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1. Introduction

Solving a discrete optimization problem consists in finding a solution which maximizes (or
minimizes) an objective function. The function is often called the fitness and the correspond-
ing landscape the fitness landscape. We are concerned with statistical measures of a fitness
landscape in the context of the vehicle routing problem with time windows (VRPTW). The
measures are determined by using a parallel simulated annealing algorithm as a tool for ex-
ploring a solution space. This chapter summarizes our experience in designing parallel simu-
lated annealing algorithms and investigating fitness landscapes of a sample NP-hard bicrite-
rion optimization problem.
Since 2002 we have developed several versions of the parallel simulated annealing (SA) al-
gorithm (11)-(19). Each of these versions comprises a number of parallel SA processes which
co-operate periodically by passing and exploiting the best solutions found during the search.
For this purpose a specific scheme of co-operation of processes has been devised. The meth-
ods of parallelization of simulated annealing are discussed in Aarts and van Laarhoven (2),
Aarts and Korst (1), Greening (20), Abramson (3), Boissin and Lutton (8), and Verhoeven and
Aarts (35). Parallel simulated annealing to solve the VRPTW is applied by Arbelaitz et al. (4).
Onbaşoğlu and Özdamar (26) present the applications of parallel simulated annealing algo-
rithms in various global optimization problems. The comprehensive study of parallelization
of simulated annealing is given by Azencott et al. (5)
The parallel SA algorithm allowed us to discover the landscape properties of the VRPTW
benchmarking tests (33). This knowledge not only increased our understanding of processes
which happen during optimization, but also helped to improve the performance of the parallel
algorithm. The usage of the landscape notion is traced back to the paper by Wright (37). The
more formal treatments of the landscape properties are given by Stadler (32), Hordijk and
Stadler (22), Reidys and Stadler (31). Statistical measures of a landscape are proposed by
Weinberger (36). The reviews of the landscape issues are given by Reeves (30) and Reeves and
Rowe (29).
Section 2 of this chapter formulates the optimization problem which is solved. Section 3 de-
scribes a sequential SA algorithm. In section 4 two versions of the parallel SA algorithm, called
independent and co-operating searches, are presented. Section 5 is devoted to the statistical
measures of the fitness landscapes in the context of the VRPTW. In subsections 5.1-5.2 some
basic notions are introduced, and in subsection 5.3 the results of the experimental study are
discussed. Section 6 concludes the chapter.
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2. Problem formulation

The VRPTW is an extension to the capacitated vehicle routing problem (CVRP) which is for-
mulated as follows (34). There is a central depot of goods and n customers (nodes) geograph-
ically scattered around the depot. The locations of the depot (i = 0) and the customers (i = 1,
2, . . . , n), as well as the shortest distances dij and the corresponding travel times tij between
any two customers i and j are given. Each customer asks for a quantity qi of goods which has
to be delivered (or picked up from) by a vehicle of capacity Q. Because of this capacity limit,
the vehicle after serving a subset of customers has to return to the depot for reloading. The
vehicle effects the whole service on a number of routes. Each route starts and terminates at the
depot. A solution to the CVRP is a set of routes of minimum travel distance (or travel time)
which visits each customer i, i = 1, 2, . . . , n, exactly once. The total demand for each route
cannot exceed Q.
The CVRP is extended into the VRPTW by introducing for each customer and the depot a
service time window [ei, fi] and a service time si (s0 = 0). The values ei and fi determine, re-
spectively, the earliest and the latest time for start servicing. The customer i has to be served
within the time window [ei, fi] and the service of all customers should be accomplished within
the time window of the depot [e0, f0]. The vehicle can arrive to the customer before the time
window but then it has to wait until time ei, when the service can begin. The latest time for ar-
rival of the vehicle to customer i is fi. It is assumed that the routes are traveled simultaneously
by a fleet of K homogeneous vehicles (i.e. of equal capacity), each vehicle assigned to a single
route. A solution to the VRPTW is the set of routes which guarantees the delivery of goods
to all customers and satisfies the time window and vehicle capacity constraints. Furthermore,
the size of the set equal to the number of vehicles needed (primary objective) and the total
travel distance (secondary objective) should be minimized.
More formally, there are three types of decision variables in this two-objective optimization
problem. The first decision variable, xi,j,k, i, j ∈ {0,1, . . . ,n}, k ∈ {1,2, . . . ,K}, i �= j, is 1 if vehicle
k travels from customer i to j, and 0 otherwise. The second decision variable, ti, denotes the
time when a vehicle arrives at customer i, and the third decision variable, bi, denotes the
waiting time at that customer. The aim is to:

minimize K, and then (1)

minimize ∑
n
i=0 ∑

n
j=0,j �=i ∑

K
k=1 di,jxi,j,k, (2)

subject to the following constraints:

K

∑
k=1

n

∑
j=1

xi,j,k = K, for i = 0, (3)

n

∑
j=1

xi,j,k =
n

∑
j=1

xj,i,k = 1, for i = 0 and k ∈ {1,2, . . . ,K}, (4)

K

∑
k=1

n

∑
j=0,j �=i

xi,j,k =
K

∑
k=1

n

∑
i=0,i �=j

xi,j,k = 1, for i, j ∈ {1,2, . . . ,n}, (5)
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n

∑
i=1

qi

n

∑
j=0,j �=i

xi,j,k ≤ Q, for k ∈ {1,2. . . . ,K} (6)

K

∑
k=1

n

∑
i=0,i �=j

xi,j,k(ti + bi + hi + ti,j) ≤ tj, for j ∈ {1,2, . . . ,n} (7)

and t0 = b0 = h0 = 0,

ei ≤ (ti + bi) ≤ fi, for i ∈ {1,2, . . . ,n}. (8)

Formulas (1) and (2) define the minimized functions. Eq. (3) specifies that there are K routes
beginning at the depot. Eq. (4) expresses that every route starts and ends at the depot. Eq. (5)
assures that every customer is visited only once by a single vehicle. Eq. (6) defines the capacity
constraints. Eqs. (7)–(8) concern the time windows. Altogether, eqs. (3)–(8) define the feasible
solutions to the VRPTW.
Lenstra and Rinnooy Kan (24) proved that the VRP and the VRPTW are NP-hard discrete
optimization problems.

3. Sequential simulated annealing

The algorithm of simulated annealing which can be regarded as a variant of local search was
first introduced by Metropolis et al. (25), and then used to optimization problems by Kirk-
patrick, Gellat and Vecchi (23), and Cěrny (10). A comprehensive introduction to the subject
can be found in Reeves (27) and Azencott (5).
Let C : S �→ R be a cost function which is to be minimized, defined on some finite solution
set (search space) S. Let N(X), N(X) ⊂ S, be a set of neighbors of solution X for each X ∈ S.
Usually the sets N(X) are small subsets of S. For the VRPTW the members of N(X) are
constructed by moving one or more customers among the routes of solution X. The way
in which these sets are created influences substantially the accuracy of results obtained by a
simulated annealing algorithm. While constructing the sets N(X) we make sure that their
members are built through deep modifications of X. Let R be a transition probability matrix,
such that R(X,Y) > 0 if and only if Y ∈ N(X). Let (Ti), i = 0, 1, . . . be a sequence of positive
numbers, called the temperatures of annealing, such that Ti ≥ Ti+1 and limi→∞ Ti = 0. The
sequence (Ti) is called the cooling schedule, and a sequence of annealing steps within which
the temperature of annealing stays constant is called the cooling stage. Consider the sequential
annealing algorithm for constructing a sequence (or chain) of solutions (Xi), Xi ∈ S, defined
as follows. An initial solution X0 is computed using e.g. some heuristics. Given the current
solution Xi, a potential next solution Yi is chosen from set N(Xi) with probability R(Xi,Yi).
Then in a single annealing step solution Xi+1 is set as follows (cf. Fig. 2):

Xi+1 =







Yi if C(Yi) ≤ C(Xi),
Yi with probability pi, if C(Yi) > C(Xi),
Xi otherwise,

where
pi = exp(−(C(Yi)− C(Xi))/Ti). (9)

www.intechopen.com



Parallel and Distributed Computing250

If Xi+1 is set to Yi and C(Yi) > C(Xi), then we say that an uphill move is carried out. Eq. (9)
implies that uphill moves are performed more often when temperature Ti is high. When Ti is
close to zero uphill moves occur sporadically. Simulated annealing can be described formally
by non-homogeneous Markov chains. In these chains the probability of moving from one state
to another depends not only on these states but also on the temperature of annealing.
A solution X ∈ S is said to be a local minimum of the cost function C, if C(X)≤ C(Y) for all Y ∈
N(X), and to be a global minimum of C, if C(X) = infY∈S C(Y). Let Smin be the set of global
minima of C. We say that the process of simulated annealing converges, if limi→∞

P(Xi ∈
Smin) = 1. It was proved (21) that the convergence is guaranteed by the logarithmic cooling
schedules of the form: Ti ≥

R
log(i+1)

for some constant R which depends on the cost function

landscape. It was also shown (5; 9) that for the logarithmic cooling schedules the speed of
convergence is given by:

P(Xi /∈ Smin) ∼

(

K

i

)α

(10)

for i large enough, where K > 0 and α > 0 are suitable constants. Both constants are connected
to the cost function landscape, and for large solution spaces constant K is very large and con-
stant α is very small (5; 9). This implies that the process of simulated annealing converges very
slowly. According to Eq. (10) a global minimum is attained only if the process of annealing is
infinite. For this reason the question of how to accelerate simulated annealing by making use
of parallelism is crucial.
In the sequential simulated annealing algorithm to solve the VRPTW, the chain (Xi) is con-
structed in two phases. The goal of phase 1 is to minimize the number of routes of the VRPTW
solution, whereas phase 2 minimizes the total length of the routes. However in phases 1 and 2
it may happen that both the number of routes and the total length of routes are reduced. The
cost of solution Xi in phase 1 is computed as: C1(Xi) = c1N + c2D + c3(r1 − r̄), and in phase 2
as: C2(Xi) = c1N + c2D, where N is the number of routes (vehicles) of solution Xi, D – the total
travel distance of the routes, r1 – the number of customers of a randomly chosen route which
is to be shorten and perhaps eliminated from the current solution, r̄ – the average number
of customers in all routes, c1, c2, c3 – some constants. For simplicity, instead of the logarith-
mic an exponential cooling schedule is used, i.e. the temperature of annealing is decreased as
Tk+1 = β f Tk, for k = 0, 1, . . . , a f , and some constants β f (β f < 1) and a f ( f = 1 and 2 denote
phase 1 and 2).

4. Parallel simulated annealing algorithm

4.1 Independent searches

In the parallel algorithm of independent searches (IS), p independent simulated annealing
processes P0, P1, . . . , Pp−1 are executed. Every process performs its computations like in
the sequential algorithm. On completion, the processes pass their best solutions found to the
master process, which selects the best solution among solutions it received. This solution
constitutes the final result of the IS algorithm.
More formally, suppose that i steps of sequential simulated annealing is taken. Then in parallel
IS, p annealing chains of z = i/p steps each are executed. As the result p terminal solutions
{Xz,0, Xz,1, . . . , Xz,p−1} are computed, from which the final solution Yi is selected by: Yi =
Xz,0 ⊗ Xz,1 ⊗ . . . ⊗ Xz,p−1, where ⊗ is the operator of choosing the better solution with respect
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to the total length of routes1. In terms of convergence we have (5):

P(Yi /∈ Smin) = ∏
0≤j≤p−1

P(Xz,j /∈ Smin). (11)

Assuming that each simulated annealing chain j of z steps converges at speed determined by

Eq. 10: P(Xz,j /∈ Smin) ∼
(

K
z

)α
, we get (5):

P(Yi /∈ Smin) ∼

(

Kp

i

)αp

. (12)

Consider a chain of i = 107 steps of sequential simulated annealing, and let K = 100 and α =

0.01. Then according to Eq. 10 the speed of convergence is equal
(

K
i

)α
≈ 0.89. If one uses p =

5, 10, 15 and 20 processes, then by Eq. (12) the speeds of convergence of IS are:
(

Kp
i

)αp
≈ 0.61,

0.40, 0.27 and 0.18, respectively. Thus the parallel independent searches converge much faster
than the sequential algorithm.

4.2 Co-operating searches

The parallel algorithm of co-operating searches (CS) executes in the form of p processes P0,
P1, . . . , Pp−1 (Figs. 1-3). A process generates its own annealing chain divided into two phases
(lines 6–19 in Fig. 1). A phase consists of a number of cooling stages, and a cooling stage
consists of a number of annealing steps. The processes co-operate with each other every ω
annealing step passing their best solutions found to date (lines 12–16 in Fig. 1, and Fig. 3). The
chain of annealing steps of process P0 is entirely independent (Fig. 4). The chain of process
P1 is updated at steps uω, u = 1, 2, . . . , um, to the better solution between the best solutions
found by processes P0 and P1 to date. Similarly, process P2 chooses as the next point in its
chain the better solution between its own best and the one obtained from process P1. Thus
the best solution found by process Pl is piped down for further enhancement to processes
Pl+1 . . . Pp−1. Clearly, after step umω process Pp−1 holds the best solution Xb found by all
the processes. To our best knowledge the speed of convergence of co-operating searches given
e.g. by equations similar to Eq. (10) and (12) are not known.
As mentioned before, the temperature of annealing decreases according to the equation
Tk+1 = β f Tk for k = 0, 1, 2, . . . , a f , where a f is the number of cooling stages. In this work we
investigate two cases in establishing the points of process co-operation with respect to tem-
perature drops. In the first case, of regular co-operation, processes interact at the end of each
cooling stage (ω = L) (lines 12–13 in Fig. 1). The number of annealing steps executed within
a cooling stage is set to L = (5E)/p, where E = 105 is a constant established experimentally,
and p = 5, 10, 15 and 20, is the number of processes (line 3 in Fig. 1). Such an arrangement
keeps the parallel cost of the algorithms constant when different numbers of processes are
used, provided the co-operation costs are neglected. Therefore in this case as the number of
processes becomes larger, the length of cooling stages goes down, what means that the fre-
quency of co-operation increases. In the second case, of rare co-operation, the frequency is
constant and the processes exchange their solutions every ω = E annealing step (lines 14–15
in Fig. 1). For the number of processes p = 10, 15 and 20, the co-operation takes place after 2,
3 and 4 temperature drops, respectively.

1 In this analysis it is assumed that each chain achieves a solution with the minimum (best known) num-
ber of routes.
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1 parfor Pj, j = 0, 1, . . . , p − 1 do

2 Set co-operation mode to regular or rare depending on a test set;
3 L := (5E)/p; {establish the length of a cooling stage; E = 105}
4 Create the initial solution using some heuristics;
5 current solutionj := initial solution; best solutionj := initial solution;

6 for f := 1 to 2 do {execute phase 1 and 2}
{beginning of phase f}

7 T := T0, f ; {initial temperature of annealing}

8 repeat {a cooling stage}
9 for i := 1 to L do
10 annealing step f (current solutionj, best solutionj);

11 end for;
12 if ( f = 1) or (co-operation mode is regular) then {ω = L}
13 co operation;
14 else {rare co-operation: ω = E}
15 Call co operation procedure every E annealing step

counting from the beginning of the phase;
16 end if;
17 T := β f T; {temperature reduction}

18 until a f cooling stages are executed;

{end of phase f}
19 end for;
20 end parfor;
21 Produce best solutionp−1 as the solution to the VRPTW;

Fig. 1. Parallel simulated annealing algorithm of co-operating searches

1 procedure annealing step f (current solution, best solution);

2 Create new solution as a neighbor to current solution
(the way this step is executed depends on f );

3 δ := C f (new solution)−C f (current solution);

4 Generate random x uniformly in the range (0, 1);
5 if (δ < 0) or (x < e−δ/T) then
6 current solution := new solution;
7 if C f (new solution) < C f (best solution) then

8 best solution := new solution;
9 end if;
10 end if;
11 end annealing step f ;

Fig. 2. Annealing step procedure

The exchange of solutions between processes can be considered as exploitation of the search
results, whereas exploration takes place when a process penetrates the search space freely. Let
us call a sequence of ω annealing steps executed by a process between points of co-operation
as a chain of free exploration. Taking into account Eq. (10) the longer these chains the better.
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1 procedure co operation;
2 if j = 0 then Send best solution0 to process P1;
3 else {j > 0}
4 receive best solutionj−1 from process Pj−1;

5 if C f (best solutionj−1) < C f (best solutionj) then

6 best solutionj := best solutionj−1;

7 current solutionj := best solutionj−1;

8 end if;
9 if j < p − 1 then Send best solutionj to process Pj+1; end if;

10 end if;
11 end co operation;

Fig. 3. Procedure of co-operation of processes

X0 →



































































X
(0)
0 → X

(ω)
0 → X

(2ω)
0 → • • → X

(umω)
0

↓ ↓ ↓

X
(0)
1 → X

(ω)
1 → X

(2ω)
1 → • • → X

(umω)
1

↓ ↓ ↓

• • • • • •

• • • • • •

X
(0)
p−2 → X

(ω)
p−2 → X

(2ω)
p−2 → • • → X

(umω)
p−2

↓ ↓ ↓

X
(0)
p−1 → X

(ω)
p−1 → X

(2ω)
p−1 → • • → X

(umω)
p−1 → Xb

Fig. 4. Scheme of co-operation of processes (X0 – initial solution; Xb – best solution among the
processes)

Note that due to co-operation, a process after having completed a chain with solution X, may
be forced to explore the search space from a—probably more promising—solution different
from X. In order to obtain good results during parallel search the proper balance between
exploitation and exploration has to be maintained.
A series of experiments was carried out in order to establish how the number of processes,
the length of chains of free exploration, and the frequency of processes co-operation influence
the accuracy of solutions to the VRPTW (16). For the experiments, 39 out of 56 benchmarking
tests2 elaborated by Solomon (33) were used. The tests are grouped into three major problem
sets named R, C and RC. The geographical coordinates for customers in sets R, C and RC are
generated randomly, in a clustered manner, and as a mix of random and clustered structures,
respectively. Each of these sets is divided into two subsets, R1, R2, C1, C2, RC1, RC2. The
subsets R1, C1 and RC1 have short time windows and permit relatively large numbers of
routes (between 9 and 19) in the solutions. The time windows for subsets R2, C2 and RC2
are wider allowing less routes (between 2 and 4) in the solutions. Every test involves 100
customers and the distances are measured using Euclidean metric. It is assumed that travel
times are equal to the corresponding distances.

2 The tests in set C are easy to solve, so they were omitted in the experiments.
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In the series of the experiments, the IS and CS algorithms3 were executed at least 1000 times
for each test, a given number of processes p, a number of annealing steps L2 fixed for it,
and a period of communication ω. Based on each sample of results4 the average of total
travel distances of routes ȳ and the standard deviation s were calculated. The experiments
showed that depending on the test instance, the minimum of the mean value ȳ appeared for
different values of parameters p, L2 and ω. E.g. the minimum of ȳ for test R101 was obtained
for p = 20 and L2 = ω = E/4 (Table ??). Whether these specific values of parameters give

p L2 ω R101 R102 R103 R104 R105 R106

5 E E 13.9 17.6 11.4 0.8 1.1 10.6

10 E/2 E/2 6.5 11.6 3.9 0.5 0.1 5.3

15 E/3 E/3 1.4 3.3 min 0.7 2.3 2.1
20 E/4 E/4 min∗ min∗ 0.6∗ min 0.3 min

10 E/2 E 10.3 13.6 5.5 0.7 1.4 6.7

15 E/3 E 15.3 19.9 9.7 1.1 1.0 3.0

20 E/4 E 13.8 20.1 8.8 0.6∗ min∗ 0.9∗

p L2 ω R107 R108 R109 R110 R111 R112

5 E E 0.8 1.0 min∗ min∗ 0.3 1.2

10 E/2 E/2 min 0.1 6.5 3.2 min 1.1

15 E/3 E/3 1.1 min 6.7 3.7 1.4 min

20 E/4 E/4 0.7∗ 1.2∗ 10.4 5.3 1.9∗ 0.8

10 E/2 E 1.9 1.5 4.1 2.7 1.5 1.6

15 E/3 E 3.1 2.7 8.8 3.6 3.0 0.7

20 E/4 E 4.6 4.2 10.3 5.5 3.6 1.3∗

Table 1. Values of test statistic Z for CS algorithm and set R1;’*’ marks the best choice of
parameters p, L2 and ω

statistically superior results can be proved by testing the hypotheses H0 : µi ≤ µm versus an
alternative hypothesis Ha : µi > µm, where µ denotes the mean value of a population of total
travel distances of routes; i – populations whose samples have worse mean values (e.g. cases
p = 5 and L2 = ω = E; p = 10 and L2 = ω = E/2; etc. for test R101); m – a population for
which the minimum mean value of a sample was observed (i.e. case p = 20 and L2 = ω = E/4
for test R101). In the cases where H0 are rejected one can claim that their values of parameters
p, L2 and ω give inferior solutions with respect to the values for which ȳ = ȳmin occur, or
equivalently, the population with ȳ = ȳmin comprises superior solutions as compared to other

3 It was observed (15) that for some Solomon’s tests the probability of finding a solution with the min-
imum number of routes was very low. Therefore phase 1 of the algorithms was executed in the CS
fashion with a1 = 50 cooling stages and L1 = 105 annealing steps in each stage. In phase 2 the IS and CS
modes were used with a2 = 100 and L2 depending on the number of processes. The following values
of parameters were fixed: c1 = 40000, c2 = 1, c3 = 50, β1 = 0.95, β2 = 0.98.

4 For some tests the size of the sample was smaller than 1000, since only solutions with the minimum
number of routes were considered.
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A. p L2 ω R109 R110 R202 RC102 RC104 RC108 RC202

5 E – 2.1∗ 2.7 5.6 2.4 3.0 min∗ 3.3

IS 10 E/2 – 2.9 4.8 9.4 4.0 6.5 8.5 4.4

15 E/3 – 6.8 6.5 12.0 5.2 11.1 13.6 3.6

20 E/4 – 8.8 9.5 13.1 6.3 11.7 20.3 4.5

5 E E min min∗ min∗ min min∗ 2.4 min∗

CS 10 E/2 E/2 6.5 3.2 7.2 0.8∗ 2.7 7.1 4.0

15 E/3 E/3 6.7 3.7 10.4 3.4 5.2 12.1 6.7

20 E/4 E/4 10.4 5.3 12.8 4.1 8.2 15.2 8.2

10 E/2 E 4.1 2.7 4.7 5.3 3.3 5.1 2.5

CS 15 E/3 E 8.8 3.6 7.8 3.5 6.2 10.4 3.4

20 E/4 E 10.3 5.5 9.7 4.3 6.8 13.6 3.9

Table 2. Values of test statistic Z for IS and CS algorithms

populations. For the test statistic:

Z =
ȳi − ȳm

√

s2
i

ni
+ s2

m
nm

the hypotheses H0 are rejected at the α = 0.01 significance level, if Z > Z0.01 = 2.33 (ni and
nm are numbers of experiments over which si and sm values are calculated). Table ?? shows
the values of Z for set R1 (results for sets R2, RC1 and RC2 are reported in (16)), where min
indicates values of p, L2 and ω which give the minimum of ȳ. The framed values denote
rejections of hypotheses H0, what means that for the corresponding values of parameters p,
L2 and ω, the results of statistically worse total travel distances of routes are achieved. It can
be seen that the values of Z for test R101 and parameters p = 15, L2 = ω = E/3, and p = 20,
L2 = ω = E/4, are less than 2.33. So it is justified to claim that these values of parameters give
statistically the best solutions to the VRPTW. In other words, using p = 20 or 15 processes co-
operating after every cooling stage enable us to obtain quickly solutions of the best accuracy.
It follows from the experiments (16) that for most Solomon’s tests the results of high accuracy
can be achieved by making use of p = 20 processes. The exceptions are tests R109, R110, R202,
RC102, RC104, RC108 and RC202. For these tests the minimum of ȳ occurs when p = 5 and
most of other numbers of processes yield statistically worse results. As already indicated,
to keep the cost of parallel computations constant, the number of annealing steps taken by
processes between points of co-operation was decreased along with an increase of the number
of processes. The results of the experiments prove that for the tests listed above the execution
of shorter annealing chains of free exploration of length from L2 = E/4 to L2 = E/2 are not
compensated—in terms of accuracy—by the co-operation between processes.
The annealing chains of free exploration are substantially longer in the algorithm of inde-
pendent searches (IS), in which the processes do not co-operate and execute chains as long
as L2 = Ea2, where a2 is the fixed number of cooling stages5. Table 2 compares the results
obtained by the IS and CS algorithms for the specific tests mentioned above. It can be seen
that an increase of the length of chains and lack of co-operation in the IS algorithm, make

5 Note that altogether each process of the IS and CS algorithms executes a1 + a2 cooling stages.
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the results worse for tests R110, R202, RC104 and RC202. Applying the IS algorithm—of low
communication cost—can be justified only for tests R109 and RC108.
Considering the results of the experiments and the objective of computing good quality solu-
tions to the VRPTW in a short time, Solomon’s tests can be divided into 3 groups:

I – tests which can be solved quickly (e.g. using p = 20 processes) to good accuracy with
rare co-operation (ω = E). To this group belong 24 tests, out of 39, not listed in groups
II and III specified below.

II – tests which can be solved quickly (e.g. with p = 20) but the co-operation should take
place after every cooling stage (we call this co-operation regular) (e.g. ω = E/4 for p =
20) to achieve good accuracy of solutions. This group comprises 8 tests: R101, R102,
R103, R107, R108, R111, R207 and RC105.

III – tests whose solving cannot be accelerated as much as for the tests in groups I and
II. The solutions of best accuracy are obtained for less than p = 20 processes6. To this
group belong 7 tests: R109, R110, R202, RC102, RC104, RC108 and RC202.

5. Fitness landscape

5.1 Basic definitions

Let C, S and N(X) be a cost function, a search space and a set of neighbors of solution X,
respectively, as defined in section 3. A solution Xo ∈ S is said to be a local minimum of
function C, if C(Xo) ≤ C(Y) for all Y ∈ N(Xo), and to be a global minimum X∗ of C, if
C(X∗) = infY∈S C(Y). In evolutionary optimization function C is often called the fitness and
the associated landscape a fitness landscape. More formally (29), a landscape L for the func-
tion C is a triple L = (S,C,d) where d denotes a distance measure d : S × S �→ R

+ ∪ {∞}
which for any solutions P, Q, R ∈ S satisfies the conditions: d(P, Q) ≥ 0, d(P, Q) = 0 ⇔ P = Q
and d(P, R)≤ d(P, Q)+ d(Q, R). If d is symmetric, i.e. d(P, Q)= d(Q, P) for all P, Q ∈ S then d
is a metric on space S.
Discrete optimization can be performed by neighborhood search where the process of search-
ing starts at some initial solution and converges to a local optimum, or an attractor. The
searching process is described by a function µ : S �→ So, where X ∈ S is an initial solution
and µ(X) is the optimum that it reaches (29). A basin of attraction of solution Xo is the set
B(Xo)= {X : µ(X)= Xo}. The set contains the initial solutions from which the search leads to
a specified attractor. The basins of attraction for a given function are not unique. They depend
on a method adopted for landscape exploration and can be established only if the method is
deterministic. Therefore the notion of the basin is of limited use for methods with a good deal
of randomization, like simulated annealing.

5.2 Statistical measures of fitness landscape

The nature of a fitness landscape can be unveiled either by mathematical analysis or by gath-
ering some statistical data during the process of searching it. In this work we follow the latter
approach. Several statistical measures have been proposed in the literature. Weinberger (36)
observed that some characteristics could be obtained from a random walk. Let Ct be the fit-
ness of the solution visited at time t. Then the autocorrelation function of the landscape during

6 There are two open questions here: whether less than p = 5 processes could give solutions of better
accuracy for some tests in group III, and whether finding solutions for tests in groups I-II can be speeded
up even further by making use of more than p = 20 processes with no loss of solutions accuracy.
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a random walk of length T is:

aj =
∑

T−j
t=1 (Ct − C̄)(Ct+j − C̄)

∑
T
t=1(Ct − C̄)2

where C̄ is the mean fitness of the T solutions visited, and j is the lag. For smooth landscapes,
with neighbor solutions of similar fitness, and small lags, the values of aj are close to 1. As the
lag increases the values of autocorrelation are likely to diminish. The values of aj are close to
zero at all lags for rugged landscapes, where close solutions have unrelated fitness.
A useful indicator of the difficulty of an optimization problem is the number of optima ap-
pearing in a corresponding landscape. Indeed, the more optima in the landscape, the harder
is to find the global optimum. Suppose that for a given optimization problem the search is
restarted r times with random initial solutions. Most likely these solutions lay in different
basins of attraction, so as the result of the search a number of different local solutions k, k ≤ r,
will be found. Based on the values of r and k one may estimate the number of optima ν present
in a given landscape. Assuming that the probability of encountering each solution is the same,
it is easy to show that the random variable K which takes the number of distinct solutions in
a series of r independent searches has the Arfwedson distribution (28):

P[K = k] =
ν!

(ν − k)! νr
rk (13)

where 1 ≤ k ≤ min(r,ν), with the mean:

EK = ν[1 − (1 − 1/ν)r]. (14)

After having measured EK one can solve numerically Eq. (14) and find an estimate for ν̂.
Reeves (28) gives an approximation of it as: ν̂ ≈ (K̄2 − r)/(2(r − K̄)), where K̄ is a measured
estimation of EK. When the value of ν is small one may ask how many searches W should be
done to be sure with some certainty that all optima have been found. The waiting time Wk

for the (k + 1)th solution provided that k of them have been already found has a geometric
distribution, and the mean of the waiting time for ν solutions is (28):

EW ≈ ν(lnν + γ) (15)

where γ ≈ 0.577 is Euler’s constant. The formulas (13)–(15) are derived under the assumption
that the probability of encountering each solution is the same, or in other words that solutions
are isotropically distributed in the landscape. Unfortunately in many optimization problems,
also in the VRPTW, this assumption is not valid.

5.3 Experimental study

The objective of the study was to gather statistical data concerning the fitness landscapes for
39 (out of 56) VRPTW tests by Solomon.

Fitness landscape characteristics

In the course of experiments the parallel simulated annealing algorithm was executed at least
4200 times (see column Exp. in Table 4) for each test in sets R and RC. The VRPTW is a two-
objective optimization problem in which both, the number of routes and the total travel dis-
tance, should be minimized. For the landscape studies only solutions with the minimum
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number of routes were taken into account. Most of Solomon’s tests are relatively easy to solve
with respect to the first objective function (the exceptions are tests R104, R112, RC101, RC105,
and RC106, see paragraph “Difficulty of test instances”). The minimum number of routes for
each test is generally known. Since the VRPTW problem is NP-hard, there is some probability
that these numbers are not global minima. However for simplicity, we shall name them as
‘minima’ instead of ‘known minima’.
Table 3 contains the histograms of numbers of solutions7 produced by the algorithm with
the total travel distance y worse by 0-1%, 1-2% etc. than the distance ymin of the best-known
solution. The columns denoted by τ̄ and τmax show the values of (ȳ − ymin)/ymin and (ymax −

ymin)/ymin, where ȳ and ymax are the average and maximum total travel distances obtained
for a given test, respectively. All values in Table 3 are expressed in per cents, and the tests are
ordered according to 0-1% column. It can be seen e.g. for test R112 that there is 30% chance
of getting a solution with distance y worse by 2-3% than ymin. This is because the number of
distinct solutions in terms of y for this test, discovered in ranges from 0-1% to >4% were 102,
149, 179, 89 and 81, respectively. Clearly, the distribution of solutions in the fitness landscape
is not isotropic, i.e. they are not uniformly scattered across every direction in the search space.
There exists a relatively large number of solutions with y ∈ [1.02ymin,1.03ymin), what increases
the probability that the algorithm will finish its computations at a local optimum with y in
this range. Fig. 5 plots the distances d of a sample of solutions from the best solution found
Xmin, against the total travel distances of solution routes8. As a metric for measuring the
distance d between solutions we use the minimum number of customer movements among
the routes necessary to convert one solution into another (see subsection 5.1). It was observed
that the solutions of all VRPTW tests were not sampled with equal probability. For instance,
the majority of solutions of test R1129 were hit only a few times, but 5 solutions were reached
at least 10 times (marked by white circles in Fig. 5). Most likely the sizes of basins of attraction
of more popular solutions are larger, although the notion of such a basin is vague in the context
of simulated annealing where random uphill moves may take place. The characteristics of the
fitness landscape depend also on the search algorithm. Note that the solutions of test R112
reached most often (at least 10 times) are located in range 0-2%, i.e. range of good accuracy
(Fig. 5), partly due to good convergence, as we believe, of the parallel algorithm which favors
solutions of higher quality. In general, the shape of the landscape which is discovered is as
good as thorough is an exploration of the landscape conducted by the algorithm. On the
other hand, an excellent search algorithm can give a biased picture of the landscape, since
the worse local optima are then found less frequently—if at all—than the better ones. Similar
results to that of test R112 were obtained for other Solomon’s tests characterized by “long
histograms” (see columns 0-1% . . .>4% of Table 3). For instance, the numbers of distinct
solutions discovered for tests R211 and RC202 in ranges from 0-1% to >4% were 335, 1047,
926, 723, 1351 and 7349, 3105, 14281, 19246, 9027, respectively. The attractors (marked by
white circles) were observed in ranges 0-3% (test R211) and 0-5% (test RC202) (Figs. 6–7).

7 Note that each of these solutions is a local minimum to the VRPTW problem with respect to the total
travel distance.

8 Note that two separate series of experiments were conducted. In the first series the data contained
in Tables 3-4 were gathered. The goal of the second series of experiments was to find, up to 700 best
solutions to the selected VRPTW tests. The results of these experiments are depicted in Figs. 5-12.

9 Overall 9200 executions of the algorithm were carried out for this test, 600 executions produced solu-
tions with the number of routes equal 9, which is likely to be minimum, and 399 of these solutions were
distinct.
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Test 0-1 1-2 2-3 3-4 >4 τ̄ τmax

% % % % %

R112 17 25 30 15 13 2.4 6.5
R110 45 21 18 7 9 1.6 11.4
R108 47 37 13 2 1 1.2 5.9
R107 61 37 2 0 0 0.8 7.7
R109 70 16 7 3 4 0.8 10.6
R111 72 6 13 5 4 0.9 10.3
R104 82 17 1 0 0 0.5 2.4
R106 91 9 0 0 0 0.6 1.8
R103 96 4 0 0 0 0.6 3.8
R102 100 0 0 0 0 0.4 1.0
R105 100 0 0 0 0 0.2 1.6
R101 100 0 0 0 0 0.1 0.5

R211 8 24 21 16 31 3.4 12.4
R207 25 26 11 20 18 2.4 11.4
R210 41 44 15 0 0 1.2 3.2
R203 56 43 1 0 0 0.9 3.4
R204 75 3 14 8 0 0.9 4.9
R208 77 23 0 0 0 0.6 2.9
R202 88 1 5 5 1 0.5 6.3
R209 97 3 0 0 0 0.2 2.5
R206 99 1 0 0 0 0.4 2.6
R201 100 0 0 0 0 0.1 1.3
R205 100 0 0 0 0 0.0 3.4

RC108 63 25 9 2 1 0.9 11.6
RC104 69 7 24 0 0 0.8 3.1
RC106 72 10 14 4 0 0.7 4.9
RC101 89 11 0 0 0 0.2 2.1
RC102 96 0 1 3 0 0.3 7.6
RC105 99 1 0 0 0 0.3 1.4
RC103 100 0 0 0 0 0.1 3.4
RC107 100 0 0 0 0 0.0 0.4

RC202 14 6 27 36 17 3.2 13.5
RC203 64 23 11 2 0 0.8 4.0
RC206 89 8 3 0 0 0.5 3.3
RC205 91 9 0 0 0 0.5 2.5
RC207 94 4 1 1 0 0.3 4.9
RC201 96 4 0 0 0 0.3 2.8
RC208 97 3 0 0 0 0.2 2.3
RC204 100 0 0 0 0 0.1 3.7

Table 3. Histograms of numbers of solutions in specified ranges 0-1%, 1-2%, . . . , >4%, τ̄ =
(ȳ− ymin)/ymin, τmax = (ymax − ymin)/ymin (all values in per cent; tests are ordered according
to 0-1% column)
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Fig. 5. Distance d from the best solution marked by a shaded circle vs. total travel distance y
for test R112 (700 solutions, Xmin = (Nmin,ymin) = (9, 982.14), Nmin is the minimum number
of routes)
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Fig. 6. Distance d from the best solution vs. total travel distance y for test R211 (700 solutions,
Xmin = (2, 885.71))
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Fig. 7. Distance d from the best solution vs. total travel distance y for test RC202 (700 solutions,
Xmin = (3, 1365.64))

“Big valley” structure

Several experimental studies in discrete optimization revealed correlations among locations
of local optima which suggest existence of a globally convex or “big valley” structures in the
fitness landscapes (7). The experiments indicated that local optima are closer (in terms of
distance d) to the global optimum than are random points in a search space. The local optima
are also closer to each other and form a “big valley” structure with the best local (or global)
optimum appearing in a center of the valley. The phenomenon can be illustrated by plotting a
graph of fitness against average distance from all other optima. The graph in Fig. 8 shows that
the best solution (marked by a shaded circle) has almost minimum distance d̄ what implies it
is located near the center of the valley. However this is not the case for the graphs in Figs. 9
and 10 where many local optima are much closer to the center than the best solution.

Approximate and exact solutions

Suppose that a hard optimization problem is to be solved. Then getting an approximate
solution worse no more than by 0-1% with respect to the optimum can be considered as
adequate. In such circumstances a good indicator of the problem difficulty is the value of
τ̄ = (ȳ − ymin)/ymin which exhibits the shift of the average cost ȳ of solutions from ymin at-
tained by solving the problem repeatedly. The value of τmax = (ymax − ymin)/ymin provides
some insight into the depth of local optima. If τ̄ ≤ 1% is observed then a problem can be
thought of as easy to solve. Assuming that 1% accuracy of solution approximation is accept-
able, all VRPTW tests, except R112, R110, R108, R211, R207, R210 and RC202, can be classified
as easy10 (Table 3). Fig. 11 drawn for test R102 shows that all its 700 best solutions found,
have their y values within 0.28% margin from ymin, what indicates that the fitness landscape

10 Remembering of course that they are instances of the NP-hard problem being solved by the advanced
parallel algorithm.
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Fig. 8. Average solution distance d̄ from the remaining 699 solutions vs. total travel distance y
for test R112 (700 solutions)
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Fig. 9. Average solution distance d̄ from the remaining 699 solutions vs. total travel distance y
for test R211 (700 solutions)
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Fig. 10. Average solution distance d̄ from the remaining 699 solutions vs. total travel distance
y for test RC202 (700 solutions)

ot this test is quite smooth. Thus test R102 can be ranked as easy to solve if an approximate
solution is sought. However it turns out to be the hardest one in Solomon’s set if the optimum
is searched for. The smoothness of the landscape is an advantage if one wants to solve a prob-
lem with some limited accuracy. In the case when the absolute optimum is desired, the key
role plays the number of local optima ν appearing in the landscape. For test R102 the number
of these optima was as large as 44773. Table 4 contains the numbers of local optima unveiled
for Solomon’s tests in the first series of our experiments. Fig. 15 shows the plot of average K̄
as a function of the number of unveiled optima ν (see subsection 5.1).

Difficulty of test instances

Since the VRPTW is a two-objective optimization problem, the difficulty of its instances can be
estimated by probabilities P1, P2 and P3 that after execution of a searching algorithm i) a solu-
tion with the minimum number of routes is found, ii) a solution with the minimum number of
routes and minimum distance allowing 1% accuracy is found, and iii) the best-known solution
is found, respectively (see Table 4, where K̄ – average number of distinct solutions observed in
a sample of series of r = 100 experiments, ν – number of local optima unveiled; Exp. – number
of experiments conducted; K̄ and ν are calculated over solutions with minimum number of
routes; tests are ordered according to P2 column). Note that probability P2 is a product of P1

and the value of the 1st column of Table 3 scaled to range [0,1]. The probability P3 is counted
as a ratio of the number of times the best-known solution is found to ν. If the best-known solu-
tion is not found, then probability P3 is determined by considering the best solution obtained
for a given test by the parallel algorithm, see http://sun.aei.polsl.pl/˜zjc/best-solutions.html.
The hardest test to solve with 1% accuracy is R104 (P2 = 0.002) and there are many easy tests
in this respect, R101, R102, etc. As mentioned before, it is very difficult to solve test R102 to
its optimality (P3 = 2 · 10−5). The easy tests in this regard are R205 (P3 = 0.997) and R105
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Fig. 11. Distance d from the best solution vs. total travel distance y for test R102 (700 solutions,
Xmin = (17, 1486.55))

(P3 = 0.559). As can be seen in Fig. 12 there are many solutions of test R105 located at small
distances d from the minimum. Clearly, such a dense distribution of good quality solutions
surrounding the optimum one, facilitates the gradual improvements of the configuration of a
current solution during the process of simulated annealing. In contrast, there are not many
neighbor solutions close to the minima for tests R112, R211, RC202 and R102 (see Figs. 5-7 and
Fig. 11). Each of these minima belongs to a “small valley” of solutions which occurs away
from the “big valley” structure. As the result, reaching those minima from an arbitrary initial
solution by a process of small enhancements is not easy, and sometimes not possible at all.
The plots in Fig. 13 and 14 show the difficulty of 39 tests by Solomon. For the tests: R104,
R112, RC101, RC105, RC106, both probabilities (P1, P2 in Fig. 13, and P1, P3 in Fig. 14) are less
than 0.5. Thus these tests can be classified as the most difficult to solve in Solomon’s set.

Taking advantage of landscape properties

In this paragraph we ponder how the features of the fitness landscape can be exploited to
improve the performance of the parallel simulated annealing algorithm solving the VRPTW
problem. Boese et al. (7) proposed an adaptive multi-start algorithm for the traveling salesman
problem. It consists of two phases. In the first, initial phase, a set of R random local minima
is computed. In the second phase, which is executed a specified number of times, based on
the k (k ≤ R) best local minima found so far, an adaptive starting solution is constructed. This
solution is then improved A times using the greedy descent algorithm, what results in a set
of k + A local minima. From this set, the k best minima are selected, a new adaptive starting
solution is formed, and the second phase is repeated. An adaptive starting solution is created
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Fig. 12. Distance d from the best solution vs. total travel distance y for test R105 (700 solutions,
Xmin = (14, 1377.11))
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Fig. 13. Difficulty of tests measured by probabilities P1 and P2 (1% approximate solution is
desired)
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Fig. 14. Difficulty of tests measured by probabilities P1 and P3 (best solution is desired)
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Fig. 15. Average number of distinct solutions K̄ observed in a sample of series of r = 100
experiments vs. number of unveiled local optima ν for 39 Solomon’s tests (for reference, solid
line plots Eq. 14)
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Test P1 P2 P3 K̄ ν Exp.

R104 0.003 0.002 0.001 12.00 15 41600

R112 0.065 0.011 7 · 10−4 87.00 399 9200
R110 0.579 0.259 0.102 60.91 5486 60600
R108 0.940 0.442 0.008 95.20 2971 4900
R111 0.654 0.472 0.078 65.73 4106 38700
R109 0.703 0.492 0.195 30.61 2435 61400
R107 0.926 0.566 0.017 80.67 4705 19400

R103 0.909 0.873 2 · 10−4 98.83 3384 4500
R106 1.000 0.908 0.008 90.57 17523 72200
R105 1.000 0.999 0.559 14.40 185 9100
R101 1.000 1.000 0.006 95.41 12488 56000
R102 1.000 1.000 2 · 10−5 99.98 44773 48600

R211 0.939 0.071 0.013 71.07 1028 4700
R207 0.989 0.249 0.084 78.44 5420 23300
R210 1.000 0.416 0.058 70.71 8031 68400
R203 1.000 0.559 0.006 96.91 3734 5300
R204 1.000 0.745 0.216 48.60 1789 10400
R208 1.000 0.769 0.008 75.41 9850 71100
R202 1.000 0.878 0.402 39.11 3070 37200
R209 1.000 0.970 0.433 21.31 279 4200
R206 1.000 0.987 0.049 62.34 854 4400
R205 1.000 0.998 0.997 1.28 36 36500
R201 1.000 1.000 0.317 10.69 72 4500

RC106 0.195 0.141 0.124 11.68 45 22700
RC101 0.336 0.300 0.291 4.91 70 33300
RC105 0.357 0.355 0.178 9.00 69 8900
RC108 1.000 0.634 0.285 42.60 3192 46800
RC104 1.000 0.692 0.031 89.85 15842 40100
RC102 0.777 0.743 0.404 11.51 664 76800
RC103 1.000 1.000 0.022 46.73 823 17700
RC107 1.000 1.000 0.036 4.72 46 15600

RC202 0.948 0.131 0.013 34.55 2387 56000
RC203 1.000 0.645 0.043 50.23 2121 25600
RC206 1.000 0.890 0.273 10.79 351 27800
RC205 1.000 0.911 0.115 22.92 904 42100
RC207 1.000 0.937 0.212 8.89 270 22000
RC201 1.000 0.958 0.362 12.77 472 50100
RC208 1.000 0.971 0.014 13.06 401 18700
RC204 1.000 0.999 0.022 28.86 538 68300

Table 4. Selected statistical measures of fitness landscapes P1 – probability that solution has
minimum number of routes, P2 – probability that solution has minimum number of routes
and minimum distance allowing 1% accuracy, P3 – probability that solution is the best-known
or best-achieved, K̄ – average number of distinct solutions observed in a sample of series
of r = 100 experiments, ν – number of local optima unveiled (K̄ and ν are calculated over
solutions with minimum number of routes; tests are ordered according to P2 column)
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out of as many frequently occurring edges within the best local minima (salesman’s tours) as
possible, because it is believed that if the “big valley” structure holds, then very good solutions
are located near other good solutions.
Boese et al.’s approach cannot be directly used for the VRPTW problem, since its instances
may not have the “big valley” structure (see Fig. 9 and 10). Moreover, an initial solution is
not enhanced in simulated annealing into a better local minimum, like in greedy descent.
It is rather a starting point for a random walk which ends up at some local optimum. The
correlation between the quality of this optimum and the quality of the initial solution where
the search began is quite weak.
However a shape of the fitness landscape provides some insight into the procedure which
finds the set of neighbors N(X) of a current solution X (see section 3). Figs. 6 and 7 indicate
that the optimum solution can be a member of a “small valley” of solutions whose distances
from all other solutions—measured by d—are large. Therefore in order to reach any solution
in such an isolated “valley”, the procedure finding the neighbors should create them through
deep modifications of a current solution. This gives some guarantee that both close and distant
neighbors will be constructed with equal probability.
The information concerning the ruggedness of the fitness landscape is used to establish the
initial temperature of annealing in our parallel algorithm, what is a standard practice. Since
the algorithm consists of two phases, the temperature T0, f is computed at the beginning of
each phase ( f = 1,2). The procedure finding a neighbor solution is executed a specified num-
ber of times and the average increase of solution cost ∆ is computed. The initial temperature
T0, f is fixed in such a way that the probability of worsening the solution cost by ∆ in the first

annealing step: e−∆/T0, f , is not larger than a predefined constant—in our case 0.01 (15). If this
probability is too large then the convergence of simulated annealing is slow.

6. Concluding remarks

The fitness landscape is a useful notion in discrete optimization. It increases the understand-
ing of processes which happen during optimization and helps to improve the performance
of optimization algorithms. The experiments conducted for the VRPTW benchmarking tests
by Solomon showed that the optimum solution can be located inside a “small valley” placed
far away from the “big valley” containing the predominant number of solutions. In order to
be able to find such an optimum one should assure that among the neighbors of a current
solution built during an optimization process, there are not only the close neighbor solutions
but also the distant ones. At the beginning of the process of simulated annealing the initial
value of the temperature has to be fixed. It is usually done by taking into account the degree
of ruggedness of the fitness landscape of a problem instance being solved. Statistical mea-
sures of the fitness landscape can be helpful in establishing the difficulty of instances of the
problem. The analysis of this difficulty has several facets. One may ask how hard is to find
the exact solution to the problem. In this case the key role plays the number of local optima
occurring in the landscape. This number can be estimated by detecting distinct solutions in
a series of experiments. The larger is the numer of these solutions, the more local optima
are present in the landscape, and the problem instance is harder to solve. If one wants to
solve the problem with some accuracy, then the smoothness of the landscape is crucial. An
indicator here can be the value of τ̄ = (ȳ − ymin)/ymin which exhibits the shift of the average
cost ȳ of solutions from ymin attained by solving the problem repeatedly. For two-objective
minimization problems, like the VRPTW, one can ask what are the probabilities that in a final
solution produced by an optimization algorithm both objective functions are minimized, or
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stay within some accuracy limits. For example, we found that among the VRPTW tests these
probabilities are the smallest for test R104, and the largest for test R205. Last but not least,
the amenability of the problem and its instances for parallelization can be investigated. If the
simulated annealing paradigm is used, then shortening the parallel execution time in order to
get speedup, decreases the chains of steps of free exploration of the solution space carried out
by processes. However short chains cause deterioration of quality of search results, because
the convergence of simulated annealing is relatively slow. This difficulty can be alleviated
by making processes co-operate. For this goal a suitable scheme of co-operation and its fre-
quency are to be devised. It follows from our experiments that solving most of the VRPTW
tests can be accelerated by using up to 20 processes. However for some tests (group III, see
subsection 4.2) solutions of best accuracy are obtained for less than 20 processes. We believe
that this issue requires further investigation.
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[9] Catoni, O., Grandes déviations et décroissance de la température dans les algorithmes de
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