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Fig. 1. Autonomous wheelchair moving through a narrow space.

1. Introduction

Obstacle avoidance is an important function for intelligent vehicles and mobile robots. Let’s
discuss about the obstacle avoidance for a nonholonomic vehicle (mobile robot) like an au-
tonomous wheelchair (Fig. 1). It has two independently driven wheels and a body with a
certain shape. If a vehicle can be treated as an omnidirectional movable point, numerous
methods have been proposed and applied for it (Fig. 2). Collision free path can be easily found
by artificial potential field (Khatib, 1986; Rimon & Koditsuchek, 1992), graph theory (Ulrich &
Borenstein, 2000), sensor based method and so on. The problem for a nonholonomic vehicle
with two independently driven wheels can come down to that for an omnidirectional point
by approximating vehicle’s shape to a circle with the center at the midpoint of two wheels.
As shown in Fig. 3, obstacles should be expanded by the radius of the vehicle’s circle and the
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vehicle should be contracted to a point. However, it isn’t reasonable to regard the rectangular
body like a wheelchair as a circle and its circle sometimes can’t pass through the narrow place
where the original body can do.

Fig. 2. Obstacle avoidance is easy for an omnidirectional vehicle, however, it is difficult for a
vehicle with motion constraint and rectangular body.

Body of
nonholonomic

vehicleMinimum
circle to turn

Obstacle
Vehicle as an

omnidirectional point

Expand obstacles
by turning radius

(a)Before expand obstacles (b) After expand obstacles

Fig. 3. Approximation of vehicle’s shape by a circle for path planning.

In case of an omnidirectional (holonomic) vehicle, “configuration space” can be used for its
path planning when the vehicle’s shape is considered explicitly (Strobel, 1999). This problem
is named “piano movers’ problem” (Schwartz & Sharir, 2983). A set of position and orienta-
tion where a vehicle body doesn’t collide with obstacles is represented by three dimensional
configuration space (Fig. 4). A path of vehicle’s position and orientation should be searched
in this space by probabilistic roadmap method (Kavraki et al., 1996) for example. There are
some studies considering both shape of vehicle’s body and nonholonomic motion (Kondak &
Hommel, 2001; Minguez et al., 2006; Ramirez & Zeghloul, 2001). It is very difficult problem to
search a path in the configuration space under the motion constraint. Laumond (Laumond et
al., 1994) solved this by modifying the collision free path obtained without motion constraint
so as to satisfy motion constraint. Latombe (Latombe, 1991) proposed that the configuration
space is divided into cells, the cells where a nonholonomic vehicle can move by simple motion
such as turning, going straight, pulling over are connected by graph, and a path is searched in
the graph. Anyway, these methods are too complicated for real-time obstacle avoidance using
real sensor information although these ensure the solution of collision free path. Specially,
calculation of configuration space needs much computing power.
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Fig. 4. 3D Configuration space for a vehicle with a certain shape

Therefore, we propose a practical method of local obstacle avoidance for a nonholonomic
vehicle with rectangular body. Simple potential field using local sensor information of sur-
rounding obstacles is applied.

2. Problem Statement

pj

Wheels

0 X

Y ( ) r 1 (= r 5 )

r 2

r 3

r 4

R




Obstacle points

detected by
laser range sensor

Vehicle coordinate
system

Detection area of
laser range sensor

Fig. 5. Model of nonholonimic vehicle with a laser range sensor.

The obstacle avoidance problem to be solved is stated as follows.

1. We consider a nonholonomic vehicle with two independently driven wheels as shown
in Fig. 5. It moves in a planar environment. The configuration of a vehicle is defined by
R = (X, Y, Θ)T in the base coordinates, where (X, Y) is the position of the midpoint of
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two wheels’ axis and Θ is its orientation. The discrete kinematic model of this vehicle
is written as



















Xn = Xn−1 + v∆t cos(Θn−1 +
ω∆t

2
)

Yn = Yn−1 + v∆t sin(Θn−1 +
ω∆t

2
)

Θn = Θn−1 + ω∆t

(1)

where ∆t is the sampling time for control and (v, ω)T are translational and rotational
velocity. Suffix n − 1, n denote positions before and after the sampling time.

2. The shape of a vehicle is (or can be approximated by) a rectangle. Let the vertexes of
the vehicle’s shape be ri(i = 1, 2, ..., nr) in the vehicle coordinates.

3. A laser range sensor is mounted on the vehicle to detect obstacles. It has a circular de-
tection area. Obstacles are scanned by this sensor every a certain angle. Let the detected
points on the outline of obstacles be pj(j = 1, 2, ..., np) in the vehicle coordinates. These
points are called “obstacle points”.

4. Global path planning is given. After the goal position of a vehicle RG = (XG, YG, ΘG)
T

is given relatively near the start position, a local path to avoid obstacles is found. We
explain the case that the start position is behind the goal position and a vehicle go
forward to the goal. When a vehicle go backward to the goal, the front and back of
the vehicle should be swapped.

3. Algorithm for Local Obstacle Avoidance

3.1 Outline

A method of local obstacle avoidance for a vehicle with two driven wheels and rectangular
body is proposed. This outline is shown in Fig. 6. Basically, simple potential field is applied.
Both an attractive force form the goal and repulsive forces from obstacles act on the vehicle and
the resultant force moves the vehicle (Fig. 7). Main differences between the general method
using potential field and our proposed method are following two points.

• In order to consider the motion constraint that a vehicle can’t move just beside, two
points of action where the attractive and repulsive forces act are placed on the front and
rear body of a vehicle. Their forces at two points are treated as they work on a “lever”
of which the fulcrum is the midpoint of two wheels.

• In order to consider the shape of vehicle’s body, repulsive forces form obstacles are
determined by the distances between obstacle points and the outline of vehicle’s body.

This idea can simply introduce the consideration about the motion constraint and the vehicle’s
shape into the potential field method. Proposed method needs almost same computing power
as general potential field method because their calculations have little difference. Since the
data of a laser range sensor (obstacle points) can be used directly, this method is suitable
for real-time obstacle avoidance. However, this also has a disadvantage of the local minima
problem.
Then, our proposed method is explained in detail in the following sections. The generation of
forces and the determination of vehicle’s velocity are treated on the vehicle coordinate system.

Obstacle
Goal

Attractive force

Resultant force
to move

Repulsive force

Omnidirectional
vehicle
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Obstacle points pj are detected by laser range sensor
at current position

Generate front and rear repulsive forces Ff j, Frj

Generate an attractive force Fa from goal RG

Determine vehicle’s velocity (v, ω)T from the resul-
tant force F

Move for the time ∆t (Update vehicle’s position)
❄

❄

❄

❄

❄

Fig. 6. Flowchart of proposed algorithm for obstacle avoidance.

Obstacle
Goal

Attractive force

Resultant force
to move

Repulsive force

Omnidirectional
vehicle

Fig. 7. Basic potential field method for omnidirectional vehicle to avoid obstacles

3.2 Generation of attractive and repulsive forces

Two action points of forces are placed at the front end and the rear end of a vehicle’s body
as shown in Fig. 8. Let the front end be r f = (x f , 0)T , and the rear end be rr = (−xr, 0)T

in the vehicle coordinate system. These points should not always be placed at the ends of a
vehicle, however, acting forces at the ends makes vehicle’s motion stable. When a obstacle
point pj = (pjx, pjy)

T is detected in front of the line of two wheels’ axes (y axis), a repulsive
force Ff j is generated at the front point of action. When a obstacle point is behind this line, a
repulsive force Frj is generated at the rear point of action. The magnitudes of their forces are
changed in inverse proportion to the squares of the distances between obstacle points and a
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vehicle’s body. Then, their forces are given by

Ff j =
K

|q f j − pj|2
r f − pj

|r f − pj|
, if pjx > 0 (2)

Frj =
K

|qrj − pj|2
rr − pj

|rr − pj|
, if pjx < 0 (3)

where q f j, qrj are the intersections of the vehicle’s body and the segments between obstacle
points and the action points r f , rr respectively. K is the coefficient of repulsive force.

Obstacle
points p jAxis of

wheels (y)

Front repulsive
force FRear repulsive

force F

Transferred rear
force F

r fr r

qqrj

0 x

Fig. 8. Generation of repulsive forces from obstacle points.

Obstacle points p j

Vehicle coordinate system

Resultant force F

Att ractive force Fa

Sum of repulsive forces F r

( )

(X,Y,

r f

r f

G G

Goal R G (X G ,YG , G )

Fig. 9. Generation of attractive force and determination of velocity for avoidance.
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Att ractive force Fa

Sum of repulsive forces F r

( )
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G G

Goal R G (X G ,YG , G )

Next, an attractive force Fa(|Fa| = 1) pulls the front action point r f of the vehicle toward the
goal position as shown in Fig. 9. This attractive force is the tangential vector at the front action
point r f to the circle which comes in contact with the goal orientation of the front action point

r′f . Without any obstacles, the vehicle moves on this circle and arrives at the goal position

RG = (XG, YG, ΘG)
T . The attractive force Fa = (cos ψ, sin ψ)T is given by

ψ = 2 atan2 (y′G, x′G)− θG, θG = ΘG − Θ (4)

[

x′G
y′G

]

= R(−Θ)

[

XG − X
YG − Y

]

+ R(θG)r f − r f (5)

where R(θ) is a rotation matrix by angle θ.

3.3 Resultant force and determination of vehicle’s velocity

A resultant force F is obtained from the attractive and repulsive forces Fa, Ff j, Frj. Since the
action points of their forces are not same, we can’t simply add their force vectors. After the
repulsive forces at the rear action point Frj are transferred to the front action point by inverting
their vectors −Frj, all force vectors are added at the front action point, because the front action
point should be moved in the opposite direction of the rear repulsive force in order to move
the rear body of the vehicle away from the rear obstacle point. That is, the front and rear action
points have a relation like a “lever” of which the fulcrum is the midpoint of two wheels. Then,
the resultant force at the front action point F is defined by

F = Fa + k f ∑
pjx>0

Ff j − kr ∑
pjx<0

Frj, k f + kr = 1 (6)

where the coefficients k f , kr represent the action rate of the front and rear repulsive forces. The
determination of these coefficients are mentioned later.
Finally, the resultant force F pulls the front action point to move the vehicle. In other words,
the translational and rotational velocities of the vehicle (v, ω)T are determined in order that
the front action point r f = (x f , 0)T moves in the direction of the resultant force F/|F| =

( fx, fy)T .
[

v
ω

]

= C

[

fx
fy

x f

]

(7)

where C is the velocity coefficient. Since only the rate of translational and rotational velocities
is obtained, suitable coefficient C should be given according to some limitations of velocity or
acceleration. For example, when the maximum of the rotational velocity ωmax is specified, C
becomes

C = ωmax
x f

fy
, if |ω| > ωmax (8)

3.4 Action rate of front and rear forces

How to determine the action rate of the front and rear repulsive forces k f , kr is discussed.
When a vehicle avoids a block of obstacle as shown in Fig. 10, the force action rate doesn’t
affect vehicle’s motion so much because repulsive forces mainly work at either action point.
When a vehicle moves between walls on both sides, vehicle’s motion isn’t also sensitive to the
action rate because repulsive forces at two points turn the vehicle in the same way. The case
where the action rate affects vehicle’s motion relatively is wall following. Repulsive forces are
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WallObstacle points

Repulsive force

Axis of
wheels

Transferred
rear force

Front forces
F

Rear forces
F rj

Transfer

Motion depends on
action rate kr /k f

Fig. 10. Effect of action rate between front and rear forces on vehicle’s motion. (Wall following
is sensitive and others are not.)

generated at two action points to move their points away from the wall and their direction to
turn the vehicle is different because they are treated like a lever of which the fulcrum is the
midpoint of two wheels. During wall following, larger action rate of front forces k f makes the
vehicle turn away from the wall and larger action rate of rear forces kr makes the vehicle turn
close to the wall as shown in Fig. 10. Therefore, the force action rate should be determined so
as that the vehicle goes straight along a wall, i.e. the resultant force vector F should be parallel
to the wall without considering the attractive force Fa. Let the components of repulsive force
vectors at the front and rear action points in the vertical direction to the wall be Ff yj, Fryj

respectively, this condition becomes

k f ∑ Ff yj − kr ∑ Fryj = 0 (9)

Then, the action rate
kr

k f
=

∑ Ff yj

∑ Fryj
(10)

is obtained. This depends on the shape of a vehicle, the detection area of a laser range sensor
and so on.
The action rate for a rectangular vehicle is concretely calculated as shown in Fig. 11. Let the
front length, rear length, width of a vehicle be a, b, 2c, respectively. Let the distance between
the wheels’ axis and the laser range sensor be s0 and the detection limit distance of the sensor
be s. We can get the sum of components of repulsive force vectors in the vertical direction to
the wall after repulsive forces, which are inversely proportional to the squares of the distances
between the vehicle’s body and the wall, are calculated. When the gap between a vehicle and
a wall is d, they are given by

∑ Ff yj =
KD3

d2
I(a,−φ0, φ1) + KDI(a, φ1, φ3) (11)

Obstacle points p j

ab

2c

d

s

s0

Repulsive
forces

Axis of wheels

r fr r

Detection area of
laser range sensor

0

1

3

Force action
rate : kr /k f

Distance between
vehicles body
and wall : d

Length of
front body: a

(a + b = 1)

Turn to the wall

Turn away from the wall
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WallObstacle points

Repulsive force

Axis of
wheels

Transferred
rear force

Front forces
F

Rear forces
F rj

Transfer

Motion depends on
action rate kr /k f

Obstacle points p j

ab

2c

d

s

s0

Repulsive
forces

Axis of wheels

r fr r

Detection area of
laser range sensor

0

1

3

Fig. 11. Geometry of vehicle’s body and repulsive forces during wall following.

Force action
rate : kr /k f

Distance between
vehicles body
and wall : d

Length of
front body: a

(a + b = 1)

Turn to the wall

Turn away from the wall

Fig. 12. Force action rate kr/k f to go straight along a wall.

∑ Fryj =
KD3

d2
I(−b,−φ2,−φ0) + KDI(−b,−φ3,−φ2) (12)

I(α, φs, φe) =
∫ φe

φs

dφ

((α − s0 − D tan φ)2 + D2)
3
2

, D = c + d (13)

where φ is the angle from the sensor to an obstacle point on the wall, φ0, φ1, φ2, φ3 are the
angles from the sensor to the intersections between the wall and the wheels’ axis, the front
line of the body, the rear line of the body, the circle of detection limit of the sensor. Finally, the
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action rate becomes

kr

k f
=

D2 I(a,−φ0, φ1) + d2 I(a, φ1, φ3)

D2 I(−b,−φ2,−φ0) + d2 I(−b,−φ3,−φ2)
(14)

This value is calculated by numerical integration.
Fig. 12 shows the relation between the distance from a wall d and the action rate kr/k f for
a vehicle to go straight along the wall. In this calculation, it is assumed that the sensor is
placed at the center of the vehicle (s0 = (a − b)/2) and the length of the vehicle is normalized
(a + b = 1). Some cases of the front and rear length of the vehicle with the width 2c = 0.5
are shown in the graph. It can be seen that the action rate for the vehicle to go straight does
not change so much according to the distance from the wall if the driven wheels are not close
to either end of the body (a = 0.3 ∼ 0.7). Even if the wheels are close to the end, there is
no problem for obstacle avoidance because the action rate below these curves in the graph
makes the vehicle turn away from the wall. When the front length a is short (Ex. a = 0.1), the
minimum of the curve should be taken for the action rate. When a is long (Ex. a = 0.9), the
value on the curve at a certain distance should be taken for the action rate because it makes
the vehicle turn away from the wall if the vehicle goes inside its distance.

4. Simulation

Range of laser range sensor 0 ∼ 1 [m]
Directional resolution of lager range sensor 1 [deg.]

Sampling time for control: ∆t 0.1 [s]
Coefficient of repulsive force: K 0.004

Coefficient of velocity: C 0.2
Maximum angular velocity: ωmax 0.2 [rad/s]

Table 1. Standard parameters for simulation

Action rate kr /k f = 2 .0
(a)

Action rate kr /k f = 1 .0
(b)

Action rate kr /k f = 0 .5
(c)

Action rate kr /k f = 1 .0
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Action rate kr /k f = 2 .0
(a)

Action rate kr /k f = 1 .0
(b)

Action rate kr /k f = 0 .5
(c)

Action rate kr /k f = 1 .0
(d)

Line segment

Front point
of action

Rear point
of action
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Fig. 13. Shape of vehicles for simulation
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Fig. 14. Simulation result of the vehicle with shape (a).
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Fig. 15. Simulation results of vehicles with various shape.
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Fig. 16. Simulation results for various environment.
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Fig. 17. Simulation results by using various coefficient of repulsive force.
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R G

Fig. 18. Escape from local minimum by decreasing coefficient of repulsive force (When the
vehicle stopped at Fig.17, coefficient of repulsive force K was temporarily decreased from 0.01
to 0.001 in 1 second.)

Our proposed method of local obstacle avoidance has been tested. All simulation programs
were written in C language on PC Linux system. Table 1 shows standard parameters for the
simulation. We assumed the following situation. A laser range sensor is mounted on the
center of the rectangular body of a vehicle. Since the scan resolution angle is 1 degree, the
max. number of detected obstacle points is 360. An obstacle point is calculated as the nearest
intersection of obstacles and a direction of a laser range sensor within its detection area. Scan
time is short enough to be neglected as compared with vehicle’s speed. 4 types of vehicle’s
bodies were prepared as shown in Fig. 13. The action rate of the front and rear repulsive forces
k f , kr was determined for each body by Equation (14).
Fig. 14 ∼ 17 are simulation results. Start and goal position were given as shown in each fig-
ure. Fig. 14 shows the generated path for the vehicle with shape (a) to pass through a narrow
crank course. It can be seen that a smooth collision free path considering both rectangular
body and motion constraint is generated by our proposed method. Obstacle points detected
by the laser range sensor pj, distances between the vehicle’s body and them, sum of repul-
sive forces Fr , attractive forces Fa and resultant forces to avoid obstacles F are also shown in
the vehicle coordinate system at some positions (See each circle in Fig. 14). A collision free
direction can be determined from the sensor information directly. Moreover, the translational
and rotational velocities of the vehicle v, ω are plotted in the graph and we can see that they
changes smoothly.
Fig. 15 shows the cases of other vehicles’ bodies and Fig. 16 shows the cases of other environ-
ments. It turns out that our proposed method is effective for various situations. Fig. 17 shows
the results for various coefficient of repulsive force K = 0.0001 ∼ 0.01. Larger coefficient gen-
erates the path farther away from obstacles, however, it isn’t too sensitive (See also Fig. 14 of
K = 0.004). When the coefficient is large, there seen some cases where the vehicle gets stuck
at a local minimum. Many algorithms (Liu et al., 2000) to escape from the local minimum
have been already proposed for general potential field method and some of them can be also
applied to this case. For example, when a vehicle is stopped for a while like Fig. 17, it can
escape from this local minimum by decreasing the coefficient of repulsive force K temporarily
(Fig. 18).
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R G
5. Experiment

Navigation experiments were made by a powered wheelchair as shown in Fig. 19. This
wheelchair has two powered wheels ("JW-I" manufactured by Yamaha Motor Co., Ltd., Wheel:
24[inch], Max. speed: 0.86[m/s]) with rotary encoders (2400[p/r]) and their velocities are
controlled by PC (PI control every 0.05[sec]). Two laser range sensors ("URG-04LX" man-

Joystick

Laser
range sensors

Powered wheels with
rotary encoders

PC with
interface boards

0.525

0.7

1.13
0.79

0.
1.

05

0.55

Top view

Front point of action

Rear point of action

Wheel

Detection area

Laser range
sensor

[m]

Fig. 19. Wheelchair setup and approximation to rectangular body to for experiment

ufactured by Hokuyo Automatic Co., Ltd., Range: 4[m], Resolution: ±10[mm], RS232C:
115.2[kbps]) are mounted at the both arm ends of the wheelchair not to disturb a user and
not to be disturbed by a user. Their heights are 0.67[m] from the floor. After our proposed
algorithm of obstacle avoidance was implemented to this wheelchair, navigation experiments
were done in the environment as shown in Fig. 20. Table 2 shows parameters for the experi-
ment. The shape of the wheelchair is approximated by a rectangle (Fig. 19), of which size is a
little larger (1 ∼ 2cm) than the real body.
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Top view
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Chair
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0.95

0.5

4.0

0.7

Fig. 20. Environment of navigation experiment

Range of laser range sensor 0.2 ∼ 1.05 [m]
Directional resolution of lager range sensor 1.08 [deg.]

Sampling time for control: ∆t 0.2 [s]
Coefficient of repulsive force: K 0.002

Coefficient of velocity: C 0.2
Maximum angular velocity: ωmax 0.2 [rad/s]

Action rate: kr/k f 0.6

Table 2. Parameters for navigation experiment
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Fig. 21. Experimental results of trajectory and velocity
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Fig. 22. Experimental results of sensor data at some places

Fig. 21 and Fig. 22 are experimental results. They shows the trajectory, velocity, and sensor
data during the navigation. The autonomous wheelchair succeeded to avoid obstacles such as
chairs, desks, and furniture and passed smoothly through the narrow space between chairs.
The velocity data shows that the velocity was not always smooth in the experiment because
the sensor sometimes failed to detect obstacle points. This failures can be seen in the sensor
data at some places. One reason is that the sensor can’t always catch the reflected laser light
owing to the condition of obstacle surfaces. Another reason is that the shapes of obstacles
changes according to the height of the sensor. It can be seen in Fig. 22 that the laser range
sensor detected the back of a chair, not the seat of it, for example. 3D data of obstacles should
be detected for practical use.
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6. Application

An application of the obstacle avoidance function for an intelligent wheelchair is presented.
It is an assist system of joystick operation to avoid obstacles for wheelchair users. In stead of
giving a goal, the direction of the tilted joystick is assigned to the attractive force vector Fa in
the proposed potential field method.

Joystick of wheelchair

Wheelchair

Att ractive force
for potential

Output voltage
(Vx ,Vy )

x

y

0

Fig. 23. Assist system of joystick operation to avoid obstacles

Let the 2D output voltages of the joystick device be (Vx, Vy)T , the attractive force becomes

Fa =
V

|V |
, V =

(

Vx

Vxmax
,

Vy

Vymax

)T

(15)

where (Vxmax, Vymax)T is the maximum of the output voltage. Then, the angle of the tilted joy-

stick is assigned to the speed of the wheelchair (v, ω)T . Instead of Equation (7), the following
equation is used.

[

v
ω

]

= |V |C

[

fx
fy

x f

]

(16)

When there are no obstacles, the wheelchair moves as operated by the joystick. When
wheelchair is going to collide with obstacles, the joystick operation is corrected by the po-
tential field method. This system enables obstacle avoidance without precise operation of the
wheelchair.
This assist system of joystick operation was tested in the same environment as the navigation
experiment (Fig. 20). The user didn’t operate the joystick precisely. Fig. 24 shows the trajectory
of the wheelchair, the direction of the joystick, and the angle of the resultant force to move the
wheelchair. It can be seen that the wheelchair succeeded to avoid chairs smoothly though the
joystick operation by a user is rough. By this assistance of obstacle avoidance, a user can use
the wheelchair easier with less joystick operation, even in the place where is difficult for he /
her to pass through.

Top view

Photos ofwheelchair are overlapped every 3sec.

Angle of
joystick

Angle of resultant force
(Real direction of wheelchair)

Angle [deg]

Time [sec]

(0[deg] = forward)
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Fig. 24. Experimental results of assist system to avoid obstacles

7. Conclusion

In this chapter, a practical method of local obstacle avoidance for a nonholonomic vehicle
with rectangular body has been proposed. Simple potential field directly using local sensor
data is applied. Repulsive forces according to distances between obstacles and vehicle’s body
are generated at either front or rear point of action on the vehicle and their forces are treated
like a lever. Both motion constraint and shape of a vehicle can be considered by this simple
idea. Simulation results for various situations and experimental results by a wheelchair have
proved effectiveness of our algorithm. Although this method has a disadvantage of local min-
ima as well as general potential field method, it is intended for practical use because adequate
path for local obstacle avoidance can be obtained with a little computing power. Furthermore,
this algorithm may be applied to not only vehicles with two independently driven wheels but
also car-like vehicles. Some improvements of the intelligent wheelchair such as 3D obstacle
sensing and haptic joystick for obstacle avoidance, and consideration about general shape of
vehicles are remained for our further works.
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