
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322390664?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

4

Automatic Generation of User Interface
Models and Prototypes from Domain

and Use Case Models

António Miguel Rosado da Cruz and João Pascoal Faria
Instituto Politécnico de Viana do Castelo / Fac. Engenharia Univ. do Porto e INESC Porto

Portugal

1. Introduction

The development of interactive systems typically involves the separate design and
development of disparate system components by different software developers. The user
interface (UI) is the part of an interactive system through which a user can access the system
functionality. User interface development is a complex task that typically involves the
construction of prototypes and/or models. A prototype facilitates the communication with
the stakeholders, especially with the end users, and allows for the validation of elicited
requirements. Modelling is a well established way people take for dealing with complexity.
A model allows one to focus on important properties of the system being modelled and
abstract away from unimportant issues. Software models may capture relevant parts of the
problem and solution domains and are typically used as a means for reasoning about the
system properties and for communicating with the stakeholders.
The user interface tends to be viewed differently, depending on what community the UI
designer belongs to. UI designers that are more identified with the Software Engineering
(SE) community tend to highlight the system functionality issues, and how it encapsulates
system behaviour to provide to the user. UI designers that are more identified with the
Human-Computer Interaction (HCI) community tend to focus on user task analysis and the
way the user shall work on the UI.
According to the HCI perspective, one of the concerns that shall be modelled is the user
intended tasks on the interactive system, and this is made through the development of user
task analysis. Typically, task analysis and modelling involve the development of goal and
task hierarchies and the identification of objects and actions involved in each task (Dix et al.,
1998). Besides this task model, a view of the UI relevant aspects of the system core structure
and functionality may also be modelled, along with a UI presentation model, in order to
complete the whole interactive system model.
In the SE community, a common practice is to build a Unified Modelling Language (UML)
system model, comprising a domain model and a use case model, supplemented by a non-
functional UI prototype, in the early stages of the software development process (Jacobson
et al., 1999; Pressman, 2005). The domain model captures the main system’s domain classes,
its attributes, relations and, in some cases, its operations, through UML class diagrams. The
use case model captures the main system functionalities from the user’s point of view

Source: User Interfaces, Book edited by: Rita Mátrai,
 ISBN 978-953-307-084-1, pp. 270, May 2010, INTECH, Croatia, downloaded from SCIYO.COM

www.intechopen.com

 User Interfaces

36

through UML use case diagrams and accompanying textual descriptions. The UI prototype
is used to elicit and validate requirements with the stakeholders, and is typically not
integrated with the system model. Also, the use case and domain models are typically
ambiguous and incomplete, having most of the constraints and business rules specified in
textual natural language, and preventing the automatic validation of its consistency. This
kind of models is mainly used for abstracting away from system complexity, helping
reasoning about the system and facilitating communication between the team members and
with the stakeholders.
Model driven development (MDD) approaches, like Domain Specific Modelling – DSM –
(Kelly & Tolvanen, 2008), or the OMG’s Model Driven Architecture – MDA – (Kleppe et al.,
2003), are based on the successive refinement of models and on the automatic generation of
code and other sub-models, thus requiring the unambiguous definition of models.
After briefly surveying the current approaches to the automatic generation of UI models and
prototypes, this chapter presents an approach for the automatic generation of form-based
applications within a model-driven software development setting (Cruz & Faria, 2007). The
approach proposed involves the iterative and incremental development of a domain model,
and optionally a use case model, by the modeller, and the testing of an automatically
generated executable prototype.

2. Current model-based approaches to user interface automatic generation

This section briefly surveys and compares the main current approaches for the automatic
generation of user interface prototypes (UIP), or UI models (UIM), from non-UI system
models, like domain or application structural models, use case or task models, and some
kind of system behavioural models.
As stated before, typical methodologies for modelling interactive applications use disparate
views, or submodels, to capture different aspects of the system (domain or application
model, task model, dialogue model, abstract and concrete presentation models) (Pinheiro da
Silva, 2000). Most of existing approaches to UI generation demand the specification of a UI
model (see for example the approaches surveyed by Pinheiro da Silva (Pinheiro da Silva,
2000)).

2.1 The XIS approach
Few approaches found in the literature allow a model-to-model generation of a UIM/UIP
within a MDD setting. ProjectIT and the XIS profile and approach (Silva et al., 2007; Silva &
Videira, 2008; Silva, 2003) promote a vision that separates modelling of different system
concerns into disparate sub-models, namely an Entities view, a Use Case view and a User
Interface view.
A XIS-based model may follow a dummy or a smart approach. In the dummy approach, the
entities view is composed only of a domain model, the use case view only defines an actors’
hierarchy (actors view) and a user interface view (an abstract presentation model) must be
fully specified comprising an Interaction Spaces View, which defines the abstract screens
that serve as interface between the users and the system, and the Navigation Space View,
which specifies the possible navigation flows between the defined interaction spaces.
A XIS-based model within the smart approach shall have the following sub-models:

• Entities View: Composed of a Domain View and a Business Entities View. The Domain
View models the domain entities by using a UML class model with properly XIS-profile

www.intechopen.com

Automatic Generation of User Interface Models and Prototypes from Domain and Use Case Models

37

stereotyped classes, attributes, associations, and enumerations. The Business Entities
View is used to group together a set of domain entities, in a coarser granularity entity
(«XisBusinessEntity») that shall be manipulated in the context of a use case. A business
entity must designate a master entity and a sequence of detail entities, or it must define
an aggregation of other business entities.

• Use-Cases View: Subdivided in the Actors View, which defines the hierarchy of actors
that can perform operations on the system, and the UseCases View, which identifies use
cases and relates each actor with the use cases that it can perform. The UseCases View
also associates each use case to the business entity on which the actors related to that
use case can perform operations («XisOperatesOnAssociation»). This stereotype has a
tagged-value, operations, which enables the definition of the set of allowed operations
that must be subset of the operations identified in the business entities view for that
business entity.

In the smart approach, XIS allows the generation of models from models - that is the case of
the User-Interfaces View in the smart approach, although it is not yet available in the
ProjectIT-Studio tool.
A XIS model may, then, be inputted to a model to code (M2C) generation process, made
available in ProjectIT through templates. All model views in XIS are platform independent,
and M2C scripts operate on XIS models. The XIS profile does not support OCL nor the full
specification of operations' syntax. It only allows the declaration of operations' name, not its
signature, nor semantics (body or pre-/post-conditions) (Saraiva & Silva, 2008; Silva et al.,
2007).

2.2 The OO-Method approach

The OO-Method approach / Olivanova (Pastor & Molina, 2007; Pastor et al., 2004; Molina,

2004; Molina & Hernández, 2003) aims at producing a formal specification of a software

system in an executable formal object-oriented language named OASIS. But, in order to

avoid the complexity traditionally associated to the use of formal methods, the OOMethod

only asks for the software engineer to graphically model a system at a conceptual level - the

conceptual model –, which is then translated, through a set of modelling patterns provided

by the method, to an OASIS specification – the execution model. The OO-Method starts,

then, with the construction of a conceptual model, which is in turn composed of the

following sub-models (Pastor et al., 1997; Pastor & Insfrán, 2003; Pastor & Molina, 2007):

• Object Model. Represented through a UML class diagram, capturing domain classes
and classes associated to user roles. For each class, the object model captures
information about its attributes, services (operations triggered by message events with
the same name), derived attributes, constraints and relationships (aggregation and
inheritance).

• Dynamic Model. Used to specify valid object lifecycles and interaction between objects.
To specify valid object lifecycles, a state transition diagram is used per class,
representing its valid states and the valid transitions between states. Transitions may
have attached control or triggering conditions. Object interactions are represented by a
(non-UML) interaction diagram for the whole system. Two types of interactions are
possible: Triggers, which are services of objects that are automatically activated when a
condition is satisfied; and, Global interactions, which are transactions involving services
of different objects.

www.intechopen.com

 User Interfaces

38

• Functional Model. Captures the semantics attached to any change of state, as a
consequence of a service occurrence. For that, it is declaratively specified how each
service changes the object state depending on the arguments of the involved service and
the current object state. Nevertheless, for not demanding the knowledge of OASIS, the
OO-Method provides a model where the software engineer only has to categorize every
attribute among a predefined set of three categories and introduce the relevant
information depending on the corresponding selected category (Pastor et al., 1997;
Pastor & Insfrán, 2003).

• Presentation Model. The last step is to specify how users will interact with the system
(Pastor & Insfrán, 2003). Just-UI adds to the OO-Method a Presentation Model that
intends to capture the characteristics of the User Interface as they are conceived at
conceptual level during the requirements elicitation phase of a system's development
process (Molina et al., 2001; Molina & Hernández, 2003). The kind of information that is
collected in the presentation model of the OO-Method is based on conceptual interface
patterns based on Abstract Interaction Objects (AIO).

The abstract execution model is based on the concept of conceptual modelling patterns. The
OlivaNova transformation engines provide a well-defined software representation of the
conceptual modelling patterns in the solution space.

2.3 The ZOOM approach

The ZOOM approach to interactive systems modelling and development (Jia et al., 2005)
provides a set of process, notations, and supporting tools that enable model-driven
development. ZOOM, which stands for Z-based OO modelling notation, is an object-
oriented (OO) extension to the formal specification language Z. ZOOM separates an
application into three parts – structure, behaviour, and user-interface – and provides three
separate, but related, notations to describe each of those parts: ZOOM for structural models;
ZOOM-FSM for specifying behavioural models through finite state machines; and, ZOOM-
UIDL, a user interface description language for UI models. ZOOM provides a Java-like
textual syntax for structural and behavioural models and an XML-based language for the
User-Interface model. Furthermore, ZOOM provides a graphical representation of models
consistent with UML diagrams (Jia et al., 2007; Jia et al., 2005), enabling a graphical formal
modelling of a software system.
An event-based framework integrates the different parts of a ZOOM model, enabling its
validation and execution.
ZOOM may be used in a MDD setting by applying model “compilation” tools. These, are

tools that enable the generation of a complete application from a ZOOM model, exposing its

functional requirements through a UI generated from the UI model. The generated code

must not only meet all functional requirements, but the generation process must address the

choice of architecture, data structures and algorithms (Jia et al., 2005; Jia et al., 2007).

2.4 Other approaches

In (Martinez et al., 2002) a methodology for deriving UIs from early requirements existing in

an organization’s business process model is presented. Martinez’s approach follows a set of

heuristics for extracting use cases and actors from the business process model. Each use

case’s normal and exceptional scenarios are then specified using message sequence charts

enriched with UI related information. These UI enriched sequence diagrams are then used

www.intechopen.com

Automatic Generation of User Interface Models and Prototypes from Domain and Use Case Models

39

for automatically generating application forms and state transition diagrams for the

interface objects and control objects present in the sequence diagrams.

UI generation is also approached in (Elkoutbi et al., 2006) based on the identification of
usage scenarios. Elkoutbi’s approach starts from a system domain structural model with
OCL constraints and a use case model, but proceeds by formalizing each use case through a
set of UML collaboration diagrams, each corresponding to a use case scenario. Then, each
collaboration diagram message is manually labelled with UI constraints (inputData and
outputData) that identify the input and output message parameters for the UI. From the UI
constraints it then automatically produces message constraints with UI widget information.
Statechart diagrams are then derived from the UI labelled collaboration diagrams on a per
use case basis. A statechart is created for each distinct class in a collaboration diagram. Then,
state labeling and statechart integration are done incrementally, in order to obtain only one
statechart per collaboration diagram, that is, per usage scenario. Elkoutbi’s approach is then
able to derive UI prototypes for every interface object defined in the class diagram.
Forbrig et al. (Wolff et al., 2005a; Wolff et al., 2005b; Javahery et al., 2007; Radeke et al., 2007;
Forbrig et al., 2004; Reichart et al., 2004) developed an approach that interactively generates
an abstract UI model, and then a concrete UI, by applying UI-patterns to elements of UI sub-
models (e.g. task models). The approach starts by constructing a task model and a business
objects model, complemented with a user model, that capture relevant information from the
user (e.g.: typical tasks, its type, frequency and importance, preferences), and a device
model, that captures relevant information about the device. Then, from the previous models,
a set of selectable patterns is identified enabling its selection by the modeller in order to
obtain more concrete models. This is not an automatic approach, but one that enables a
computer assisted development of interactive applications by selecting different types of
patterns at different levels of abstractions. Tools like DiaTask (Wolff et al., 2005b) and PIM
Tool (“Patterns in Modelling” tool) (Radeke et al., 2007) enable this computer assisted
approach.

2.5 Discussion of current approaches

Elkoutbi’s and Martinez’s approaches enable the semi-automatic generation of a UIP from

non-UI models, but they do not produce an intermediate UIM. Also, the amount of work

involved in the production of the demanded models makes the approaches of little use for

software development teams.

Forbrig’s approach facilitates the model transformation processes by making the modeller
choose between a set of eligible patterns, but it is not an automatic generation approach.
The XIS/ProjectIT, just like the OO-Method/Olivanova and the ZOOM approach are able to

produce a fully functional (executable) application, but the demanded input models are very

time consuming and arduous to build. The need to attach a stereotype to every model

element, in XIS, makes the models hard to read and build.

All except the XIS smart approach and partially the OO-Method demand the full construction
of a UI model. The XIS smart approach enables the derivation of a UIM, called user interfaces
view, by demanding the construction of three non-UI models, a domain model, a business
entities model and a use case model. This approach to the UIM derivation is simpler than its
full construction, but forces the modeller to repeat definitions that were already made in the
domain model, by defining XIS business entities. XIS business entities select domain entities
relations to provide a lookup or master/detail pattern to the UI needed for the interaction

www.intechopen.com

 User Interfaces

40

inside the context of a use case (Silva, 2003; Silva et al., 2007). This way, the Business Entities
view is the XIS way to define UI structure and functionality, though possible operations can be
further restricted when associating the business entity to a use case.
It is not possible, in XIS, to specify complex behaviour - only predefined CRUD operations
may be attached to Business Entities and to the connection between the use cases and
business entities.
ZOOM and the OO-Method allow the definition of complex behaviour by using a formal
specification language, ZOOM or OASIS respectively, though the OO-Method also provides
a way that enables the definition of some behaviour without demanding the knowledge of
OASIS from the software engineer.
From the previous survey and discussion the main drawbacks of existing approaches to UI
automatic code generation have been identified, and are summarized below:

• In general, current approaches demand too much effort, from the modeller, in order to
build the system models inputted to the approaches. They don't allow a gradual
approach to system modelling if one wants to generate a (prototype) application to
iteratively evaluate and refine the model. All models expected by one approach must be
fully developed before code generation may be available, except with the OO-Method
(Pastor et al., 2004; Molina, 2004; Pastor et al., 1997), to a certain point, because it may
generate a concrete UI given only a structural model. But the OO-Method does not
permit the specification of a use case driven system model.

• Most of the approaches demand the manual construction of a UI model from scratch, in
order to be able to produce a concrete user interface for an interactive application. The
exception is the XIS smart approach (Silva et al., 2007), that enables the generation of a
user interface model from the core system model, but the generated UI is rather limited
in what concerns its flexibility and the core system behaviour.

• Current approaches don't allow the generation of an executable prototype from the
available system models, that would permit to interactively validate the model through
a UI with the users and other stakeholders, and refine the model in a sequence of
iterative steps.

• Most of the existing approaches don't take advantage of the specification of class state
constraints (invariants) or of operations pre-conditions to enhance the usability of the
generated UI. The exception is the ZOOM approach (Jia et al., 2005; Jia et al., 2007), and
partially the OO-Method (Pastor et al., 2004; Molina, 2004; Pastor et al., 1997).

• Existing approaches don't take advantage of the use of constructs typically found in
task models (e.g.: sequencing, alternative) for detailing use cases (Paternó, 2001).

• Existing approaches don't allow the definition of the semantic of operations at class
level. Again, the exception is the ZOOM approach (Jia et al., 2005; Jia et al., 2007), and
partially the OO-Method (Pastor et al., 2004; Molina, 2004; Pastor et al., 1997).

• With the partial exception of the OO-Method (Pastor et al., 2004; Molina, 2004; Pastor et
al., 1997), existing approaches don't allow the definition of triggers, i.e. actions to be
executed when certain events occur or certain conditions hold. Triggers activated by an
operation's invocation are a way of modifying or adding behaviour to CRUD or other
operations. Using triggers it is possible to specify business rules that involve several
classes' operations. The OO-Method only allows the specification of condition activated
triggers but not invocation activated triggers.

In the next section, a general presentation of the proposed approach is made, aiming the
automatic generation of user interface models and prototypes from non-UI system models.

www.intechopen.com

Automatic Generation of User Interface Models and Prototypes from Domain and Use Case Models

41

3. Proposed approach to model-driven user interface generation

The proposed approach to model-driven UI generation and development (Cruz & Faria,
2007; Cruz & Faria, 2008; Cruz & Faria, 2009), illustrated in Fig.1, enables the automatic
generation of user interface models (UIM) and executable user interface prototypes (UIP)
from early, progressively enriched, non-UI system models.

Extended
Domain

Model (EDM)

Software engineer

EDM2UIM

M2C
User

Interface
Model (UIM)

Data layer (e.g.:

RDF)

Application logic
(e.g.: Javascript)

UI (e.g.: XUL)

Application prototype

Prototype

usage and
evaluation

Use Case

Model
(UCM)

EDM2UCM

EDM+UCM
2UIM

Fig. 1. General approach to UI generation.

In the first iterations, a simple domain model (DM) is constructed, represented by a UML
class diagram, with classes (base domain entities), attributes and relationships. From this
DM a simple UI can be automatically generated (by the EDM2UIM process, a model to
model transformation, and model to code transformation - M2C -, in Fig. 1) supporting only
the basic CRUD operations and navigation along the associations defined.
In subsequent iterations, the domain model is extended with additional features (to be
explained in more detail in section 4) that allow the generation of richer user interfaces: OCL
constraints, default values, derived attributes, derived entities (views), user-defined
operations, and triggers. From this extended domain model (EDM), it is possible to generate
validation routines from OCL class invariants and operations' pre-conditions, thus
influencing what the user is able to do in the generated user interface. Derived classes allow
the generation of UI forms with a better business tailored data structure.
Simultaneously, the modeller may develop a use case model (UCM), integrated with the
EDM. This UCM will enable the separation of functionality by actor, and its customization
(e.g.: hiding functionality for some actors). Corresponding UI models and prototypes are
then automatically generated from both the EDM and UCM (EDM+UCM2UIM and M2C
processes in Fig. 1). As will be explained in section 5, there is a full integration between the
UCM and EDM, as use case specifications are established over the structural domain model.
On each iteration, the generated UI may be tuned by a UI designer in two points of the
process: after having generated an abstract UIM, but before generating a concrete UI; and,

www.intechopen.com

 User Interfaces

42

E.D.M.M. U.C.M.M. U.I.M.M.

Fig. 2. Excerpt of the conceptual metamodels and their relations.

after generating a concrete UI in a XML-based UI description language (e.g.: XUL), which
allows for the a posteriori customization and application of style sheets. A proof of concept
tool has been developed for fully automating the EDM2UIM, EDM+UCM2UIM and M2C
processes. The prototyped M2C process uses XUL to represent an executable UI description,
JavaScript for the executable functionality and RDF to persist data.
Each of the models (EDM, UCM and UIM) presented in Fig. 1 is an instance of a defined
metamodel, of which an excerpt is shown in Fig. 2 (EDMM, UCMM and UIMM,
respectively). Elements in the user interface model are traced back to elements in the UCM
or EDM, e.g.:
• A Menu in the UI traces back to a Use Case (UC) Package in the UCM;
• a Menu Item traces back to a top-level use case in the UCM, i.e. a use case that directly

links to an actor;
• A Form can be traced back to a use case, which is always related to a base or derived

domain Entity;
• An Action Button may trace back to a CRUD operation that may be identified in a use

case, or to a user defined operation.
In the next two sections the mappings for deriving a UI model from one or both of the other
models (EDM and UCM), as depicted in Fig. 1, are defined.
A set of rules has also been defined for transforming an EDM into a default UCM
(EDM2UCM process), and these are briefly presented in section 6.

4. Automatic generation of a user interface model from an extended domain
model

This section presents the rules defined to transform different elements of the extended
domain model into appropriate user interface elements and their underlying functionality.

www.intechopen.com

Automatic Generation of User Interface Models and Prototypes from Domain and Use Case Models

43

4.1 Extended domain model and transformation rules

Besides classes (domain entities), attributes and relationships, an extended domain model
may contain the following elements:

• Class invariants: intra-object (over attributes of a single instance) or inter-object (over
attributes of multiple instances of the same or related classes) constraints defined in a
subset of OCL.

• User-defined operations: Operations defined in an Action Semantics-based action
language, supplementing the basic CRUD operations (Create, Retrieve, Update and
Delete).

• Derived attributes: Attributes whose values are defined by expressions in a subset of
OCL, over attributes of self or related instances. A common special case is a reference to
a related attribute, using a sequence of dot separated names.

• Default values: Initial attribute values defined in a subset of OCL.

• Derived classes (views): Classes that extend the domain model with non-persistent
domain entities with a structure closer to the UI needs. Currently, each derived class
must be related to a target base class, and is treated essentially as a virtual
specialization of the base class, possibly restricted by a membership constraint and
extended with derived attributes.

• Triggers: Actions to be executed before, after or instead of CRUD operations, or when a
condition holds within the context of an instance of a class. By defining triggers, the
modeller is able to modify the normal behaviour of CRUD operations, or define generic
business rules.

The main transformation rules for generating a user interface model from an extended
domain model are summarized in Table 1, and extend the rules for transforming simple
domain models, previously addressed in (Cruz & Faria, 2008).
When the UIM/UIP is generated solely from the domain model, a special class named

System has to be created and linked to the domain classes that should correspond to the

application entry points. A more flexible approach is explained in section 5.

4.2 Illustrative example

To illustrate the transformation rules from an extended domain model (EDM) to a user

interface model/prototype (UIM/UIP), a Library System example will be used. Fig. 3 depicts

the extended domain model from our example. In order to be able to identify the application

user interface entry points, the EDM must be rooted in a special class named System. This is

a special class, with no attributes, that aggregates the base or derived entities that shall be

directly accessed by the user. Each aggregation from System to a base entity class produces a

window with a list of instances of the appropriate class, and each aggregation from System

to a derived entity class produces a window with a list of instances of the derived class’

target entity.

Transforming single classes

For each non-abstract entity class (base or derived) with self or inherited attributes, the

EDM2UIM model transformer creates a form window. For instance, for the class Book (see

Figs. 3 and 4), it is created a form with a label and an input field for each class attribute

(attribute access modes are not being taken into account). The «ident» stereotype is used to

mark attributes that are used for external identification (by the user).

www.intechopen.com

 User Interfaces

44

EDM feature Generated UI feature (UIM/UIP)

Base domain
entity

Form with an input/output field for each attribute, and buttons and
associated logic for the CRUD operations.

Inheritance
A field for each inherited attribute in the form generated for the
specialized class.

To-many
association,
aggregation or
composition

UI component in the source class form, with a list of the identifying
attributes (explained in section 4.2) of the related instances of the target
class, and buttons for adding new instances and for editing or removing
the currently selected instance.

To-one
association,
aggregation or
composition

Group box in the source class form, with a field for each identifying
attribute of the related instance. If the related instance is not fixed by
the navigation path followed so forth, then a button is also generated
for selecting the related instance.

Enumerated
type

Group of radio buttons for selecting one option.

Class invariant
Validation rule that is called when creating or updating instances of the
class.

User-defined
operation

Button and associated logic, within the form corresponding to the class
where the operation is defined. Forms are also generated for entering
the input parameters and displaying the result, in case they exist. The
operation pre-condition determines when the button is enabled.

Derived
attribute

Output-only field (calculated field).

Default value Initial field value.

Derived entity
(view)

Form with an input/output field for each attribute of the target class, an
output-only field for each derived attribute, and buttons for the CRUD
logic (over the target class).

Operation-
Action Trigger

Logic that is executed before, after or instead of the CRUD operation
that it refers to.

Condition-
Action Trigger

Logic that is executed every time the condition holds, after creating or
updating an instance of the class where the trigger is defined.

Table 1. EDM to UIM/UIP transformation rules.

In this example (see Fig. 4), to navigate to the Book window, the user has to select the Book
Collection option in the System (root) window, and then press the Add Book button (to create a
new instance), or select a Book instance and then press the Edit Book button (to view, update or
delete an existing instance). In the first case, the user will have to fill in the appropriate fields,
press the Create/Update button and then close the window or continue editing. In the second
case, the user can update the relevant fields and press the Create/Update button to submit the
changes, or press the Delete button to delete the instance and then close the window.
When a new or updated instance is submitted, it is checked that the values entered in the

fields obey their declared data types, the identifying attributes (marked with the «ident»

stereotype) are filled in, and the invariant constraints are satisfied.

www.intechopen.com

Automatic Generation of User Interface Models and Prototypes from Domain and Use Case Models

45

«ident» +Name : string

«ident» +Login : string

+Password : string

LibraryUser

+Salary : int

Librarian Borrower

+returnBook()

+dueDate

+effectiveReturnDate

Loan

1

0
..*

1

0
..*

«ident» +ISBN : string

«ident» +Title : string

«ident» +Author : string

+Edition : int

+Year : int

Book
1

0..*

+CopyCode : string

+/ BookTitle = bookData.Title

BookCopy

-loan

*

-b
o
o
k
C

o
p
y 1

-bookCopies *

-bookData 1

System

1

0
..*

1

0..*

+In the shelf

+Borrowed

+For reading in the Library

«enumeration»

BookCopyStatus

* -status 1-/bookCopy.bookData.Title

-/bookCopy.bookData.Author

-/Code = bookCopy.CopyCode

-/CopyStatus = bookCopy.status

-/DueDate = dueDate

-/LoanStatus = status

/ ActiveLoan

1

0..*

1

-«target» 1

+Active

+Inactive

«enumeration»

LoanStatus

* -status 1

+date

+value

Fine

-fine0..1

1

1

-fines*

{status = LoanStatus.Active}

Context Loan trigger after update:

if (self.effectiveReturnDate >

self.dueDate)

fine = new Fine();

fine.date =self.effectiveReturnDate;

fine.value = 1.5;

fine.persist();

Fig. 3. Extended domain model (EDM) for a Library Management System (LibrarySystem),
with an example trigger.

Transforming inheritance hierarchies

In our approach, only single inheritance is currently supported, and forms are generated
only for the leaf classes of the inheritance hierarchy. Each leaf class inherits all the attributes
and constraints from its ancestor classes, and then has the same treatment as single classes.

Transforming associations, aggregations and compositions

For each relationship between two classes, information about related objects and/or links to
related objects are generated in each of the corresponding windows. The elements generated
depend on the kind of relationship (composition is treated slightly differently from
aggregation or association), its multiplicity (to-one and to-many are treated differently), and
the navigation path followed. The information that is shown about related objects is the
value of the identifying attributes (marked with the «ident» stereotype). If no attribute is
marked with the «ident» stereotyped, all the attributes are considered identifying attributes.
Role names are used to group the identifying attributes in the form generated. If a role name
is not provided, it is used the class name.
In Fig. 4 the UI elements generated from the EDM’s classes Book and BookCopy, and from the
composition relationship between them, can be seen. The Book window presents a list of
related BookCopy instances, and a set of buttons for editing (viewing or updating) or
removing a previously selected instance, or adding a new instance. The BookCopy is accessed
from the Book window (to edit or create a BookCopy instance), and presents the related
BookData identified by ISBN, Title and Author, which are external identifiers («ident») in

www.intechopen.com

 User Interfaces

46

Fig. 4. Excerpt of the application prototype generated from the EDM in Fig. 3.

class Book. The BookCopy form also has a non-editable output field, BookTitle, generated
from its derived attribute with the same name.
In the case of an aggregation or association relationship (instead of a composition
relationship), as is the case of the one-to-many association between BookCopy and Loan, the
list of related instances is only shown when requested by the user by pressing an
expand/collapse button (see BookCopy‘s form in Fig. 4).
When one is editing an object that has a related to-one object that is not in the navigation
path followed so forth, the user can change the related instance through a Select button. This
button gives access to a pop-up window with a list of instances (identified by their «ident»
attributes), from which one can be selected. For example, the class Loan is the “many” side of
two one-to-many relations. One can navigate to Loan from BookCopy or Borrower or one can
navigate directly to Loan from the System root class (recall Figs. 3 and 4). Fig. 5 (a) shows the
window that appears to the user when navigating to Loan directly from the System class. In
this case, both the borrower that makes the loan and the lent book copy are selectable from
the Loan window. Fig. 5 (b) shows the window that appears when navigating from

www.intechopen.com

Automatic Generation of User Interface Models and Prototypes from Domain and Use Case Models

47

(a) (b)

Fig. 5. (a) Window Loan that is shown when navigating directly to an instance of class Loan.
(b) Window Loan, which is shown when navigating from a BookCopy instance to an instance
of class Loan.

BookCopy to Loan. In this case, a given BookCopy instance has been previously selected, and
thus the “Select BookCopy” button doesn’t appear in the Loan window, and the field that
identifies a book copy shows the referenced book copy. Similarly, when navigating from a
borrower instance, the “Select Borrower” button wouldn’t appear and the fields that identify
a borrower would display the associated borrower.

Handling enumerated types

Enumerated types are defined in the model as classes with an «enumeration» stereotype. In
Fig. 3, the UI elements that have origin in a class relation to an «enumeration» class can be
seen in the BookCopy’s form window. The relation between class BookCopy and the
enumerated type BookCopyStatus generated a list of radio buttons with the enumeration
fields, in the BookCopy form. The role’s name is used as an attribute, and each of the
enumerated fields may be selected through a radio button.

Handling constraints

We can identify two kinds of business or domain constraints that may be specified in the
domain model: - structural constraints; and, - non-structural constraints. Examples of the
former are the multiplicity of the attributes or the uniqueness of classes’ keys, and of the
latter, are OCL constraints. Each kind of constraints may be further sub-divided into intra-
object constraints, applied to attributes within the same object, and inter-object constraints,
which may apply to attributes of different objects and/or classes.
The model transformer handles intra- and inter-object constraints, by generating data entry
validation functions that are called every time a “Create/Update” button is pressed in the
appropriate form.

www.intechopen.com

 User Interfaces

48

Constraints may be specified, in the extended domain model, by using an OCL-like abstract
language. Constraint expressions may have relational and logical operators, attribute
references, constants, etc.

5. Automatic generation of a user interface model from extended domain and
use case models

5.1 Use case model and transformation rules

To better allow the configuration of system functionality and enable its differentiation by
actor, our approach allows the definition of a use case model (UCM) in close connection
with the extended domain model (Cruz & Faria, 2009). This allows the modeller to define
and organize the CRUD, user-defined or navigational operations over base or derived
domain entities that are available for each actor (user role). The data manipulated in each
use case is determined by the domain entity and/or operation associated with it. Several
constraints are posed on the types of use cases and use case relationships that can be
handled automatically.
Two categories of use cases are distinguished:

• Independent use cases: use cases that can be initiated directly, and so can be linked
directly to actors (that initiate them) and appear as application entry points;

• Dependent use cases: use cases that can only be initiated from within other use cases,
called source use cases, because they depend on the context set by the source use cases;
the dependent use cases extend or are included by the source ones, according to their
nature (optional or mandatory, respectively).

The types of independent use cases that can be defined in connection with the EDM are:

• List Entity: view the list of instances of an entity (usually only some attributes, marked
as identifying attributes, are shown);

• Create Entity: create a new instance of an entity;

• Call StaticOperation: invoke a static user-defined operation defined in some entity; this
includes entering the input parameters and viewing the results, when they exist.

The types of dependent use cases that can be defined in connection with the EDM are:

• Retrieve, Update and/or Delete Entity: view (retrieve) or edit (update or delete) an
instance of the entity previously selected (in the source use case);

• Call InstanceOperation: invoke a user-defined operation over an instance of an entity
previously selected (in the source use case); this includes entering the input parameters
and viewing the results, when they exist;

• List Related Entity: view the list of (0 or more) instances of the target entity that are linked
to a previously selected source object (in the source use case); in case of ambiguity, in this
and in the next use case types, the link type (association) must also be specified;

• Create Related Entity: create a new instance of the target entity type and link it to a
source object previously selected (in the direct or indirect source use case);

• Retrieve, Update and/or Delete Related Entity: view (retrieve) or edit (update or delete
and unlink) the instance of the target entity type that is linked with a source object
previously selected (in the direct or indirect source use case);

• Select Related Entity: select (and return to the source use case) an instance of the target
entity that can be linked to a source object previously selected (in the source use case);

• Select and Link Related Entity: select an instance of the target entity and link it to the
source object previously selected (in the source use case);

www.intechopen.com

Automatic Generation of User Interface Models and Prototypes from Domain and Use Case Models

49

• Unlink Related Entity: unlink the currently selected instance of the target entity (in the
source use case) from the currently selected source object (in the source use case).

The entity, operation(s), and link type (when needed) associated to each use case are
specified with tagged-values.
The types of relationships that can be defined among use cases are illustrated in Fig. 6.

Fig. 6. Possible types of relationships among use cases for different domain model fragments
(note: aggregations and compositions are treated similarly to associations).

E1 List E1

Create E1

«extend»

«extend»
a) Entity

d) Dependent collection

E1 E2
1 * CRUD

E1

Create

Related E2

«extend»

«extend»

List

Related E2
Retrieve, Update

and/or Delete

Related E2

«extend»

«include»

or

e) Independent collection

E1 E2 * *
CRUD

E1

«extend»

«extend»

List

Related
Select and

Link Related

E2

«extend»

«include»

or

Retrieve

Related E2

Unlink

Related E2

«extend»

Retrieve, Update

and/or Delete E1

b) Dependent instance

E1 E2
1

or 1
CRUD

E1
«extend»

«extend»

Retrieve, Update

and/or Delete

Related E2

c) Independent instance

E1 E2
* 0..

1
CRUD

E1

«extend»
Select

Related E2

Retrieve

Related E2

Unlink

Related E2

0..1

or 1

«extend»

«extend»

«include»

or

«include»

or

Create

Related E2

www.intechopen.com

 User Interfaces

50

Table 2 summarizes the rules for generating UI elements from the UCM. Their application is
illustrated in the next section.

UCM feature Generated UI feature (UIM/UIP)

Actor

Button in the application start window, linking to the
actor’s main window.

Use Case Package

Menu in the actor's main window, with a menu item
for each use case that belongs to the package and is
directly linked to the actor.

Use Case of type List Entity
or List Related Entity

Form that displays the full list of instances or the list
of related instances of the target entity, with buttons
for the allowed operations (according to the
dependent use cases). Only the identifying attributes
are shown.

Use Case of type Select Related
Entity or Select and Link
Related Entity

Form that displays the list of candidate instances and
allows selecting one instance. Only the identifying
attributes are shown.

Use Case of type CRUD
Entity or CRUD Related Entity

Form that displays the object attribute values, with
buttons and functionality corresponding to the CRUD
operations allowed. In the case of a related instance,
the identifying attributes of the source object are
shown but cannot be edited.

Use Case of type Call User-
Defined Operation

Forms for entering and submitting input parameters
and presenting output parameters, when they exist.

Extend relationship
Button in the form corresponding to the base use case
that gives access to the extension.

Include relationship
If the included use case is of type "List...", it is
generated a sub-window. Otherwise, it is generated a
button in the source use case.

Table 2. UCM to UIM transformation rules.

5.2 Illustrative example
This subsection presents a refinement of the Library System example to illustrate the
transformation rules from an extended domain model (EDM) and a use case model (UCM)
to a user interface model/prototype (UIM/UIP) (Cruz & Faria, 2009). The constructed EDM
is the same presented in section 4 (refer to Fig. 3). Such model has been developed in several
iterations; an executable prototype has been automatically generated and tested at the end
of each iteration.
After having a partial or complete EDM, the modeller may also develop a UCM. Fig. 7
illustrates an extract of a UCM that was developed for this system. Table 3 shows the entity
types and operations associated (via tagged values) with some of the use cases. By applying
the mapping rules described previously, the EDM+UCM2UIM process generates a UI model
and then an executable prototype, part of which is shown in Fig. 8.

www.intechopen.com

Automatic Generation of User Interface Models and Prototypes from Domain and Use Case Models

51

Librarian

List Books

Manage Books

Edit Book

«extends»

List Loans

Manage Loans

Add Loan

«extends»

Borrower List Books

View Books

View Details

«extends»

Add a new Book

«extends»

Edit Loan

«extends»

List BookCopies

«extends»

«includes»

«includes»

Select BookCopy

Select Borrower

«includes»

«includes»

«includes»

«includes»

Add BookCopy

«extends»

Edit BookCopy

«extends»

Fig. 7. Partial use case model (UCM) for the Library Management System.

Use case Entity Operation(s)

List Books Book List

Add a new Book Book Create

Edit Book Book Update

List BookCopies BookCopy List Related

Add BookCopy BookCopy Create Related

Edit BookCopy BookCopy Update, Delete

List Loans Loan List

Add Loan Loan Create

Edit Loan Loan Update

Select Borrower Borrower Select Related

Select BookCopy BookCopy Select Related

View Details Book Retrieve

Table 3. Entities and operations associated (via tagged values) with some of the use cases in
Fig. 7.

Transforming actors, use case packages, and directly accessible use cases

Each actor originates a button in the application start window, and an actor’s main window,
which is accessed through the actor’s selection button in the start window. In our example,
the application start window is generated with two buttons for actor selection, “Librarian”
and “Borrower”. For each use case package where an actor has directly accessible use cases,
a menu is generated in that actor’s main window, having a menu item available for each

www.intechopen.com

 User Interfaces

52

directly accessible use case. For example, the menu generated from the package “Manage
Books” (see Fig. 8), has menu item “List Books” generated from the directly accessible use
case with the same name.

Transforming use cases of type “List Entity” or “List Related Entity”

Every use case of type “List Entity” or “List Related Entity” is related to a base or derived
entity in the extended domain model, and for each of these use cases the model transformer
generates a form displaying a full list of instances or the list of related instances of the target
domain model’s entity. If there are dependent use cases, a button for each one of them is
also generated, giving access to the allowed operations from the listing. In our example,
“List Books” is a List Entity use case from which the “BookCollection” form has been
generated (see Fig. 8). The “BookCollection” form also has buttons “Edit Book” and “Add a
New Book” that were generated from the use cases with the same name included in the
“List Books” use case.
An example of a List Related Entity is use case “List BookCopies”, included in the “Edit
Book” and in the “Add a New Book” use cases. In these use cases a Book is previously
chosen or is created, setting the context for the next list related use case, that is use case “List
BookCopies”.

Fig. 8. Excerpt of the application prototype generated for a Librarian executing use cases List
Books å Edit Book (that includes List BookCopies).

Transforming use cases of type “CRUD Entity” or “CRUD Related Entity”

Each use case of type “CRUD entity” or “CRUD related entity”, that is, use cases that target
an entity and a CRUD operation on that entity, generates a form displaying the attributes’
values, with buttons and functionality for the CRUD operations allowed. In our example, a

www.intechopen.com

Automatic Generation of User Interface Models and Prototypes from Domain and Use Case Models

53

CRUD entity use case is, for instance, use case “Edit Book”, which has associated tagged
values Entity = “Book” and Operations = “Update” (see Table 3). An example of a CRUD
related entity use case is “Edit BookCopy”.

Transforming use cases of type “Select Related Entity” or “Select and Link Related Entity”

In the LibrarySystem example “Select BookCopy” and “Select Borrower” are use cases of

type “Select and Link Related Entity”, where an independent instance of BookCopy or

Borrower, respectively, must be associated to an instance of Loan (refer to Fig. 5).

With the use case model, the modeller may choose not to give an actor the possibility to

select a different borrower or book copy to loans.

EDM feature Generated UCM feature

List E1

Edit E1

«extend»

«extend»

1) Aggregations from System class to

Entities

CRUD

E2 «include»

4) n-to-n relations

Add E1

2) 1-to-n relations between Entities

(side 1)

Add or

Edit E1

List Related E2 (in

case of composition)
«include»

actor

Select and

Link Related

E1

System

-...

E1

1 *

CRUD

E1

«include»
Select and Link

multiple related

E2

List

Related E2

«extend»

3) n-to-1 or 0..1-to-1 relations between

Entities (side n or 0..1)

-...

E2

-...

E1

* *

List Related E2 (in

other cases) «extend»
-...

E1

-...

E2

1 *

1 *

1 *

1 *

or1 *

1 *or

-...

E1

-...

E2

0..1 1

0..* 1
or

1

10..*

0..1

or

Fig. 9. Use case model fragments automatically derived from EDM’s patterns.

Transforming use cases of type “Call User Defined Operation”

A “Call User Defined Operation” use case generates a button in the form window

corresponding to the entity where the operation is defined, and a form for entering

parameters and another form for showing the operation’s result, if they exist. In our

example, this situation appears in Loan. Class Loan defines operation returnBook, that is

transformed to a button in the Loan form window, and a form for entering the operation’s

www.intechopen.com

 User Interfaces

54

parameters. Since this operation, defined using an Action Semantics-like abstract language,

returns no result, an output form is not generated.

When the operation returns, the entity form is refreshed to be able to show data modified by

the operation in the instance’s state.

6. Default use case model generation from extended domain model

As stated before, and according to the proposed approach (refer to section 3) a default UCM

may be derived from the EDM facilitating the initial construction of the UCM. The default

use case model has only one actor that has access to all the system functionality, and may

serve as the basis for producing the intended use case model by creating new actors and

eliminating or redistributing functions among actors.

Actor

List Books

System

Edit Book

«extends»

List Loans Add Loan

«extends»

List Borrowers

Add Book
«extends»

Edit Loan

«extends»

List Related
BookCopies

«includes»

«includes»
Add BookCopy

«extends»

Edit BookCopy
«extends»

Select BookCopy

Select Borrower

«includes»

«includes»

«includes»

«includes»

List Librarians

List ActiveLoans

Add Borrower

Edit Borrower

«extends»

«extends»

Add Loan

«extends»

Edit Loan

«extends»

Select Borrower

«includes»
«includes»

«extends»

«extends»

...

...

List Related Loans

«extends»

«extends»

List Related Loans

Edit Loan

«extends»

Add Loan

«extends»
Select BookCopy

«extends»

«extends»

List Related Fines

«includes»
Add Fine

«extends»

Edit Fine

«extends»
Select Borrower

«includes»

«includes»

List Related Fines

«includes»

«includes»

«includes»

«includes»«includes»

Add Fine

«extends»

Edit Fine

«extends»

Select Loan

«includes»

«includes»

Fig. 10. Partial default use case model generated from the EDM in Fig. 3.

www.intechopen.com

Automatic Generation of User Interface Models and Prototypes from Domain and Use Case Models

55

Starting from the “System” entity an actor is created, linking to List Entity use cases, one for

each aggregation from “system” to another base or derived entity. Fig. 10 partially shows

the use case model that is generated by the EDM2UCM model-to-model transformation

process.

Each List Entity use case shall have extensions for CRUD use cases (Add and Edit). A CRUD

use case shall include use cases that list related entity instances. In Fig. 10, see, for example,

use case “List Books” that links to the only actor and is extended by “Add Book” and “Edit

Book”. These last two use cases, that allow CRUD operations over Book, include use case

“List Related BookCopies”, which in turn is extended by use cases for adding and editing a

book copy.

 XIS
OO-

Method
ZOOM

Elkoutbi
et al./

Martinez
et al.

Forbrig
et al.

Our
approach

Is able to generate a fully
functional interactive
prototype

X X X --- --- X

Requires/generates a UIM
as a step for obtaining a
concrete UI

Requires/
generates

Requires

Requires

Generate
only UI

state
model

Requires

Generate
s /

allows
configura

-tion

Is able to generate a
UIM/UIP from non-UI
system models

X
(in smart

approach)

(only
from

domain
model)

X
(non

functiona
l UIP)

--- X

Is able to generate a
UIM/UIP from domain
model alone

--- X --- --- --- X

Is able to generate a
UIM/UIP from domain
model + use case model

X
(in smart

approach)
--- --- --- --- X

Allows the definition of
triggers

X

(partial)
--- --- --- X

Assumes CRUD operations X X --- --- --- X

Generates code for user
defined operations

--- X X --- --- X

Takes advantage of formal
constraints to generate
features in the UI

X

(partial)
--- --- --- X

Table 4. Feature comparison between the current approaches and the proposed approach.

www.intechopen.com

 User Interfaces

56

7. Results and contributions to the state of art

This section compares the presented approach to the ones surveyed in section 2, and

discusses its similarities and distinguishing features. In table 4 a feature comparison

between the current approaches, presented in section 2, and the approach proposed in this

document is presented.

Unlike XIS, our approach doesn’t demand the stereotyping of every model element, as the

full model package is submitted to the transformation process.

XIS business entities are similar to our derived entities. Like in the XIS smart approach, the

modeller must attach to each use case an Entity (base or derived) from the EDM. The

difference is that, in our approach, relations between entities are inferred from the EDM,

thus not being needed a separate business entities model to provide higher level entities to

the UCM. The relation’s selection provided by the XIS business entities model can be done,

within our approach, in the UCM by modelling use cases for navigating only through the

admitted relations.

Similarly to XIS and the OO-Method, in our approach CRUD operations are predefined.

In our approach user defined operations may be specified using an UML Action Semantics-

based language.

Just like our approach, the OO-Method allows the definition of derived attributes, by

assigning a calculation formula to the attributes.

So, the main contributions of the proposed approach, to the state of art are:

• To make possible to generate an application prototype from an incomplete system

domain model or extended domain model;

• To make use of derived attributes and derived entities (views), in the EDM, to better

specify “boundary” entities;

• To take advantage of class invariants and operation pre-conditions to generate

validation routines in the generated application, enabling the enhancement of the

usability of the generated UI by helping the user in entering valid data into forms, and

by giving feedback identifying invalid data, or by disabling an operation’s start button

while its pre-condition doesn’t hold;

• To make use of an action language to specify the semantic of operations at class level,

and enable the definition of triggers activated either by the invocation of a CRUD

operation or by the holding of a given state condition;

• To allow the usage of a use case model to specify several actors, or user profiles,

enabling the hiding of possible functionality from some of the users;

• To derive a default use case model from an extended domain model, easing the process

of developing a use case model integrated with the system EDM.

8. Conclusions and future work

The presented approach enables a gradual approximation to system modelling towards

business forms-based applications, by being able to derive a default UI and an executable

prototype from a domain model alone, an extended domain model or from an extended

domain model and a use case model. It is also possible to have these initial models in different

levels of abstraction or rigour, and refine them in an incremental and iterative manner.

www.intechopen.com

Automatic Generation of User Interface Models and Prototypes from Domain and Use Case Models

57

As depicted in section 3, this approach is able to generate a UI model and prototype from

the system's non-UI submodels, helping the modeller in creating a system model and

facilitating the process of developing a UI for the final interactive system. The approach

derives a default UI and an executable prototype from the system model, which comprises a

domain model or extended domain model and, optionally, a use case model. This approach

turns possible to interactively evaluate the system model with the end users, and to

iteratively evaluate and refine the model. It also allows adding rigour and model elements

to the system model, generating more complete, richer and refined UIs and executable

prototypes that support an evolutionary model-driven development with the close

participation of the end users.

Several benefits can be drawn from using the presented approach, as discussed in the

previous section. Nevertheless, more results can be obtained with future work, namely in

what concerns the flexibility of the generated UI.

The next step will be to support use case relations that recall HCI’s task models, by properly

stereotyping use case relations with «enables», «deactivates» or «choice», which allow the

definition of use cases that are enabled by the execution of other use cases, use cases that are

disabled by the execution of other use cases, and alternative use cases, respectively.

Another future development is the support for use cases that are not associated to an EDM

class or class method, but may be associated to a given class attribute. This kind of use cases,

together with the properly stereotyped use case relations, allows the modeller to define wich

set of attributes must be set first, and which depend on other attributes, or are deactivated

by setting other attributes.

This evolution of the proposed approach enables a higher degree of refinement in the use

case model definition, allowing for greater flexibility in the generated UI model.

Other foreseen developments are the existence of use cases not directly associated to the

EDM. This are parameterized use cases that collect information for session variables, and

that must be aggregated, through «include» relations, in another use case that has access to

all subordinate session variables. The aggregator use case is, then associated to an EDM

operation binding session variables to the operation’s parameters. Without loosing the tigh

relation between use case model and extended domain model, this will enable the highest

degree of flexibility in the use case model definition in order to better define what one wants

to see generated in the UI model.

9. References

Cruz, A.M.R., Faria, J.P. (2007). Automatic generation of user interfaces from domain and

use case models. In Proceedings of the Sixth International Conference on the Quality of

Information and Communication Technology (QUATIC 2007), pp 208-212, Lisboa,

Portugal, September 2007, IEEE.

Cruz, A.M.R., Faria, J.P. (2008). Automatic generation of interactive prototypes for domain

model validation. In Proceedings of the 3rd International Conference on Software

Engineering and Data Technologies (ICSoft 2008), vol. SE/GSDCA/MUSE, pp 206-

213, Porto, Portugal, July 2008, INSTICC Press.

Cruz, A.M.R., Faria, J.P. (2009). Automatic generation of user interface models and

prototypes from domain and use case models. In Proceedings of the 4th International

www.intechopen.com

 User Interfaces

58

Conference on Software Engineering and Data Technologies (ICSoft 2009) , vol. 1, pp

169-176, Sofia, Bulgaria, July 2009, INSTICC Press.

Dix, A., Finlay, J., Abowd, G., Beale, R. (1998). Human-Computer Interaction. Prentice Hall,

2nd edition.

Elkoutbi, M.; Khriss, I.; Keller, R.K. (2006). Automated prototyping of user interfaces

based on UML scenarios. Journal of Automated Software Engineering, 13(1):5-40,

January.

Forbrig, P., Dittmar, A., Reichart, D., Sinnig, D. (2004). From models to interactive systems

tool support and XIML. In Proceedings of the First International Workshop MBUI 2004,

vol. 103-CEUR Workshop Proceedings, Funchal, Portugal. Available at

http://ceur-ws.org.

Jacobson, I., Booch, G., Rumbaugh, J. (1999). The Unified Software Development Process.

Addison-Wesley.

Jia, X., Steele, A., Liu, H., Qin, L., Jones, C. (2005). Using ZOOM approach to support MDD.

In Proceedings of the 2005 International Conference on Software Engineering Research and

Practice (SERP'05), Las Vegas, USA.

Jia, X., Steele, A., Qin, L., Liu, H., Jones, C. (2007). Executable visual software modelling - the

ZOOM approach. Software Quality Control, 15(1):27-51.

Javahery, H., Sinnig, D., Seffah, A., Forbrig, P., Radhakrishnan, T. (2007). Task Models and

Diagrams for Users Interface Design, chapter Pattern-Based UI Design: Adding

Rigor with User and Context Variables, pages 97-108. Lecture Notes in Computer

Science. Springer Berlin/Heidelberg.

Kelly, S., Tolvanen, Juha-Pekka (2008). Domain Specific Modeling: Enabling Full Code

Generation. Wiley-IEEE Computer Society Press.

Kleppe, A., Warmer, J., Bast, W. (2003). MDA Explained – The Model Driven Architecture:

Practice and Promise. Addison-Wesley Professional.

Martinez, A., Estrada, H., Sánchez, J., Pastor, O. (2002). From early requirements to user

interface prototyping: A methodological approach. In Proceedings of the 17th IEEE

International Conference on A.S.E., pp 257-260.

Molina, P., Pastor, O., Marti, S., Fons, J., Insfrán, E. (2001). Specifying conceptual interface

patterns in an object-oriented method with automatic code generation. In

Proceedings Second International Workshop on User Interfaces in Data Intensive Systems,

UIDIS 2001.

Molina, P.J., Hernández, J. (2003). Just-UI: Using patterns as concepts for IU specification

and code generation. In Perspectives on HCI Patterns: Concepts and Tools

(CHI'2003 Workshop).

Molina, P.J. (2004). User interface generation with Olivanova model execution system. In IUI

'04: Proceedings of the 9th International Conference on Intelligent User Interfaces,

pages 358-359, NY, USA. ACM.

Pastor, O., Insfrán, Pelechano, V., Romero, J., Merseguer, J. (1997). OO-METHOD: An OO

software production environment combining conventional and formal methods. In

CAiSE '97: Proceedings of the 9th International Conference on Advanced Information

Systems Engineering, pages 145-158, London, UK. Springer-Verlag.

www.intechopen.com

Automatic Generation of User Interface Models and Prototypes from Domain and Use Case Models

59

Pastor, O., Insfrán, E. (2003). OO-Method, the methodological support for OlivaNova model

execution system. Technical report, Care Technologies. White paper. Available at

http://www.care-t.com.

Pastor, O., Molina, J. (2007). Model-driven Architecture in Practice – A software production

environment based on Conceptual Modeling. Springer-Verlag.

Pastor, O., Molina, J., Iborra, E. (2004). Automated production of fully functional

applications with Olivanova model execution. ERCIM News No. 57,

April 2004. Available at http://www.ercim.org/publication/Ercim

News/enw57/pastor.html.

Paternó, F., 2001. Task Models in Interactive Software Systems. In Handbook of Software

Engineering and Knowledge Engineering, volume I, 2001. World Scientific Publishing

Co. Pte. Ltd., pp. 817–835.

Pinheiro da Silva, P., 2000. User interface declarative models and development

environments: A survey. In Interactive Systems - Design, Specification, and Verification:

7th International Workshop, DSV-IS 2000, Limerick, Ireland, June 2000. Revised Papers,

Springer Berlin / Heidelberg, Lecture Notes in Computer Science vol. 1946, pp. 207–

226.

Pressman, R. S., 2005. Software Engineering – A practitioner’s approach, 6th edition. Mc Graw

Hill.

Reichart, D., Forbrig, P., Dittmar, A. (2004). Task models as basis for requirements

engineering and software execution. In Task Models and Diagrams for User Interface

Design TAMODIA, pages 51-58.

Radeke, F., Forbrig, P., Seffah, A., Sinnig, D. (2007). PIM Tool: Support for pattern-driven

and model-based UI development. In Task Models and Diagrams for User Interface

Design (TAMODIA 2006), volume 4385/2007 of Lecture Notes in Computer Science,

pages 82-96. Springer Berlin/Heidelberg.

Saraiva, J., Silva, A. (2008). The ProjectITStudio. UMLModeler: A tool for the design and

transformation of UML models. In Proceedings of the 3rd Iberian Conference of

Information Technologies and Systems (CISTI 2008), Campus de Ourense, Ourense,

Spain, Universidad de Vigo.

Silva, A. (2003). The XIS approach and principles. In Proceedings of the 29th EUROMICRO

Conference "New Waves in System Architecture" (EUROMICRO '03), IEEE Computer

Society.

Silva, A., Videira, C. (2008). UML, Metodologias e Ferramentas CASE, vol. 2 (in portuguese).

Centro Atlântico, 2nd ed.

Silva, A.R., Saraiva, J., Silva, R., Martins, C. (2007). XIS - UML profile for extreme

modeling interactive systems. In Proceedings of the 4th International Workshop on

Model-based Methodologies for Pervasive and Embedded Software (MOMPES 2007).

IEEE, March.

Wolff, A., Forbrig, P., Dittmar, A., Reichart, D. (2005a). Linking GUI elements to tasks:

supporting an evolutionary design process. In Proceedings of the 4th International

workshop on Task Models and Diagrams for User Interface Design (TAMODIA '05),

pages 27-34, New York, NY, USA, 2005. ACM.

www.intechopen.com

 User Interfaces

60

Wolff, A., Forbrig, P., Reichart, D. (2005b). Tool support for model-based generation of

advanced user-interfaces. In Andreas Pleuss, Jan Van den Bergh, Heinrich

Hussmann, and Stefan Sauer, editors, In Proceedings of the MoDELS'05 Workshop on

Model Driven Development of Advanced User Interfaces, Montego Bay, Jamaica,

October.

www.intechopen.com

User Interfaces

Edited by Rita Matrai

ISBN 978-953-307-084-1

Hard cover, 270 pages

Publisher InTech

Published online 01, May, 2010

Published in print edition May, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Designing user interfaces nowadays is indispensably important. A well-designed user interface promotes users

to complete their everyday tasks in a great extent, particularly users with special needs. Numerous guidelines

have already been developed for designing user interfaces but because of the technical development, new

challenges appear continuously, various ways of information seeking, publication and transmit evolve.

Computers and mobile devices have roles in all walks of life such as in a simple search of the web, or using

professional applications or in distance communication between hearing impaired people. It is important that

users can apply the interface easily and the technical parts do not distract their attention from their work.

Proper design of user interface can prevent users from several inconveniences, for which this book is a great

help.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Antonio Miguel Rosado da Cruz and Joao Pascoal Faria (2010). Automatic Generation of User Interface

Models and Prototypes from Domain and Use Case Models, User Interfaces, Rita Matrai (Ed.), ISBN: 978-953-

307-084-1, InTech, Available from: http://www.intechopen.com/books/user-interfaces/automatic-generation-of-

user-interface-models-and-prototypes-from-domain-and-use-case-models

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

