FOUNDATION Fieldbus system (Brandão, 2005). 

 
4.1 Function Block simulation 
The Function Block modules are programmed into the FBSIMU according to the FF 
specifications directions and, consequently, the usage and configuration of a simulated 
control loop on the FBSIMU environment is identical to a real FF system. A ‘‘LabVIEW 
Foundation Fieldbus Tool Kit’’ library has been developed (Pinotti et al., 2005) to provide a 
range of typical Foundation Fieldbus control and acquisition functions, according to the 
standards. These functions encapsulate different FF calculations and data type 
manipulations necessary to build standard or custom Function Blocks. A Function Block 
seed module is also used to accelerate the process of developing and integrating new 
projects. The seed has the whole FB module structure (an empty structure) and directions to 
proceed with a FB project from the design to the final test procedures.  
Each FB module is built in two different versions that share the same FB core: stand-alone 
and process. The stand-alone FBs are executed by user commands and controlled by its 
graphical user interface. Its execution can be performed independently of any other module, 
so the user is able to test the FB and simulate its operation under a controlled condition of 
inputs and outputs. The graphical user interface is intuitive and enables the user to execute 
the FB continually or in a step-by-step mode. The process version of a FB, on the other hand, 
is controlled remotely likewise real FBs. Each process FB has a unique identification and its 
operation is controlled by the user through the following commands: 
 

 FB_Read: this service allows the value associated with a block parameter to be 
read. 

 FB_Write: this confirmed service allows the value associated with a block 
parameter to be written. 

 FB_Exec: this service triggers the block algorithm to be executed. 

3 LabVIEW (short for Laboratory Virtual Instrumentation Engineering Workbench), a 
platform and development environment for a visual programming language (National 
Instruments)

 FB_Reset: this service allows default values associated with all block parameters to 
be written. 

 
Process FBs do not have graphical user interface, they are instantiated by the 
FBSIMU.CONF in each simulation process. The communications between process FBs and 
the FBSIMU.CONF are performed programmatically and dynamically by the LabVIEW 
function ‘‘Call by Reference Node’’. It is important to note that the industrial transmitters 
are not considered in the FBSIMU architecture, i.e., function blocks are instantiated on the 
simulation without being allocated in specific ‘‘virtual’’ transmitters. The FBSIMU.CONF 
module graphical user interface for fieldbus configuration is shown in Figure 1. 

 
4.2 Physical plant simulations 
The plant module cyclically executes a discrete single variable (SISO) linear ARX (Auto-
Regressive with Exogenous Inputs) mathematical structure (Ljung, 1999). This module is 
configured on the FBSIMU.CONF and simulates the controlled plant. The adopted ARX 
structure is represented by Equation 1, where k is the discrete time instant, Y is the output 
vector, U is the input vector, i is the number of MIMO plant inputs and outputs, na is the 
number of output regressors, and nb is the number of input regressors. In the current 
version, i is set to 1 (one) to reflect a SISO model. 

Fig. 1. FBSIMU.CONF graphical user interface for fieldbus configuration 

www.intechopen.com



A Multiagent Architecture Based in aFoundation Fieldbus Network Function Blocks 371

the first corresponds to neural identification of the plant model; and the second, to the 
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Instruments)
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structure is represented by Equation 1, where k is the discrete time instant, Y is the output 
vector, U is the input vector, i is the number of MIMO plant inputs and outputs, na is the 
number of output regressors, and nb is the number of input regressors. In the current 
version, i is set to 1 (one) to reflect a SISO model. 
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The simulated plant dynamic behavior is modeled on the dynamic matrixes A and B. It must 
be observed that the number of regressors limits the model dynamic order and that all 
regressors must be initialized prior to starting the simulation. 
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 As the user chooses the plant order (1st, 2nd or 3rd) and dynamics (gain for 1st and 2nd 
order systems, damping ratio, natural frequency and time constant), the selected plants’ 
Bode Magnitude Chart, Pole-Zero Map, Root Locus Graph and the Step Response are 
instantly presented on the graphical user interface. 
A white noise generator function adds a simulated acquisition noise to each plant output 
bounded by user configurable amplitude. Figure 2 shows the FBSIMU.CONF module 
graphical user interface for plant configuration. 
 

Fig. 2. FBSIMU.CONF graphical user interface for plant configuration 

 
4.3 Simulation Architecture 
The proposed execution model for the fieldbus simulation on FBSIMU is considered hybrid, 
because some tasks are event-driven while other tasks are time-triggered, according to table 
1. All tasks related to the user interface are event-driven, they are executed after a user 
action such as selecting a new block, configuring schedule table, saving a configuration or 
starting the execution. 

On the other hand, the tasks related to executing FBs according to a schedule table, plant 
simulation, and online monitoring of FBs are time-triggered. 
 
Module Priority Execution Timeout Determinism 
GUI & User 
commands 

Low-
Low 

Event driven 1 sec. No 

FB Schedule High-
High 

Time triggered according to 
the schedule table 

No Yes 

Plant Execution High Periodic with configurable 
period 

No Yes 

Online FB 
Parameters 
Monitoring 

Low Periodic with period = 
500ms 

No Yes 

Table 1. FBSIMU task set 
 
Once all tasks are performed on a single microprocessor they are, naturally, concurrent. The 
proposed solution for preventing unexpected delays of time-triggered tasks (considered 
critical) due to executing event-driven tasks (considered non-critical) is adopting priority 
levels for each task and preemptive execution mode. 
In the preemptive execution mode, a higher priority task that is ready to execute preempts 
all lower priority tasks, which are also ready to execute or actually during execution. Table 1 
summarizes the FBSIMU task set and its timing and execution characteristics. 

 
4.4 A typical simulation experiment 
The intrinsic flexibility of simulation tools opens a wide range of FBSIMU experiments 
where users can exploit the effect of important communication parameters and 
configurations found in industrial FF systems. Practical experiments consist in comparing 
given simulated fieldbus system performances over different operation conditions. The 
results can be analyzed via log files or graphically on charts. 
For typical simulation sessions, a specific FB control strategy should be defined. Then, the 
period of the macrocycle must be set in milliseconds, and all the release times (in 
milliseconds) of each FB execution and FB link must be defined regarding the macrocycle 
start instant. Figures 3 and 4 present an example of these configurations on the FBSIMU. 

Fig. 3. FBSIMU block list 
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The simulated plant dynamic behavior is modeled on the dynamic matrixes A and B. It must 
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Fig. 4. – FBSIMU schedule table 
 
The configuration parameters from all FBs on the schedule table must be set in a parameter 
table, as shown in Figure 5, to support the proposed strategy (for example, Block Mode, 
Scaling, Gains), exactly likewise a real block strategy configuration. 
 

 

Fig. 5. FB parameter table 
 
The last step is to link the input and output parameters from the AI and AO blocks to the 
plant simulation module as represented in Figure 6. The connection between an Analog 
Output block (AO) and the plant input (manipulated variable - MV) and the connection 
between the plant output (primary value - PV) and the Analog Input block (AI) are 
configured by the user for close loop experiments. Alternatively, the user may connect only 
the plant PV to the AI block for an open loop simulation, or manually load the plant PV 
with a given numeric value. 
 
 

 Fig. 6. - Plant simulation module 
 
Finally, the user downloads the configuration to each FB and starts executing the schedule. 
During the execution, it is possible to monitor the parameter table with online parameter 
values and register the parameters on text files for further analysis. With the FBSIMU 
architecture, the FF operation scenarios can be configurable and different sequences of 
practice training can be defined to embrace fundamental concepts of fieldbus control 
systems, as well as practical situations of alarms or events handling. This characteristic is 
considered important because most of the traditional pilot plants equipped with fieldbus 
instrumentation offer just one or a few scenarios where a full sequence of practice 
experiments should be based on. Thus, the use of a simulated fieldbus system enables a 
flexible evaluation of the contribution and effect of the communication protocol on the 
overall system dynamics, which is an impossible goal considering that, in pilot plants 
equipped with real instrumentation, most communication configurations are fixed and, in 
most cases, inaccessible to end-users. 

 
5. Multiagent Architecture 
 

There is a number of requirements that ensures control of the production process. These 
include process variables, that is, data collected by the sensors that are often used for 
actuator actions. An incorrect interpretation and analysis of current data can result in the 
malfunctioning of the productive process. Thus, the functioning of a process can occur by 
combining these two items:  collected data (sensors) and actions (actuators). Accordingly, 
we propose multiagent architecture which enables the analysis, interpretation and 
correction of data and events occurring in the fieldbus to improve production processes at 
the fieldbus level. 
This architecture is composed of a multiagent system that generates inspection routines of 
the collected data in the plant's sensors. The aim is to induce the agents to evaluate field 
device data and investigate inconsistencies that may impede the productive process, such as 
lack of precision, external noise, alarm interpretation etc. During the process, the agents start 
functioning and perform tasks such as analyzing and correcting events through intelligent 
algorithm, as shown in Section 3. 
Figure 7 shows that our architecture is composed of observation, diagnostic, and execution 
agents. The Observation Agent (OA) is responsible for monitoring field devices and 
checking for inconsistencies and faults. The Diagnostic Agent (DA) attempts to identify the 
type of fault (detected by OA) occurring in the field devices. Once the problem is diagnosed, 
the Execution Agent (EA) tries to correct it by implementing an intelligent algorithm. 
Another component in this architecture is a layer (LABVIEW/FIPA Layer) that allows 

www.intechopen.com



A Multiagent Architecture Based in aFoundation Fieldbus Network Function Blocks 375

Fig. 4. – FBSIMU schedule table 
 
The configuration parameters from all FBs on the schedule table must be set in a parameter 
table, as shown in Figure 5, to support the proposed strategy (for example, Block Mode, 
Scaling, Gains), exactly likewise a real block strategy configuration. 
 

 

Fig. 5. FB parameter table 
 
The last step is to link the input and output parameters from the AI and AO blocks to the 
plant simulation module as represented in Figure 6. The connection between an Analog 
Output block (AO) and the plant input (manipulated variable - MV) and the connection 
between the plant output (primary value - PV) and the Analog Input block (AI) are 
configured by the user for close loop experiments. Alternatively, the user may connect only 
the plant PV to the AI block for an open loop simulation, or manually load the plant PV 
with a given numeric value. 
 
 

 Fig. 6. - Plant simulation module 
 
Finally, the user downloads the configuration to each FB and starts executing the schedule. 
During the execution, it is possible to monitor the parameter table with online parameter 
values and register the parameters on text files for further analysis. With the FBSIMU 
architecture, the FF operation scenarios can be configurable and different sequences of 
practice training can be defined to embrace fundamental concepts of fieldbus control 
systems, as well as practical situations of alarms or events handling. This characteristic is 
considered important because most of the traditional pilot plants equipped with fieldbus 
instrumentation offer just one or a few scenarios where a full sequence of practice 
experiments should be based on. Thus, the use of a simulated fieldbus system enables a 
flexible evaluation of the contribution and effect of the communication protocol on the 
overall system dynamics, which is an impossible goal considering that, in pilot plants 
equipped with real instrumentation, most communication configurations are fixed and, in 
most cases, inaccessible to end-users. 

 
5. Multiagent Architecture 
 

There is a number of requirements that ensures control of the production process. These 
include process variables, that is, data collected by the sensors that are often used for 
actuator actions. An incorrect interpretation and analysis of current data can result in the 
malfunctioning of the productive process. Thus, the functioning of a process can occur by 
combining these two items:  collected data (sensors) and actions (actuators). Accordingly, 
we propose multiagent architecture which enables the analysis, interpretation and 
correction of data and events occurring in the fieldbus to improve production processes at 
the fieldbus level. 
This architecture is composed of a multiagent system that generates inspection routines of 
the collected data in the plant's sensors. The aim is to induce the agents to evaluate field 
device data and investigate inconsistencies that may impede the productive process, such as 
lack of precision, external noise, alarm interpretation etc. During the process, the agents start 
functioning and perform tasks such as analyzing and correcting events through intelligent 
algorithm, as shown in Section 3. 
Figure 7 shows that our architecture is composed of observation, diagnostic, and execution 
agents. The Observation Agent (OA) is responsible for monitoring field devices and 
checking for inconsistencies and faults. The Diagnostic Agent (DA) attempts to identify the 
type of fault (detected by OA) occurring in the field devices. Once the problem is diagnosed, 
the Execution Agent (EA) tries to correct it by implementing an intelligent algorithm. 
Another component in this architecture is a layer (LABVIEW/FIPA Layer) that allows 
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agents to interact with the Foundation Fieldbus model. We use LABVIEW framework to 
develop based-agents FIPA (Polaków & Metzger, 2007). The main reason for using FIPA-
compliant agents is their capacity to aggregate other FIPA agents in the architecture. We 
also use an OPC (OLE for Process Control) interface, such as that used by Seilonen et al. 
(2002b) to integrate agents with the fieldbus. In our study, we change the function block 
connections to perform a desired control algorithm and to make these function block 
interconnections act as agents. 
 

 
Fig. 7. – Proposed Multiagent architecture environment 
 
The LABVIEW-FIPA layer allows communication with field devices through the OPC. 
Agents can access field devices and allocate function blocks. Agent learning occurs at higher 
levels (supervisory) which communicate with field devices (through the LABVIEW-
FIPA/OPC layer). The gateway is responsible (physically) for establishing this 
communication. What is learned by the agent is stored in the Information Repository. This 
information is useful to other agents and reused in similar situations. Learning is 
implemented in computer supervisory machines as part of the agent. The agent action is 
performed at fieldbus levels, i.e., device function blocks (FB). The FB interconnections form 
an algorithm which controls a process. In our agent, this algorithm (ANN) is used in some 
instances to monitor devices (OA), and in others to correct faults (EA). 
One of the OPC client and Foundation Fieldbus restrictions is the inability to allocate and 
deallocate function blocks in execution time. This operation is conducted by supervisors in 
plant control planning and any modification discontinues its operation. The operator 
performs the new configuration using proper software such as Syscon . Our strategy is to 
create a macro FB configuration from which others can be derived. In other words, changing 
the interconnections between allocated function blocks, it also changes control strategies. 
Figure 8 shows a number of possibilities of function block changes caused by a 

predetermined macro allocation. The advantage of this approach is the use of more than one 
ANNs. Agent actions are performed by an artificial neural network. A change in the 
interconnections between function blocks also leads to a change in ANN structure, which, in 
turn, changes agent structure. Thus, we exchange fieldbus agents through the function block 
interconnection configuration. 
 

 
Fig. 8. - Change in Function Block structure 
 
We have also apllied our architecture in FBSIMU to compare a real approach to a simulated 
one. It is important to underline that, in the FBSIMU, is possible to change all function 
blocks allocation in execution time, what is not possible in real fieldbus environment. 
As an ANN, the agents go through two phases. The agents must learn (ANN train) and act 
(trained ANN use). They learn about the device (e.g. the OA learns how to predict device 
output values and the EA learns how to compensate for noise in device measurement). This 
training is conducted at the supervisory level and the device communicates with the 
fieldbus through a LABVIEW-FIELDBUS layer. The learned data (neural network weights) 
are stored in an information repository (IR). 
In the learning phase the agents will train an artificial neural network to learn about fieldbus 
behavior. In the execution phase, the observation agents are able to monitor the field device 
and detect any faults therein. The OA and EA learns about the device or FBSIMU output 
(i.e., the OA learns how to predict device output values and the EA learns how to 
compensate for noise in device measurement, for example). The learned data (neural 
network weights) are stored in the information repository (IR). The EA uses this learned 
data to monitor devices. The system output is monitored In FBSIMU. 
When a problem (malfunction) is detected, it must be correctly diagnosed to ensure a proper 
correction. The diagnostic agent (DA) consults the information repository to identify the 
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type of problem that is occurring in the fieldbus. As soon as the problem is detected (by the 
observation agent), and identified (by the diagnostic agent) from the information repository, 
the execution agents decide the best configuration to resolve the problem. The execution 
agents are function blocks that is used in the devices. The organization of these blocks 
characterizes the way the EA solves the problem (algorithm). At the end, we have an error-
free signal (or an output), for example. In the FBSIMU environment we replace the original 
schedule table for one which simulates an ANN function block configuration. A new table 
means a new process control. As previously discussed, the implementation of these agents is 
based on a structure formed by function blocks. Each function block executes a different 
kind of algorithm, and together they are capable of meeting a specific application, such as an 
ANN. 

 
5.1 Observation Agents 
Observation Agents, launched in a fieldbus, monitor the variable values of a number of 
devices. These agents aim to detect measurement anomalies in sensor values or actuator 
inaccuracies. Previous information about the system behavior is important to properly 
detect and diagnose faults. Thus, automation engineers can associate the faults with signal 
patterns. In recent years, research carried out in fault detection and isolation systems (FDI) 
has shown procedures that use computer intelligence procedures, such as the Fuzzy Logic 
system and Artificial Neural Networks. 
In this work the observation agents use an ANN to predict the measured value of a device. 
Therefore, the OA must learn how to predict the measured signal behavior before it is 
launched in a fieldbus. This learning is accomplished at the supervisory level, that is, neural 
network training for a prediction problem. Thus, the observation agents know the expected 
signal behavior. When it is launched in fieldbus (ANN with trained weights), the OA tries to 
predict the next signal and compares it to the real signal. A difference in signals indicates a 
problem. 

 
5.2 Diagnostic Agents 
When a problem (fault) is detected, it must be correctly diagnosed to ensure proper 
correction. The diagnostic agent (DA), like an AO, uses neural networks to correctly 
diagnose which fault is occurring in the fieldbus. it is necessary identify which problem is 
occurring in the process. The DA is based on previous work (Fernandes et al., 2007), and it 
identifies the type of fault is occurring in the system. Like other agents, the DA is based on 
an ANN. It is implemented at the supervisory level which communicates with the fieldbus 
through the OPC client. The neural identification system is defined as a two-step 
identification process, signifying the existence of an ANN to evaluate a system output value. 
The general scheme of the functioning system is shown in Figure 9. In this case, while the 
level system is in execution, a system from the ANNs tries to find its identification using its �捲�倦�� inputs. Each time, output level system �検�倦�� is compared to  output identification 
system �検′�倦��, generating a residue value ���倦� � 検�倦� � 検′�倦�� that is used later in the 
fault isolation/classification system. Then, one system analyzes the residue values and 
indicates the occurrence or not of faults. When faults are detected, it indicates which type is 
occurring. In Section 6, we show this approach applied in a real example. 

 

5.3 Execution Agents 
As soon as the problem is detected by the observation agents, the execution agents change 
function block interconnections to allocate an algorithm (ANN) which can fix the problem. 
The organization of these blocks determines how the EA solves the problem (algorithm). 
The execution agents can act (configure) in different ways to correct the errors. As it was 
previously discussed, the implementation of these agents is based on a structure formed by 
function blocks. 
 

 
Fig. 9. - General scheme of FDI system (Fernandes et al., 2007) 
 
A type of EA is illustrated in Figure 10. In this case, the structure formed by the function 
blocks contains a neural network-based noise filter. This algorithm (ANN) is able to remove 
noise from a measured signal. This structure is explained in Section 6. 
 

 
Fig. 10. - Noise Filter implemented as a Neural Network in Function Blocks as seen in 
SYSCON 
 
The flexibility given by the application layer (represented by the function blocks) in the 
Foundation Fieldbus protocol enables different implementations at the field level. The 
combining of arithmetic and function characterizer blocks can produce a configuration 
similar to a neural network neuron (Silva et al., 2006). Thus, these examples show the variety 
of applications generated by different execution agents. For example: if the problem is noise 
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type of problem that is occurring in the fieldbus. As soon as the problem is detected (by the 
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free signal (or an output), for example. In the FBSIMU environment we replace the original 
schedule table for one which simulates an ANN function block configuration. A new table 
means a new process control. As previously discussed, the implementation of these agents is 
based on a structure formed by function blocks. Each function block executes a different 
kind of algorithm, and together they are capable of meeting a specific application, such as an 
ANN. 

 
5.1 Observation Agents 
Observation Agents, launched in a fieldbus, monitor the variable values of a number of 
devices. These agents aim to detect measurement anomalies in sensor values or actuator 
inaccuracies. Previous information about the system behavior is important to properly 
detect and diagnose faults. Thus, automation engineers can associate the faults with signal 
patterns. In recent years, research carried out in fault detection and isolation systems (FDI) 
has shown procedures that use computer intelligence procedures, such as the Fuzzy Logic 
system and Artificial Neural Networks. 
In this work the observation agents use an ANN to predict the measured value of a device. 
Therefore, the OA must learn how to predict the measured signal behavior before it is 
launched in a fieldbus. This learning is accomplished at the supervisory level, that is, neural 
network training for a prediction problem. Thus, the observation agents know the expected 
signal behavior. When it is launched in fieldbus (ANN with trained weights), the OA tries to 
predict the next signal and compares it to the real signal. A difference in signals indicates a 
problem. 
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When a problem (fault) is detected, it must be correctly diagnosed to ensure proper 
correction. The diagnostic agent (DA), like an AO, uses neural networks to correctly 
diagnose which fault is occurring in the fieldbus. it is necessary identify which problem is 
occurring in the process. The DA is based on previous work (Fernandes et al., 2007), and it 
identifies the type of fault is occurring in the system. Like other agents, the DA is based on 
an ANN. It is implemented at the supervisory level which communicates with the fieldbus 
through the OPC client. The neural identification system is defined as a two-step 
identification process, signifying the existence of an ANN to evaluate a system output value. 
The general scheme of the functioning system is shown in Figure 9. In this case, while the 
level system is in execution, a system from the ANNs tries to find its identification using its �捲�倦�� inputs. Each time, output level system �検�倦�� is compared to  output identification 
system �検′�倦��, generating a residue value ���倦� � 検�倦� � 検′�倦�� that is used later in the 
fault isolation/classification system. Then, one system analyzes the residue values and 
indicates the occurrence or not of faults. When faults are detected, it indicates which type is 
occurring. In Section 6, we show this approach applied in a real example. 

 

5.3 Execution Agents 
As soon as the problem is detected by the observation agents, the execution agents change 
function block interconnections to allocate an algorithm (ANN) which can fix the problem. 
The organization of these blocks determines how the EA solves the problem (algorithm). 
The execution agents can act (configure) in different ways to correct the errors. As it was 
previously discussed, the implementation of these agents is based on a structure formed by 
function blocks. 
 

 
Fig. 9. - General scheme of FDI system (Fernandes et al., 2007) 
 
A type of EA is illustrated in Figure 10. In this case, the structure formed by the function 
blocks contains a neural network-based noise filter. This algorithm (ANN) is able to remove 
noise from a measured signal. This structure is explained in Section 6. 
 

 
Fig. 10. - Noise Filter implemented as a Neural Network in Function Blocks as seen in 
SYSCON 
 
The flexibility given by the application layer (represented by the function blocks) in the 
Foundation Fieldbus protocol enables different implementations at the field level. The 
combining of arithmetic and function characterizer blocks can produce a configuration 
similar to a neural network neuron (Silva et al., 2006). Thus, these examples show the variety 
of applications generated by different execution agents. For example: if the problem is noise 
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interference collected by the sensor, the execution agents combine function blocks to form a 
neural network. With training values former acquired, this network can function as a filter 
(Costa et al., 2005), decreasing the value measured by the sensor. In the event of a tendency 
toward loss of accuracy in the measured values, detected by the observation agents, the EA 
can act as a prediction system, anticipating the presumed supervisory faults that may occur.  
The EA can also act as a recalibration algorithm in detecting a decalibrated sensor (Cagni et 
al., 2005). 

 
6. MultiAgent Architecture Example 
 

6.1 FBSIMU Example 
In this example, we show the proposed multiagent architecture which uses the function 
blocks configuration exchange approach as it was previously showed. A simulated process 
automation was implemented for testing the feasibility of the architecture. The test 
environment consists of a simulated fieldbus-based automation system (FBSIMU) and a 
prototype agent application. The simulated process is controlled by a AI-PID-AO function 
blocks represented in Figure 4. 
This environment is used in our example to detect and remove noise. First, the agents 
(ANN) undergo a learning process. The Observation Agent is trained to predict a FBSIMU 
output at given moment, based on its past outputs, considering that the simulated signal is 
noise free. The neural networks used by the Diagnostic Agent are trained to identify a kind 
of problem that may occur in the simulated environment. The EA is trained to act as a noise 
filter. The information acquired by the agent is stored in the Information Repository and can 
be used by other agents, in other situations, if necessary. 
When the learning phase is over, the Observation Agent starts monitoring the FBSIMU 
output. Indeed, this agent is a prediction ANN. It monitors the output signal and predicts its 
corresponding value in the next step. 
 

 
Fig. 11. - Recurrent Neural Network as Predictor 
 

The type of prediction architecture used in this study is shown in Figure 11. It is a model 
with overall refeeding, resulting from a multiple-layer perceptron. The model has a single 
input, which is applied to delay line memory with n-units. It has a single output which is 
refed from the input of another delay line memory. The contents of these two memories are 
used to feed the input layer of the network. 
In our test, FBSIMU introduces a simulated noise signal to the signal monitored by the agent 
(Figure 12). In certain moment, the output signal starts to exhibit different behavior as it was 
predicted. The difference between the measured and predicted signals is considered a 
problem by the OA.  
 

 
Fig. 12. – Output signal with noise in FBSIMU 
 
At this moment, it is necessary identify which problem is occurring in the process. The 
diagnostic agent (DA) is responsible for identifying the problem. Like other agents, the DA 
is based on an ANN. It is implemented at the supervisory level which communicates with 
the fieldbus through the OPC client. 
As mentioned in Section 5.3, the DA tries to find its identification using its   inputs. Each 
time, FBSIMU ���k�� is compared to predicted output ��′�k��, provided by AO, generating a 
residue value �r�k� � ��k� � �′�k��. This residue value indicates the occurrence or not of 
faults. If it is closer to zero, this indicates no faults. Otherwise, it indicates which type is 
occurring. If residue is positive, it indicates a positive noise, if not, it indicates negative 
noise. In this particular example, we simplify the detection. The Diagnostic Agent 
determines noise presence or not. 
In this example, the DA detects positive. This means there is noise in the FBSIMU output. At 
this moment, the function block parameters change to allocate the EA as an ANN acting as a 
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interference collected by the sensor, the execution agents combine function blocks to form a 
neural network. With training values former acquired, this network can function as a filter 
(Costa et al., 2005), decreasing the value measured by the sensor. In the event of a tendency 
toward loss of accuracy in the measured values, detected by the observation agents, the EA 
can act as a prediction system, anticipating the presumed supervisory faults that may occur.  
The EA can also act as a recalibration algorithm in detecting a decalibrated sensor (Cagni et 
al., 2005). 

 
6. MultiAgent Architecture Example 
 

6.1 FBSIMU Example 
In this example, we show the proposed multiagent architecture which uses the function 
blocks configuration exchange approach as it was previously showed. A simulated process 
automation was implemented for testing the feasibility of the architecture. The test 
environment consists of a simulated fieldbus-based automation system (FBSIMU) and a 
prototype agent application. The simulated process is controlled by a AI-PID-AO function 
blocks represented in Figure 4. 
This environment is used in our example to detect and remove noise. First, the agents 
(ANN) undergo a learning process. The Observation Agent is trained to predict a FBSIMU 
output at given moment, based on its past outputs, considering that the simulated signal is 
noise free. The neural networks used by the Diagnostic Agent are trained to identify a kind 
of problem that may occur in the simulated environment. The EA is trained to act as a noise 
filter. The information acquired by the agent is stored in the Information Repository and can 
be used by other agents, in other situations, if necessary. 
When the learning phase is over, the Observation Agent starts monitoring the FBSIMU 
output. Indeed, this agent is a prediction ANN. It monitors the output signal and predicts its 
corresponding value in the next step. 
 

 
Fig. 11. - Recurrent Neural Network as Predictor 
 

The type of prediction architecture used in this study is shown in Figure 11. It is a model 
with overall refeeding, resulting from a multiple-layer perceptron. The model has a single 
input, which is applied to delay line memory with n-units. It has a single output which is 
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(Figure 12). In certain moment, the output signal starts to exhibit different behavior as it was 
predicted. The difference between the measured and predicted signals is considered a 
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At this moment, it is necessary identify which problem is occurring in the process. The 
diagnostic agent (DA) is responsible for identifying the problem. Like other agents, the DA 
is based on an ANN. It is implemented at the supervisory level which communicates with 
the fieldbus through the OPC client. 
As mentioned in Section 5.3, the DA tries to find its identification using its   inputs. Each 
time, FBSIMU ���k�� is compared to predicted output ��′�k��, provided by AO, generating a 
residue value �r�k� � ��k� � �′�k��. This residue value indicates the occurrence or not of 
faults. If it is closer to zero, this indicates no faults. Otherwise, it indicates which type is 
occurring. If residue is positive, it indicates a positive noise, if not, it indicates negative 
noise. In this particular example, we simplify the detection. The Diagnostic Agent 
determines noise presence or not. 
In this example, the DA detects positive. This means there is noise in the FBSIMU output. At 
this moment, the function block parameters change to allocate the EA as an ANN acting as a 
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noise filter, trained recursively until reasonable noise extraction is achieved. In the FBSIMU 
the EA exchanges the schedule table (Figure 13). The normal function block schedule is 
replaced by a new table which represents the EA allocation (trained ANN to remove noise). 
This function block allocation (EA) continues until the problem is solved (removing noise), 
then, the function block parameters (schedule table) change again to allocate the normal 
control and OA, and it restarts tracking the FBSIMU output. 

 
6.2 Real Environment Example 
In this second example, we show the proposed multiagent architecture which uses the 
function blocks configuration exchange approach, as it was previously showed. A prototype 
version of process automation was implemented for research purposes, and a laboratory test 
environment was used for testing the feasibility of the architecture. The test environment 
consisted of a simulated test, a fieldbus-based automation system and a prototype agent 
application. The test process contained parts that were similar to industrial processes. This 
environment was presented for the first time in our previous work (Machado et al., 2008a), 
and the results were showed in Machado et al. (2008b). 
 

 

 

 
Fig. 13. – Schedule Table Exchange 
  
As we can see in Figure 14, the  plant level is composed of two cascading tanks. The water 
that flows out from the small hole of tank 1 falls into tank 2. This tank also has a small hole 
through which the water falls directly to the reservoir. A pump impels the water from the 
reservoir to tank 1. In each tank there is a Foundation Fieldbus pressure sensor, used to 
measure the corresponding levels connected to the Fieldbus network. Besides the pressure 
sensors, an FF/ loop of current from a 4 to 20 mA converter is used to send signals to the 
water pump. The industrial network Foundation Fieldbus is connected to a supervisory 
computer through Ethernet network interfaces. All the device configuration processes are 
carried out from this computer, and later supervised. This system  transmits signals to the 
pump input to allow for  water injection (or not) in tank 1 and to control the water level in 
both tanks. There is also a PC (OPC client) that sends a simulated noise signal (red dotted 
line) to a device. 

Like previous FBSIMU example, this environment is used by agents to detect and remove 
noise. The Observation Agent is trained to predict a sensor output at given moment, based 
on its past outputs, considering that the signal is noise free. The neural networks used by the 
Diagnostic Agent is trained to identify a kind of problem that may occurs in the tanks. The 
EA is trained to act as a noise filter. When the learning phase is over, the Observation Agent 
starts monitoring the field device, which is allocated in the function blocks. This agent is 
allocated as a prediction ANN in field devices. It monitors the output signal and predicts its 
corresponding value in the next step. The ANN model for prediction is the same showed in 
Section 6.1 (Figure 11). 
In our test, a PC (OPC client) sends a simulated noise signal to the device monitored by the 
agent. In Figure 15 A, we can observe both real and predicted signals. In half of samples, the 
sensor output signal starts to exhibit different behavior from that predicted (noise added by 
OPC Client). The difference between the compared signals is considered a problem by the 
OA. This difference can be seen in Figure 15 B. 
 

 
Fig. 14. – Laboratory environment 
 
At this moment, the Diagnostic Agent (DA) is responsible for identifying a problem and 
selecting the best function block allocation to solve it. The DA is based on the previous 
described work (Section 6.1) which identifies what kind of fault is occurring in the tanks 
system. The DA is implemented in supervisory level and communicates with the fieldbus 
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Diagnostic Agent is trained to identify a kind of problem that may occurs in the tanks. The 
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starts monitoring the field device, which is allocated in the function blocks. This agent is 
allocated as a prediction ANN in field devices. It monitors the output signal and predicts its 
corresponding value in the next step. The ANN model for prediction is the same showed in 
Section 6.1 (Figure 11). 
In our test, a PC (OPC client) sends a simulated noise signal to the device monitored by the 
agent. In Figure 15 A, we can observe both real and predicted signals. In half of samples, the 
sensor output signal starts to exhibit different behavior from that predicted (noise added by 
OPC Client). The difference between the compared signals is considered a problem by the 
OA. This difference can be seen in Figure 15 B. 
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At this moment, the Diagnostic Agent (DA) is responsible for identifying a problem and 
selecting the best function block allocation to solve it. The DA is based on the previous 
described work (Section 6.1) which identifies what kind of fault is occurring in the tanks 
system. The DA is implemented in supervisory level and communicates with the fieldbus 
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through an OPC client. The neural identification system was defined as identification in two 
steps, which means the existence of an ANN to evaluate the level of tank 1, and another to 
evaluate the level of tank 2. 
With identification in two steps, it is possible to get two residues: r�1� and r�2�, where r�1� � ��1� � �′�1� and r�2� � ��2� � �′�2�. ��1� is the real measured signal, and �′�1� is the 
predicted signal. In this case, an ANN, named ANN 3, is trained by receiving as input data 
the values from ��1� and ��2�. The networks output corresponds to a vector of � � 1 
numbers, numbers, where n is a quantity of faults that the network is able to classify. 
Considering the two residues to detect and isolate the faults, the FDI system could detect in 
maximum 8 different faults, in which the situation ��1� � � and ��2� � � would be a normal 
behavior of the system. In view of the test, we managed to foresee only six types of faults 
with joint distinct residues.  
 

 
Fig. 15. – Real and Predict Signals 
 

Table 2 shows the five types of faults selected for the result analysis, where (+) represents 
the positive residue, (-), the negative residue, and (0), the equal residue or very close to zero. 
In this example, the DA detects positive residue for ��1� and null value for ��2�. This means 
there is a noise in tank 1 output sensor. At this moment, the function block parameters 
change to allocate the EA as an ANN, acting as a noise filter, once it was trained recursively 
until a reasonable noise extraction. 
 

Fault Description R(1) R(2) 
 Absence of fault 0 0 
1 New hole in tank 1. No fall of water in tank 2 - 0 
2 Decrease of hole in tank 1 + - 
3 Decrease of hole in tank 2 - + 
4 Increase of hole in tank 2 0 - 
5 Read error in Sensor 1. Positive 

Bias. (Noise Added) + 0 

Table 2 – Dispositions of the 6 fault residues 
 
The EA (acting as a filter) acts immediately after noise detection. This function block 
allocation (EA) continues until the problem is solved, then, the function block parameters 
change again to allocate the OA and restart device tracking. It is important to emphasize 
that for experimental purposes the function block structure is replaced by another when the 
agents are exchanged (e.g., Observation Agents to Execution Agents). If the number of 
devices is substantial, the architecture can allocate many OA and EA at the same time, 
monitoring and acting on different devices and fault situations. 

 
7. Conclusions 
 

Nowadays, problems in the field devices are detected by supervisors through alarm 
triggers. From the proposed SMA architecture, the agents are able to detect and apply 
intelligent algorithms to solve these problems without user intervention. This article shows 
multiagent architecture which is able to detect and correct an undesired noise in a 
Foundation Fieldbus device and simulated environment (FBSIMU) by implementing 
function block intelligent algorithms. The intelligent algorithms use Artificial Neural 
Network (ANN) to find out about the noise and remove it. The agents encapsulate these 
ANNs and, using a LABVIEW-Fieldbus layer, can directely interact with field devices 
through an OPC client. In this approach the algorithm is implemented in the device function 
blocks providing a solution at fieldbus level.  
This chapter provides two innovations in fieldbus research mentioned in our previous 
works. First, we have a dynamic function block interconnection exchange that allows the 
allocation of different neural network structures at fieldbus level. Accordingly, we have 
several control strategies (agents) allocated in field devices, which can monitor, detect, and 
correct a number of faults. The second innovation is the reusing of function block 
configurations. The same ANN structure can be used in different situations. That is, the 
same agent can act in other processes. The use of Information Repository allows us to share 
the ANN structure with other agents. 
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through an OPC client. The neural identification system was defined as identification in two 
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The EA (acting as a filter) acts immediately after noise detection. This function block 
allocation (EA) continues until the problem is solved, then, the function block parameters 
change again to allocate the OA and restart device tracking. It is important to emphasize 
that for experimental purposes the function block structure is replaced by another when the 
agents are exchanged (e.g., Observation Agents to Execution Agents). If the number of 
devices is substantial, the architecture can allocate many OA and EA at the same time, 
monitoring and acting on different devices and fault situations. 
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Nowadays, problems in the field devices are detected by supervisors through alarm 
triggers. From the proposed SMA architecture, the agents are able to detect and apply 
intelligent algorithms to solve these problems without user intervention. This article shows 
multiagent architecture which is able to detect and correct an undesired noise in a 
Foundation Fieldbus device and simulated environment (FBSIMU) by implementing 
function block intelligent algorithms. The intelligent algorithms use Artificial Neural 
Network (ANN) to find out about the noise and remove it. The agents encapsulate these 
ANNs and, using a LABVIEW-Fieldbus layer, can directely interact with field devices 
through an OPC client. In this approach the algorithm is implemented in the device function 
blocks providing a solution at fieldbus level.  
This chapter provides two innovations in fieldbus research mentioned in our previous 
works. First, we have a dynamic function block interconnection exchange that allows the 
allocation of different neural network structures at fieldbus level. Accordingly, we have 
several control strategies (agents) allocated in field devices, which can monitor, detect, and 
correct a number of faults. The second innovation is the reusing of function block 
configurations. The same ANN structure can be used in different situations. That is, the 
same agent can act in other processes. The use of Information Repository allows us to share 
the ANN structure with other agents. 
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However, the main novelty in this chapter is the use of our approach in a function block 
simulated environment (FBSIMU). Thus, we can compare two types of function block 
intelligent algorithm implementation. The first one, in FBSIMU, is able to exchange all 
function blocks configuration in execution time. This approach is not permitted in real 
fieldbus environment. In this (second) case, we opt for a function blocks interconnections 
exchange. So, we can observe, despite second approach is well suited for a real Foundation 
Fieldbus environment, the full function block allocation and deallocation is more 
appropriate for exchange control algorithms in fieldbus devices function blocks. For safety 
reasons and respecting the industries patterns, the real time function block exchange was 
not implemented by foundation fieldbus manufacturers. We believe that our approach can 
supply this gap. 
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However, the main novelty in this chapter is the use of our approach in a function block 
simulated environment (FBSIMU). Thus, we can compare two types of function block 
intelligent algorithm implementation. The first one, in FBSIMU, is able to exchange all 
function blocks configuration in execution time. This approach is not permitted in real 
fieldbus environment. In this (second) case, we opt for a function blocks interconnections 
exchange. So, we can observe, despite second approach is well suited for a real Foundation 
Fieldbus environment, the full function block allocation and deallocation is more 
appropriate for exchange control algorithms in fieldbus devices function blocks. For safety 
reasons and respecting the industries patterns, the real time function block exchange was 
not implemented by foundation fieldbus manufacturers. We believe that our approach can 
supply this gap. 
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