
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322390608?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Using hardware resource allocation to balance HPC applications 119

Using hardware resource allocation to balance HPC applications

Carlos Boneti, Roberto Gioiosa, Francisco J. Cazorla and Mateo Valero

x

Using hardware resource allocation
to balance HPC applications

Carlos Boneti, Roberto Gioiosa, Francisco J. Cazorla and Mateo Valero

Barcelona Supercomputing Center
Spain

1. Introduction

High Performance Computing (HPC) applications are usually Single Process-Multiple Data
(SPMD) and are implemented using an MPI or an OpenMP library. In MPI applications, all
the processes execute the same code on different data sets and use synchronization
primitives (such as barriers or collective operations) to coordinate their work. Since the
processes execute the same code, they are supposed to reach their synchronization points
roughly at the same time.
However, this is not always the case, as many applications suffer from imbalance, where a
parallel application has multiple inter-dependent tasks1 and these tasks have to wait for
others to complete in order to continue their execution (in Section 2 we will see some causes
of applications' imbalance). During this waiting time, the CPUs of the waiting tasks are idle,
thus, not performing any useful job. If one process has to complete its execution while all
the other processes are waiting for it to reach the synchronization point; then several
processors may be idle, resulting in a significant loss of performance and waste of resources.
In fact, imbalance is a very common problem that has been studied by many researchers.
Since there are several different factors that may create or make variable imbalance, there is
no trivial solution and no solution solves all application's imbalance. A more detailed
survey about solutions for the problem of imbalance is presented at Section 5.
Most of the current Supercomputers use processors with some multi-threaded features
(TOP500, 2007). In the last years, the performance achievable by traditional super-scalar
processor designs has almost saturated due to the limitation imposed by Instruction-Level
Parallelism (ILP). As a consequence, Thread-Level Parallelism (TLP) has become a common
strategy for improving processor performance. Since it is difficult to extract more
Instruction-Level Parallelism from a single program, MultiThreaded (MT) processors, that
is, processors that execute multiple threads at the same time, obtain more parallelism by
simultaneously executing several tasks. This strategy has led to a wide range of MT
processor architectures, from Simultaneous Multi-Threaded processors (SMT) (Serrano et
al., 1993; Tullsen et al., 1995; Marr et all, 2002), in which most processor resources are shared

1In this chapter, the term task refers to a software entity representing an MPI process, a software thread or
simply a process.

7

www.intechopen.com

Parallel and Distributed Computing120

among hardware threads2, to Chip Multi-Processors (CMP) (Bossen et al, 2002), in which
every hardware thread has its own dedicated processor resources, only sharing the highest
levels of the memory hierarchy (for example the L2 cache), and a combination of both
(Sinharoy et al., 2005; IBM et al. 2006; Le et al, 2007). Resource sharing makes multi-threaded
processors have good performance/cost and performance/power consumption ratios
(Alpert, 2003), two desirable characteristics for a supercomputer.
Usually, software has no control over how processor resources are distributed among the
active hardware threads in multi-threaded processors. For example, in an SMT processor the
instruction fetch policy, decides how instructions are fetched from the threads, thereby
implicitly determining the way internal processor resources are allocated to the threads.
This is an undesirable characteristic that makes the execution time of programs
unpredictable (Cazorla et al., 2006). In order to alleviate this problem, recently, some
processor vendors have equipped their MT processors with mechanisms that allow the
software to control processor's internals resource allocation, and thus, control application's
speed.
There are several ways to reassign hardware resources in multi-threaded processors. In
theory, every shared resource in a system can be partitioned or biased to satisfy a load-
balancing target. For instance, cache replacement policy, processor fetch or decode cycles,
power and several other split or shared resources can be controlled to improve the
execution of a set of critical tasks in order to balance a parallel application.
In practice, currently, not every system allows such control over its hardware resources. For
instance, dynamic voltage scaling can be used to save power for the slower tasks without
sacrificing the performance of the critical tasks (the ones that limit the application's
execution time), but it will not provide performance speedup. In cases where it is possible to
give more resources to the critical tasks, increasing its speed, there is potential to decrease
the overall program's execution time. These mechanisms open new opportunities to
improve the performance of parallel applications.
The work presented in this chapter is a first step toward the use of hardware resource
allocation to improve software targets: re-assigning hardware resources in a multi-threaded
processor can reduce the imbalance in parallel applications, and hence improve their
performance. In particular, this work presents a way to regain balance assigning more
hardware resources to processes that compute the longer. The solution is transparent to the
users and is implemented at the Operating System (OS) or run-time levels. In order to use it,
users do not need to adapt their programming model or to know specific processor's
implementation details when writing or compiling their applications.
In this chapter, the idea of load balancing through smart hardware resource allocation is
explored experimentally on a real system with an MT processor, the IBM POWER5™ (Kalla
et al., 2004). The POWER5 is a dual-core, 2-way SMT processor that allows us to change the
way hardware resources are assigned to the core's SMT contexts by means of a software-
controlled hardware priority (or hardware thread priority3) that controls the number of
resources each context receives. This machine runs a Linux kernel that we modified in order
to allow the HPC application to exploit the advantage of assigning the processor's resources.

2The terms thread, hardware thread and context are employed interchangeably to refer to a hardware
context of an SMT processor.
3The hardware thread priorities mentioned here are independent of the operating system's concept of
software thread priority.

As case studies, we performed several experiments with MPI applications, focused on the
IBM POWER5. We present them in increasing order of complexity, that is, when their
imbalance becomes more and more variable:

1. We started from a micro-benchmark (Metbench), developed at the Barcelona
Supercomputing Center (BSC), where we introduce some artificial imbalance.

2. In the second experiment, we ran the widely used the NAS BT-MZ (NASA, 2009)
benchmark; this version suffers of load imbalance, as shown in Section 4.2.

3. We demonstrate the effect of the proposal on a dynamic application
(MetbenchVar), motivating the push for dynamic mechanisms that use hardware
resource allocation, effectively using resource redistribution to perform load
balancing.

4. Finally, we present a real application running on MareNostrum, SIESTA (SIESTA,
2009; Soler et al., 2002). With this specific input, SIESTA exhibits a very
unpredictable imbalance.

Our results show that controlling hardware resources is a powerful tool that can
significantly decrease applications' execution time. However, if used incorrectly, it may lead
to significant performance loss. Moreover, non-HPC applications may benefit differently
from re-assigning hardware resources.
The rest of this chapter is organized as follows: Section 2 shows the imbalance problem in
HPC applications, classifying and discussing its sources; Section 3 introduces the concept of
load-balancing based on smart allocation of hardware resources; we present the POWER5
processor and its prioritization mechanism, and the Linux kernel interface required to use
the prioritization system. Section 4 shows our case-studies; Section 5 presents similar works
in the same area; finally Section 6 provides our conclusion and future work.

2. Imbalance in HPC applications

HPC applications are usually SPMD, which means that every process executes the same
code on different data. For example, let's assume that an HPC application is performing a
matrix-vector multiplication and that each process receives a sub-matrix and the part of the
vector required to compute the sub-matrix by vector multiplication. If the matrix can be
divided into homogeneous parts (i.e., they require the same amount of time to be
processed), all the processes in the parallel application would finish, ideally, at the same
time.
However, the data set could be very different: let's suppose that, in the previous example,
the matrix is sparse or triagonal, hence, the time required to process the data sub-set could
vary as well. In this scenario the amount of time required to complete the sub-matrix by
vector multiplication depends on the number of non-zero values present in the sub-matrix.
In the extreme case, one process could receive a full sub-matrix while another gets an empty
one. The former process requires much more time to reach the synchronization point than
the latter.

www.intechopen.com

Using hardware resource allocation to balance HPC applications 121

among hardware threads2, to Chip Multi-Processors (CMP) (Bossen et al, 2002), in which
every hardware thread has its own dedicated processor resources, only sharing the highest
levels of the memory hierarchy (for example the L2 cache), and a combination of both
(Sinharoy et al., 2005; IBM et al. 2006; Le et al, 2007). Resource sharing makes multi-threaded
processors have good performance/cost and performance/power consumption ratios
(Alpert, 2003), two desirable characteristics for a supercomputer.
Usually, software has no control over how processor resources are distributed among the
active hardware threads in multi-threaded processors. For example, in an SMT processor the
instruction fetch policy, decides how instructions are fetched from the threads, thereby
implicitly determining the way internal processor resources are allocated to the threads.
This is an undesirable characteristic that makes the execution time of programs
unpredictable (Cazorla et al., 2006). In order to alleviate this problem, recently, some
processor vendors have equipped their MT processors with mechanisms that allow the
software to control processor's internals resource allocation, and thus, control application's
speed.
There are several ways to reassign hardware resources in multi-threaded processors. In
theory, every shared resource in a system can be partitioned or biased to satisfy a load-
balancing target. For instance, cache replacement policy, processor fetch or decode cycles,
power and several other split or shared resources can be controlled to improve the
execution of a set of critical tasks in order to balance a parallel application.
In practice, currently, not every system allows such control over its hardware resources. For
instance, dynamic voltage scaling can be used to save power for the slower tasks without
sacrificing the performance of the critical tasks (the ones that limit the application's
execution time), but it will not provide performance speedup. In cases where it is possible to
give more resources to the critical tasks, increasing its speed, there is potential to decrease
the overall program's execution time. These mechanisms open new opportunities to
improve the performance of parallel applications.
The work presented in this chapter is a first step toward the use of hardware resource
allocation to improve software targets: re-assigning hardware resources in a multi-threaded
processor can reduce the imbalance in parallel applications, and hence improve their
performance. In particular, this work presents a way to regain balance assigning more
hardware resources to processes that compute the longer. The solution is transparent to the
users and is implemented at the Operating System (OS) or run-time levels. In order to use it,
users do not need to adapt their programming model or to know specific processor's
implementation details when writing or compiling their applications.
In this chapter, the idea of load balancing through smart hardware resource allocation is
explored experimentally on a real system with an MT processor, the IBM POWER5™ (Kalla
et al., 2004). The POWER5 is a dual-core, 2-way SMT processor that allows us to change the
way hardware resources are assigned to the core's SMT contexts by means of a software-
controlled hardware priority (or hardware thread priority3) that controls the number of
resources each context receives. This machine runs a Linux kernel that we modified in order
to allow the HPC application to exploit the advantage of assigning the processor's resources.

2The terms thread, hardware thread and context are employed interchangeably to refer to a hardware
context of an SMT processor.
3The hardware thread priorities mentioned here are independent of the operating system's concept of
software thread priority.

As case studies, we performed several experiments with MPI applications, focused on the
IBM POWER5. We present them in increasing order of complexity, that is, when their
imbalance becomes more and more variable:

1. We started from a micro-benchmark (Metbench), developed at the Barcelona
Supercomputing Center (BSC), where we introduce some artificial imbalance.

2. In the second experiment, we ran the widely used the NAS BT-MZ (NASA, 2009)
benchmark; this version suffers of load imbalance, as shown in Section 4.2.

3. We demonstrate the effect of the proposal on a dynamic application
(MetbenchVar), motivating the push for dynamic mechanisms that use hardware
resource allocation, effectively using resource redistribution to perform load
balancing.

4. Finally, we present a real application running on MareNostrum, SIESTA (SIESTA,
2009; Soler et al., 2002). With this specific input, SIESTA exhibits a very
unpredictable imbalance.

Our results show that controlling hardware resources is a powerful tool that can
significantly decrease applications' execution time. However, if used incorrectly, it may lead
to significant performance loss. Moreover, non-HPC applications may benefit differently
from re-assigning hardware resources.
The rest of this chapter is organized as follows: Section 2 shows the imbalance problem in
HPC applications, classifying and discussing its sources; Section 3 introduces the concept of
load-balancing based on smart allocation of hardware resources; we present the POWER5
processor and its prioritization mechanism, and the Linux kernel interface required to use
the prioritization system. Section 4 shows our case-studies; Section 5 presents similar works
in the same area; finally Section 6 provides our conclusion and future work.

2. Imbalance in HPC applications

HPC applications are usually SPMD, which means that every process executes the same
code on different data. For example, let's assume that an HPC application is performing a
matrix-vector multiplication and that each process receives a sub-matrix and the part of the
vector required to compute the sub-matrix by vector multiplication. If the matrix can be
divided into homogeneous parts (i.e., they require the same amount of time to be
processed), all the processes in the parallel application would finish, ideally, at the same
time.
However, the data set could be very different: let's suppose that, in the previous example,
the matrix is sparse or triagonal, hence, the time required to process the data sub-set could
vary as well. In this scenario the amount of time required to complete the sub-matrix by
vector multiplication depends on the number of non-zero values present in the sub-matrix.
In the extreme case, one process could receive a full sub-matrix while another gets an empty
one. The former process requires much more time to reach the synchronization point than
the latter.

www.intechopen.com

Parallel and Distributed Computing122

Fig. 1. Two iterations of NAS BT-MZ showing the message exchanges. In this trace, black
areas represent computation, grey areas represent waiting time.

The NAS BT-MZ benchmark, explained in Section 4.2, is a clear example of an imbalanced
application due to data distribution. As shown in Figure 1, each MPI process communicates
with its two neighborhoods, exchanging data after each iteration. The processes get different
amount of work and the process P4 gets to perform the largest part of the computations. At
the end, because of the communications, all other processes are slowed down by P4 and
have to wait for most of their time in order to allow P4 to complete its job.
We classify the sources of imbalance in two main classes: intrinsic and extrinsic factors of
imbalance. Bellow we detail issues and possible reasons for both of the classes.

2.1. Intrinsic imbalance
We refer to intrinsic imbalance as the imbalance an application experiences because of data
(for example a sparse matrix) or algorithm (as for instance, a branch and bound
implementation where some branches may be cut much earlier than others and each task
gets a set of branches). The causes for the intrinsic imbalance are internal to the application's
code, input set or both. It could be caused by several factors; here we point some of them
out:
Input set: As we already said, this scenario happens when a process has a small input set to
work on while another has a large amount of data to process. One example of application
that is strongly dependent on the input set is SIESTA (Soler et al., 2002) (described in better
details in Section 4.4).
SIESTA analyzes materials at the atom level. Depending on the distribution and density of
the atoms across the material, some processes may perform more work than others. Very
homogeneous materials tend to be well balanced, although SIESTA may also present
imbalance caused by the algorithm. Figure 2 shows the trace of SIESTA when processing
atoms of graphite (C6). In this case, the four MPI processes execute, respectively for 92.82%,
91.44%, 91.81% and 91.68% of the time. In fact, if we discard the initialization phase, they all
have more than 98.80% of CPU utilization.
In another case, shown in Figure 3, when processing PTCDA molecules (perylene-3,4,9,10-
tetracarboxylic-3,4,9,10-dianhydride), it exhibits a highly imbalanced execution: the MPI
processes show respectively 92.94%, 21.79%, 96.60%, 21.71% of utilization.
Domain: Iterative methods approximate the solution of a problem (for example, Partial
Differential Equations, PDE) with a function in some domain starting from an initial
condition. The domain is divided in several sub-domains and each process computes its
part of the solution. At the end of every iteration, the error made in the approximation is
computed and, eventually, another iteration is to be started. If the function in some part of
the domain is smooth, only few iterations are required to converge to a good
approximation. Conversely, if the function has several peaks in the sub-domain, more

iterations are necessary to find a good solution and/or more points in the domain have to be
considered during the computing phase.

Fig. 2. Siesta execution with graphite input.

Fig. 3. Siesta execution with PTCDA input. Only part of the execution is pictured.

Data exchanging: During their execution, processes may require to exchange data among
themselves. If the two peers are on the same node, the latency of the communication is
small; if a process needs to exchange data with a neighbor on another node the latency is
large, even larger if the destination process is far away in the network.
In all the previous cases, the application may result to be imbalanced.

2.2. Extrinsic imbalance
Even if both the application's algorithm and the input set are balanced, the execution of the
parallel application can still be imbalanced. This is caused by external factors that slow some
processes down (but not others). For example, the Operating System (OS) might decide to
run another process (say a kernel daemon) in place of the MPI process running on one CPU.
Since that MPI process is not able to run all the time while the others are running, it takes
longer to complete, making all the other processes wait for it. Those external factors are the
sources of extrinsic imbalance. There may be several causes for the imbalance:
OS noise: The CPU is used by the OS to perform services such as handling interrupts, page
reclaiming, assigning memory on demand, etc. The OS noise has been recognized as one of
the major source of extrinsic imbalance (Gioiosa et al., 2004; Petrini et al., 2003; Tsafrir et al.,
2005). A classical example is the interrupt annoyance problem present in Intel processors: all
the interrupts coming from external devices are routed to CPU0; therefore, the OS noise
caused by executing the interrupt handlers on CPU0 is higher than the noise on the other
CPUs.
User daemons: HPC systems often run profile or statistic collectors together with the HPC
applications. These activities could steal computing power from one process, delaying its
execution.
Network topology: Exchanging data between processes in the same sub-network is faster
than exchanging data between processes in different sub-networks. In general, if the job
scheduler has placed processes that need to communicate ``far away'', their communication
latency could increase so much that the whole application will be affected.

www.intechopen.com

Using hardware resource allocation to balance HPC applications 123

Fig. 1. Two iterations of NAS BT-MZ showing the message exchanges. In this trace, black
areas represent computation, grey areas represent waiting time.

The NAS BT-MZ benchmark, explained in Section 4.2, is a clear example of an imbalanced
application due to data distribution. As shown in Figure 1, each MPI process communicates
with its two neighborhoods, exchanging data after each iteration. The processes get different
amount of work and the process P4 gets to perform the largest part of the computations. At
the end, because of the communications, all other processes are slowed down by P4 and
have to wait for most of their time in order to allow P4 to complete its job.
We classify the sources of imbalance in two main classes: intrinsic and extrinsic factors of
imbalance. Bellow we detail issues and possible reasons for both of the classes.

2.1. Intrinsic imbalance
We refer to intrinsic imbalance as the imbalance an application experiences because of data
(for example a sparse matrix) or algorithm (as for instance, a branch and bound
implementation where some branches may be cut much earlier than others and each task
gets a set of branches). The causes for the intrinsic imbalance are internal to the application's
code, input set or both. It could be caused by several factors; here we point some of them
out:
Input set: As we already said, this scenario happens when a process has a small input set to
work on while another has a large amount of data to process. One example of application
that is strongly dependent on the input set is SIESTA (Soler et al., 2002) (described in better
details in Section 4.4).
SIESTA analyzes materials at the atom level. Depending on the distribution and density of
the atoms across the material, some processes may perform more work than others. Very
homogeneous materials tend to be well balanced, although SIESTA may also present
imbalance caused by the algorithm. Figure 2 shows the trace of SIESTA when processing
atoms of graphite (C6). In this case, the four MPI processes execute, respectively for 92.82%,
91.44%, 91.81% and 91.68% of the time. In fact, if we discard the initialization phase, they all
have more than 98.80% of CPU utilization.
In another case, shown in Figure 3, when processing PTCDA molecules (perylene-3,4,9,10-
tetracarboxylic-3,4,9,10-dianhydride), it exhibits a highly imbalanced execution: the MPI
processes show respectively 92.94%, 21.79%, 96.60%, 21.71% of utilization.
Domain: Iterative methods approximate the solution of a problem (for example, Partial
Differential Equations, PDE) with a function in some domain starting from an initial
condition. The domain is divided in several sub-domains and each process computes its
part of the solution. At the end of every iteration, the error made in the approximation is
computed and, eventually, another iteration is to be started. If the function in some part of
the domain is smooth, only few iterations are required to converge to a good
approximation. Conversely, if the function has several peaks in the sub-domain, more

iterations are necessary to find a good solution and/or more points in the domain have to be
considered during the computing phase.

Fig. 2. Siesta execution with graphite input.

Fig. 3. Siesta execution with PTCDA input. Only part of the execution is pictured.

Data exchanging: During their execution, processes may require to exchange data among
themselves. If the two peers are on the same node, the latency of the communication is
small; if a process needs to exchange data with a neighbor on another node the latency is
large, even larger if the destination process is far away in the network.
In all the previous cases, the application may result to be imbalanced.

2.2. Extrinsic imbalance
Even if both the application's algorithm and the input set are balanced, the execution of the
parallel application can still be imbalanced. This is caused by external factors that slow some
processes down (but not others). For example, the Operating System (OS) might decide to
run another process (say a kernel daemon) in place of the MPI process running on one CPU.
Since that MPI process is not able to run all the time while the others are running, it takes
longer to complete, making all the other processes wait for it. Those external factors are the
sources of extrinsic imbalance. There may be several causes for the imbalance:
OS noise: The CPU is used by the OS to perform services such as handling interrupts, page
reclaiming, assigning memory on demand, etc. The OS noise has been recognized as one of
the major source of extrinsic imbalance (Gioiosa et al., 2004; Petrini et al., 2003; Tsafrir et al.,
2005). A classical example is the interrupt annoyance problem present in Intel processors: all
the interrupts coming from external devices are routed to CPU0; therefore, the OS noise
caused by executing the interrupt handlers on CPU0 is higher than the noise on the other
CPUs.
User daemons: HPC systems often run profile or statistic collectors together with the HPC
applications. These activities could steal computing power from one process, delaying its
execution.
Network topology: Exchanging data between processes in the same sub-network is faster
than exchanging data between processes in different sub-networks. In general, if the job
scheduler has placed processes that need to communicate ``far away'', their communication
latency could increase so much that the whole application will be affected.

www.intechopen.com

Parallel and Distributed Computing124

Memory management: Even inside a single node, it is common to have NUMA (Non-
Uniform Memory Access). A process that requests a large amount of memory may have it
allocated in a memory region that is comparably slower than the memory allocated to the
other processes of a parallel application (maybe because there is not enough memory close
enough to this processor). In this case, the performance of this process will be significantly
impacted and, depending on the application, this process may delay the execution of the
entire program, making the others wait for its results.
An expert programmer could reduce the intrinsic imbalance in the application. However,
this is not an easy task, as the imbalance can be caused by the algorithm, but it can also be
caused by the input data set, changing distribution and intensity according to different
inputs. Balancing a HPC application by hand is a time-consuming task and may require
quite a lot of effort. In fact, the programmer has to distribute the data among the processes
considering the way the algorithm has been implemented and the correctness of the
application. Moreover, on many applications this work has to be done every time the input
or the machine change.
Even worse is the case of extrinsic imbalance, as those factors are neither under the control
of the application nor of the programmer and there is no straightforward way to solve this
problem. Thus, it is clear that a mechanism that aims to solve the imbalance of an
application should be transparent to the user, dynamic and independent from the
programming model, libraries or input set. As we will see later, the proposal presented in
this chapter is both transparent and independent from the programming model, libraries
and input set.

3. Hardware Resource Allocation

With the arrival of MT architectures, and in particular those that allow the software to
control processor's resource allocation, new opportunities arise to mitigate the problem of
imbalance in HPC applications. This is mainly due to the fact that the software is allowed to
exercise a fine control over the progress of tasks, by allocating or deallocating processor
resources to them. Such a fine-grain control cannot be achieved by previous solutions for
load imbalance; in fact, even if a lot of processors with shared resources have been
introduced in the market since early 90s, very few of them allow the software to control how
internal resources are allocated. Allowing the software to control how to assign shared
resources is a key factor for HPC systems. In this view, having MT processors able to
provide such mechanism will be essential for improving the performance of HPC systems.
The solution presented in this chapter for balancing HPC applications, consists of assigning
more hardware resources to the most compute-intensive processes (the bottleneck). Giving
this process more hardware resource shall decrease its execution time and, since this process
is the bottleneck of the application, the execution time of the whole MPI application.
Clearly the underlying processor has to support the capability of re-assigning processor
resources among running contexts. Currently, multi-threaded processors like the IBM
POWER5 (Kalla et al., 2004), the POWER6 (Le et al., 2007) or the Cell processor (IBM et al.,
2006; IBM, 2008) provide such a capability with their hardware thread priority mechanisms.
More details about the POWER5 prioritization mechanism are available in Section 3.1.
Even if in this chapter we focus on the IBM POWER5, the idea presented is general and can
be applied to other MT processors that allow the OS to the control or influence the allocation
of processor's resources (for example, partitioning a shared L2 cache in a multi-core CPU

(Moreto et al., 2008; Qureshi and Patt, 2006). The IBM POWER5 processor is used, among
others, by ASC Purple, installed at the Lawrence Livermore National Laboratory4.

(a) Imbalanced HPC application (b) More balanced HPC application
Fig. 4. Expected effect of the proposed solution (T' < T).

We should point out that increasing the performance of one process by giving it more
hardware resources, does not come for free. In fact, at the same time, the performance of the
other process running on the same core, therefore sharing the resources with the former
process, may reduce. Figure 4 shows a synthetic example that illustrates this case: in Figure
4(a), process P1 shares resources with P2, while P3 shares them with P4; P2, P3 and P4 take
the same amount of time to reach their synchronization point but P1 takes much longer. As
a result, P2, P3 and P4 are idle for a long time. In Figure 4(b), we increase the priority of P1,
so it uses more hardware resources and its execution time decreases; P2's execution time,
instead, increases since it runs with less hardware resources. Since P2 is not the bottleneck
and has enough “spare time”, its slowdown does not affect the application's performance.
On the other hand, the performance improvement of P1 directly translates into a
performance improvement for the whole application, as it is possible to see comparing
Figures 4(a) and 4(b).
No assumption is made on what kind of application, programming model or input set the
programmer has to use. The only assumption made is that the underlying processor must
provide a mechanism, visible at software level, to control the hardware shared resources.
The solution for load balancing through hardware resource allocation works at OS level and
is completely transparent to the users, who are free to use the MPI, OpenMP or any other
programming model or library they wish. Moreover, the approach can be adjusted so the
amount of resources assigned to a process can change according to the input set provided to
the application.
It is important to notice that not all the POWER5 priorities are available from the user-level
and a special kernel patch was needed to enable the use of the full spectrum of software-
controlled hardware priorities. For the technique presented in the current chapter, we
employ the same patch developed to perform the characterization in (Boneti et al., 2008a).
The patch only provides a mechanism to set all the priorities (available at OS level) from
user applications. It is the responsibility of the user applications (or run time systems) to
balance the system load using this interface.

4The 3rd supercomputer in the Top500 list of 06/2006, the 11th at the list of 11/2007.

www.intechopen.com

Using hardware resource allocation to balance HPC applications 125

Memory management: Even inside a single node, it is common to have NUMA (Non-
Uniform Memory Access). A process that requests a large amount of memory may have it
allocated in a memory region that is comparably slower than the memory allocated to the
other processes of a parallel application (maybe because there is not enough memory close
enough to this processor). In this case, the performance of this process will be significantly
impacted and, depending on the application, this process may delay the execution of the
entire program, making the others wait for its results.
An expert programmer could reduce the intrinsic imbalance in the application. However,
this is not an easy task, as the imbalance can be caused by the algorithm, but it can also be
caused by the input data set, changing distribution and intensity according to different
inputs. Balancing a HPC application by hand is a time-consuming task and may require
quite a lot of effort. In fact, the programmer has to distribute the data among the processes
considering the way the algorithm has been implemented and the correctness of the
application. Moreover, on many applications this work has to be done every time the input
or the machine change.
Even worse is the case of extrinsic imbalance, as those factors are neither under the control
of the application nor of the programmer and there is no straightforward way to solve this
problem. Thus, it is clear that a mechanism that aims to solve the imbalance of an
application should be transparent to the user, dynamic and independent from the
programming model, libraries or input set. As we will see later, the proposal presented in
this chapter is both transparent and independent from the programming model, libraries
and input set.

3. Hardware Resource Allocation

With the arrival of MT architectures, and in particular those that allow the software to
control processor's resource allocation, new opportunities arise to mitigate the problem of
imbalance in HPC applications. This is mainly due to the fact that the software is allowed to
exercise a fine control over the progress of tasks, by allocating or deallocating processor
resources to them. Such a fine-grain control cannot be achieved by previous solutions for
load imbalance; in fact, even if a lot of processors with shared resources have been
introduced in the market since early 90s, very few of them allow the software to control how
internal resources are allocated. Allowing the software to control how to assign shared
resources is a key factor for HPC systems. In this view, having MT processors able to
provide such mechanism will be essential for improving the performance of HPC systems.
The solution presented in this chapter for balancing HPC applications, consists of assigning
more hardware resources to the most compute-intensive processes (the bottleneck). Giving
this process more hardware resource shall decrease its execution time and, since this process
is the bottleneck of the application, the execution time of the whole MPI application.
Clearly the underlying processor has to support the capability of re-assigning processor
resources among running contexts. Currently, multi-threaded processors like the IBM
POWER5 (Kalla et al., 2004), the POWER6 (Le et al., 2007) or the Cell processor (IBM et al.,
2006; IBM, 2008) provide such a capability with their hardware thread priority mechanisms.
More details about the POWER5 prioritization mechanism are available in Section 3.1.
Even if in this chapter we focus on the IBM POWER5, the idea presented is general and can
be applied to other MT processors that allow the OS to the control or influence the allocation
of processor's resources (for example, partitioning a shared L2 cache in a multi-core CPU

(Moreto et al., 2008; Qureshi and Patt, 2006). The IBM POWER5 processor is used, among
others, by ASC Purple, installed at the Lawrence Livermore National Laboratory4.

(a) Imbalanced HPC application (b) More balanced HPC application
Fig. 4. Expected effect of the proposed solution (T' < T).

We should point out that increasing the performance of one process by giving it more
hardware resources, does not come for free. In fact, at the same time, the performance of the
other process running on the same core, therefore sharing the resources with the former
process, may reduce. Figure 4 shows a synthetic example that illustrates this case: in Figure
4(a), process P1 shares resources with P2, while P3 shares them with P4; P2, P3 and P4 take
the same amount of time to reach their synchronization point but P1 takes much longer. As
a result, P2, P3 and P4 are idle for a long time. In Figure 4(b), we increase the priority of P1,
so it uses more hardware resources and its execution time decreases; P2's execution time,
instead, increases since it runs with less hardware resources. Since P2 is not the bottleneck
and has enough “spare time”, its slowdown does not affect the application's performance.
On the other hand, the performance improvement of P1 directly translates into a
performance improvement for the whole application, as it is possible to see comparing
Figures 4(a) and 4(b).
No assumption is made on what kind of application, programming model or input set the
programmer has to use. The only assumption made is that the underlying processor must
provide a mechanism, visible at software level, to control the hardware shared resources.
The solution for load balancing through hardware resource allocation works at OS level and
is completely transparent to the users, who are free to use the MPI, OpenMP or any other
programming model or library they wish. Moreover, the approach can be adjusted so the
amount of resources assigned to a process can change according to the input set provided to
the application.
It is important to notice that not all the POWER5 priorities are available from the user-level
and a special kernel patch was needed to enable the use of the full spectrum of software-
controlled hardware priorities. For the technique presented in the current chapter, we
employ the same patch developed to perform the characterization in (Boneti et al., 2008a).
The patch only provides a mechanism to set all the priorities (available at OS level) from
user applications. It is the responsibility of the user applications (or run time systems) to
balance the system load using this interface.

4The 3rd supercomputer in the Top500 list of 06/2006, the 11th at the list of 11/2007.

www.intechopen.com

Parallel and Distributed Computing126

3.1. The IBM POWER5 processor
The IBM POWER5 (IBM, 2005a; IBM, 2005b; IBM, 2005c; Sinharoy et al., 2005) processor is a
dual-core chip where each core is a 2-way SMT core (Kalla et al., 2004). Each core has its
own private first-level data and instruction caches. The unified second- and third-level
caches are shared between cores.
The forms of Multi-Threading implemented in the POWER5 are Simultaneous Multi-
threading and Chip-Multiprocessing. The main characteristic of SMT processors is their
ability to issue instructions from different threads in the same cycle. As a result, SMTs not
only can switch to a different thread to use the idle issue cycles in a long-latency operation,
like coarse-grain multi-threading, or in a short-latency operation, like in a fine-grain multi-
threaded, but also fill unused issue slots in a given cycle.
What makes the IBM POWER5 ideal for testing our proposal is the capability that each core
has to assign some hardware resources to one context rather than to the other. Each context
in a core has a hardware thread priority (Boneti et al, 2008a; Gibbs et al., 2005; Kalla et al.,
2003), an integer value in the range of 0 (the context is off) to 7 (the other context is off and
the core is running in Single Thread (ST) mode), as illustrated in Table 1. As the hardware
thread priority of a context increases (keeping the other constant) the amount of hardware
resources assigned to that context increases too.

Priority Priority level Privilege level or-nop inst.
0 Thread shut off Hypervisor -
1 Very low Supervisor or 31,31,31
2 Low User or 1,1,1
3 Medium-Low User or 6,6,6
4 Medium User or 2,2,2
5 Medium-high Supervisor or 5,5,5
6 High Supervisor or 3,3,3
7 Very high Hypervisor or 7,7,7

Table 1. Hardware thread priorities in the IBM POWER5 processor

3.1.1. Thread priorities implementation
The way each core assigns more hardware resources to a given hardware thread is by
decoding more instructions from that thread than from the other. In other words, the
number of decode cycles assigned to each thread depends on its hardware priority. In
general, the higher the priority, the higher the number of decode cycles assigned to the
thread (and, therefore, the higher the number of shared resources held by the thread).
Let's assume two threads (ThreadA and ThreadB) are running on a POWER5 core with
priorities X and Y, respectively. In POWER5 the decode time is divided in time-slices of R
cycles: the lower priority thread receives 1 of those cycles, while the higher priority thread
receives (R-1) cycles. R is computed as:

12  YXR
(1)

Table 2 shows the possible values of R and how many decode slots are assigned to the two
threads as the difference between ThreadA's and ThreadB's priority moves from 0 to 4. In

fact, the amount of resources assigned to a thread is determined using the difference
between the thread priorities, X and Y. For example, assuming that ThreadA has hardware
priority 6 and ThreadB has hardware priority 2 (the difference is 4), then the core fetches 31
times from context0 and once from context1 (more details on the hardware implementation
are provided in (Gibbs et al., 2005). It is clear that the performance of the process running on
Context0 shall increase to the detriment of the one running on Context1. When any of the
threads has priority 0 or 1, the behavior of the hardware prioritization mechanism is
different, as shown in Table 3.

Priority difference
(X-Y)

R Decode cycles
for A

Decode cycles
for B

0 2 1 1
1 4 3 1
2 8 7 1
3 16 15 1
4 32 31 1

Table 2. Decode cycle allocation in the IBM POWER5 with different priorities.

Thread A Thread B Action
>1 >1 Decode cycles are given to the two threads as

according with the thread's priorities.
1 >1 ThreadB gets all the execution resources;

ThreadA takes what is left over.
1 1 Power save mode; both ThreadA and ThreadB

receive 1 of 64 decode cycles.
0 >1 Processor in ST mode. ThreadB receives all the

resources.
0 1 1 of 32 cycles are given to ThreadB.
0 0 Processor is stopped.

Table 3. Resource allocation in the IBM POWER5 when the priority of any of the threads is 0
or 1.

3.1.2. Hardware interface for priority management
The IBM POWER5 provides two different interfaces to change the priority of a thread:
issuing an or-nop instruction or using the Thread Status Register (TSR). We used the former
interface, in which case a thread has to execute an instruction like or X,X,X, where X is an
specific register number (see Table 1). This operation does not do anything but changing the
hardware thread priority. Table 1 also shows the privilege level required to set each priority
and how to change priority using this interface. The second interface consists of writing the
hardware priority into the local (i.e., per-context) TSR by means of a mtspr operation. The
actual thread priority can be read from the local TSR using a mfspr instruction.

3.2. The Linux kernel interface to hardware priorities
By default, users can only set three hardware priorities: MEDIUM (4), MEDIUM-LOW (3) and
LOW (2). This basically means that users are only allowed to reduce their priority, since the
MEDIUM priority is the default case. If the user reduces the thread priority when a process

www.intechopen.com

Using hardware resource allocation to balance HPC applications 127

3.1. The IBM POWER5 processor
The IBM POWER5 (IBM, 2005a; IBM, 2005b; IBM, 2005c; Sinharoy et al., 2005) processor is a
dual-core chip where each core is a 2-way SMT core (Kalla et al., 2004). Each core has its
own private first-level data and instruction caches. The unified second- and third-level
caches are shared between cores.
The forms of Multi-Threading implemented in the POWER5 are Simultaneous Multi-
threading and Chip-Multiprocessing. The main characteristic of SMT processors is their
ability to issue instructions from different threads in the same cycle. As a result, SMTs not
only can switch to a different thread to use the idle issue cycles in a long-latency operation,
like coarse-grain multi-threading, or in a short-latency operation, like in a fine-grain multi-
threaded, but also fill unused issue slots in a given cycle.
What makes the IBM POWER5 ideal for testing our proposal is the capability that each core
has to assign some hardware resources to one context rather than to the other. Each context
in a core has a hardware thread priority (Boneti et al, 2008a; Gibbs et al., 2005; Kalla et al.,
2003), an integer value in the range of 0 (the context is off) to 7 (the other context is off and
the core is running in Single Thread (ST) mode), as illustrated in Table 1. As the hardware
thread priority of a context increases (keeping the other constant) the amount of hardware
resources assigned to that context increases too.

Priority Priority level Privilege level or-nop inst.
0 Thread shut off Hypervisor -
1 Very low Supervisor or 31,31,31
2 Low User or 1,1,1
3 Medium-Low User or 6,6,6
4 Medium User or 2,2,2
5 Medium-high Supervisor or 5,5,5
6 High Supervisor or 3,3,3
7 Very high Hypervisor or 7,7,7

Table 1. Hardware thread priorities in the IBM POWER5 processor

3.1.1. Thread priorities implementation
The way each core assigns more hardware resources to a given hardware thread is by
decoding more instructions from that thread than from the other. In other words, the
number of decode cycles assigned to each thread depends on its hardware priority. In
general, the higher the priority, the higher the number of decode cycles assigned to the
thread (and, therefore, the higher the number of shared resources held by the thread).
Let's assume two threads (ThreadA and ThreadB) are running on a POWER5 core with
priorities X and Y, respectively. In POWER5 the decode time is divided in time-slices of R
cycles: the lower priority thread receives 1 of those cycles, while the higher priority thread
receives (R-1) cycles. R is computed as:

12  YXR
(1)

Table 2 shows the possible values of R and how many decode slots are assigned to the two
threads as the difference between ThreadA's and ThreadB's priority moves from 0 to 4. In

fact, the amount of resources assigned to a thread is determined using the difference
between the thread priorities, X and Y. For example, assuming that ThreadA has hardware
priority 6 and ThreadB has hardware priority 2 (the difference is 4), then the core fetches 31
times from context0 and once from context1 (more details on the hardware implementation
are provided in (Gibbs et al., 2005). It is clear that the performance of the process running on
Context0 shall increase to the detriment of the one running on Context1. When any of the
threads has priority 0 or 1, the behavior of the hardware prioritization mechanism is
different, as shown in Table 3.

Priority difference
(X-Y)

R Decode cycles
for A

Decode cycles
for B

0 2 1 1
1 4 3 1
2 8 7 1
3 16 15 1
4 32 31 1

Table 2. Decode cycle allocation in the IBM POWER5 with different priorities.

Thread A Thread B Action
>1 >1 Decode cycles are given to the two threads as

according with the thread's priorities.
1 >1 ThreadB gets all the execution resources;

ThreadA takes what is left over.
1 1 Power save mode; both ThreadA and ThreadB

receive 1 of 64 decode cycles.
0 >1 Processor in ST mode. ThreadB receives all the

resources.
0 1 1 of 32 cycles are given to ThreadB.
0 0 Processor is stopped.

Table 3. Resource allocation in the IBM POWER5 when the priority of any of the threads is 0
or 1.

3.1.2. Hardware interface for priority management
The IBM POWER5 provides two different interfaces to change the priority of a thread:
issuing an or-nop instruction or using the Thread Status Register (TSR). We used the former
interface, in which case a thread has to execute an instruction like or X,X,X, where X is an
specific register number (see Table 1). This operation does not do anything but changing the
hardware thread priority. Table 1 also shows the privilege level required to set each priority
and how to change priority using this interface. The second interface consists of writing the
hardware priority into the local (i.e., per-context) TSR by means of a mtspr operation. The
actual thread priority can be read from the local TSR using a mfspr instruction.

3.2. The Linux kernel interface to hardware priorities
By default, users can only set three hardware priorities: MEDIUM (4), MEDIUM-LOW (3) and
LOW (2). This basically means that users are only allowed to reduce their priority, since the
MEDIUM priority is the default case. If the user reduces the thread priority when a process

www.intechopen.com

Parallel and Distributed Computing128

does not require lot or resources (for example because the process is waiting for a lock), the
overall performance might increase (because the other thread receives more resources and,
therefore, may go faster). Thus, it is recommended that the user reduces the thread priority
whenever the thread processor is executing a low-priority operation (such as spinning for a
lock, polling, etc.).
Modern Linux kernels running on IBM POWER5 processors make use of the hardware
priority mechanism the chip provides. In this Section we will first explore the standard
behavior of the Linux kernel when dealing with hardware priorities, and then present how
we modified the standard kernel in order to solve the imbalance problem by means of the
IBM POWER5 hardware prioritization mechanism.

3.2.1. The use of priorities in the standard Linux Kernel
The Linux kernel only exploits hardware priorities in a limited number of cases: the general
idea is to reduce the priority of a process that is not performing any useful operation and to
give more resources to the process running on the other context.
The standard Linux kernel makes use of the thread priorities in three cases:

1. The processor is spinning for a lock in kernel mode. In this case the priority of the
spinning process is reduced (the process is not really advancing in its job).

2. The kernel is waiting for some operations to complete. This happens, for example,
when the kernel wants a specific CPU to perform some operation by means of a
smp_call_function() (for example, invalidating its TLB) and cannot proceed until
the operation has completed. In this case the priority of the CPU is decreased until
the operation completes.

3. The kernel is running the idle process because there is no other process ready to
run. In this case the kernel reduces the priority of the idle CPU and, eventually, put
the core in Single Thread (ST) mode.

In all these cases the kernel reduces the priority of the context, restoring the priority to
MEDIUM when there is some job to perform. The hardware thread priority is also reset to
MEDIUM as soon as the kernel executes an interrupt or an exception handler as well as a
system call. In fact, since the kernel does not keep track of the current priority, it cannot
restore the process' priority. Therefore, the kernel simply resets the priority to MEDIUM every
time it starts to execute an interrupt handler (or a system call), so that it can be sure that
those critical operations will be performed with enough resources.

3.2.2. Modification to the Linux kernel
In order to use the hardware prioritization for balancing the HPC application, we modified
the original kernel code for two reasons:

1. Every time the CPU receives an interrupt, the interrupt handler sets the priority
back to MEDIUM, regardless of the current priority. We want to maintain the given
priority even after an interrupt is received or during the interrupt handler itself;
thus, we removed the code that makes use of the hardware thread priority
capabilities from the handlers.

2. Only hardware priorities 2 (LOW), 3 (MEDIUM-LOW) and 4 (MEDIUM) can be set by a
user-level program. Priorities 1 (VERY LOW), 5 (MEDIUM-HIGH) and 6 (HIGH) can only
be set by the Operating System (OS). Priorities 0 (context off) and 7 (VERY HIGH, ST
mode) can only be set by the Hypervisor. We developed an interface that allows

the user to set all the possible priorities available in kernel mode. A user who
wants to set priority N to process <PID> shall simply write to a proc file, like:

echo N > /proc/<PID>/hmt_priority

This patch provides a mechanism to set all the priorities from user applications. It is
developed for several standard kernel versions (2.6.19, 2.6.24, 2.6.28, etc) in a way that it is
not intrusive and has no impact on the performance of our experiments. With this patch, it
is the responsibility of the user applications, system scheduler or run time systems to
balance the system load. It is the building block that can be used for other mechanisms, like
the transparent load balancer proposed in (Boneti et al., 2008b).

4. Case Studies on the IBM POWER5 processor

In this section, we present some experiments on an IBM OpenPower 710 server, with one
POWER5 processor. Since MPI is the most common protocol, the test cases in this section
are MPI applications (in the experiments we used the MPI-CH 1.0.4p1 implementation of
MPI protocol).
We present four different cases: Section 4.1 shows how the IBM POWER5 priority
mechanism works using our micro-benchmark (Metbench); Section 4.2 provides details on
how the hardware priorities can be used to balance a widely used benchmark (NAS BT-MZ)
and improve its performance. Section 4.3 presents a different version of Metbench that
presents dynamic behavior and, thus, variable imbalance. Finally, 4.4 shows how the
hardware prioritization improves the performance of a real application frequently executed
on MareNostrum (SIESTA). In this case, SIESTA receives an input that makes it exhibit a
variable behavior and imbalance.
In order to present experiments in a simple way, we use as metric the total execution time of
the application. We use PARAVER (Labarta et al., 1996), a visualization and performance
analysis tool developed at CEPBA, to collect data and statistics and to show the trace of each
process during the tests.

4.1. Metbench
Metbench (Minimum Execution Time Benchmark) is a suite of MPI micro-benchmarks
developed at BSC whose structure is representative of the real applications running on
MareNostrum. Metbench consists of a framework and several loads. The framework is
composed by a master process and several workers: each worker executes its assigned load
and then waits for all the others to complete their task. The role of the master is to maintain
a strict synchronization between the workers: once all the workers have finished their tasks,
the master eventually starts another iteration (the number of iterations to perform is a run-
time parameter). The master and the workers only exchange data during the initialization
phase and use an mpi_barrier() to get synchronized. In the traces shown in this section,
the master process corresponds to the first process and is not balanced as it will be always
idle, waiting for the conclusion of all worker processes.
One of the goals of Metbench is to allow researchers at BSC to understand the performance
and capabilities of a processor or a cluster. In order to do that, we developed several loads,
each one stressing a different processor resource (for example, the Floating Point Unit, the
L2 cache, the branch predictor, etc) for a given amount of time.

www.intechopen.com

Using hardware resource allocation to balance HPC applications 129

does not require lot or resources (for example because the process is waiting for a lock), the
overall performance might increase (because the other thread receives more resources and,
therefore, may go faster). Thus, it is recommended that the user reduces the thread priority
whenever the thread processor is executing a low-priority operation (such as spinning for a
lock, polling, etc.).
Modern Linux kernels running on IBM POWER5 processors make use of the hardware
priority mechanism the chip provides. In this Section we will first explore the standard
behavior of the Linux kernel when dealing with hardware priorities, and then present how
we modified the standard kernel in order to solve the imbalance problem by means of the
IBM POWER5 hardware prioritization mechanism.

3.2.1. The use of priorities in the standard Linux Kernel
The Linux kernel only exploits hardware priorities in a limited number of cases: the general
idea is to reduce the priority of a process that is not performing any useful operation and to
give more resources to the process running on the other context.
The standard Linux kernel makes use of the thread priorities in three cases:

1. The processor is spinning for a lock in kernel mode. In this case the priority of the
spinning process is reduced (the process is not really advancing in its job).

2. The kernel is waiting for some operations to complete. This happens, for example,
when the kernel wants a specific CPU to perform some operation by means of a
smp_call_function() (for example, invalidating its TLB) and cannot proceed until
the operation has completed. In this case the priority of the CPU is decreased until
the operation completes.

3. The kernel is running the idle process because there is no other process ready to
run. In this case the kernel reduces the priority of the idle CPU and, eventually, put
the core in Single Thread (ST) mode.

In all these cases the kernel reduces the priority of the context, restoring the priority to
MEDIUM when there is some job to perform. The hardware thread priority is also reset to
MEDIUM as soon as the kernel executes an interrupt or an exception handler as well as a
system call. In fact, since the kernel does not keep track of the current priority, it cannot
restore the process' priority. Therefore, the kernel simply resets the priority to MEDIUM every
time it starts to execute an interrupt handler (or a system call), so that it can be sure that
those critical operations will be performed with enough resources.

3.2.2. Modification to the Linux kernel
In order to use the hardware prioritization for balancing the HPC application, we modified
the original kernel code for two reasons:

1. Every time the CPU receives an interrupt, the interrupt handler sets the priority
back to MEDIUM, regardless of the current priority. We want to maintain the given
priority even after an interrupt is received or during the interrupt handler itself;
thus, we removed the code that makes use of the hardware thread priority
capabilities from the handlers.

2. Only hardware priorities 2 (LOW), 3 (MEDIUM-LOW) and 4 (MEDIUM) can be set by a
user-level program. Priorities 1 (VERY LOW), 5 (MEDIUM-HIGH) and 6 (HIGH) can only
be set by the Operating System (OS). Priorities 0 (context off) and 7 (VERY HIGH, ST
mode) can only be set by the Hypervisor. We developed an interface that allows

the user to set all the possible priorities available in kernel mode. A user who
wants to set priority N to process <PID> shall simply write to a proc file, like:

echo N > /proc/<PID>/hmt_priority

This patch provides a mechanism to set all the priorities from user applications. It is
developed for several standard kernel versions (2.6.19, 2.6.24, 2.6.28, etc) in a way that it is
not intrusive and has no impact on the performance of our experiments. With this patch, it
is the responsibility of the user applications, system scheduler or run time systems to
balance the system load. It is the building block that can be used for other mechanisms, like
the transparent load balancer proposed in (Boneti et al., 2008b).

4. Case Studies on the IBM POWER5 processor

In this section, we present some experiments on an IBM OpenPower 710 server, with one
POWER5 processor. Since MPI is the most common protocol, the test cases in this section
are MPI applications (in the experiments we used the MPI-CH 1.0.4p1 implementation of
MPI protocol).
We present four different cases: Section 4.1 shows how the IBM POWER5 priority
mechanism works using our micro-benchmark (Metbench); Section 4.2 provides details on
how the hardware priorities can be used to balance a widely used benchmark (NAS BT-MZ)
and improve its performance. Section 4.3 presents a different version of Metbench that
presents dynamic behavior and, thus, variable imbalance. Finally, 4.4 shows how the
hardware prioritization improves the performance of a real application frequently executed
on MareNostrum (SIESTA). In this case, SIESTA receives an input that makes it exhibit a
variable behavior and imbalance.
In order to present experiments in a simple way, we use as metric the total execution time of
the application. We use PARAVER (Labarta et al., 1996), a visualization and performance
analysis tool developed at CEPBA, to collect data and statistics and to show the trace of each
process during the tests.

4.1. Metbench
Metbench (Minimum Execution Time Benchmark) is a suite of MPI micro-benchmarks
developed at BSC whose structure is representative of the real applications running on
MareNostrum. Metbench consists of a framework and several loads. The framework is
composed by a master process and several workers: each worker executes its assigned load
and then waits for all the others to complete their task. The role of the master is to maintain
a strict synchronization between the workers: once all the workers have finished their tasks,
the master eventually starts another iteration (the number of iterations to perform is a run-
time parameter). The master and the workers only exchange data during the initialization
phase and use an mpi_barrier() to get synchronized. In the traces shown in this section,
the master process corresponds to the first process and is not balanced as it will be always
idle, waiting for the conclusion of all worker processes.
One of the goals of Metbench is to allow researchers at BSC to understand the performance
and capabilities of a processor or a cluster. In order to do that, we developed several loads,
each one stressing a different processor resource (for example, the Floating Point Unit, the
L2 cache, the branch predictor, etc) for a given amount of time.

www.intechopen.com

Parallel and Distributed Computing130

In this experiment we introduce imbalance in the MPI application by assigning to a worker
a larger load than the one assigned to the worker on the same core. In this way, the faster
worker will spend most of its time waiting for the slower worker to process its load. As we
will see in Section 4.2 this scenario is quite common for both standard benchmarks and real
applications. Figure 5 shows the effect of the hardware resource allocation on Metbench.
Each horizontal line represents the activity of a process and each color represents a different
state: dark bars show computing time while grey bars show waiting time. In this example,
processes P1 (the master), P2, and P3 are mapped to the first core of the POWER5, while
processes P4 and P5 are mapped to the other core. The x-axis represents time.

(a) Metbench Case A

(b) Metbench Case B

(c) Metbench Case C

(d) Metbench Case D

Fig. 5. Effect of the hardware thread prioritization on Metbench. Each trace represents only
some iterations of the application.

Case A: Figure 5(a) represents our reference case, i.e., the MPI application is running with
default priorities (4). As we can see from Figure 5(a) Metbench shows a great imbalance:

more specifically, processes P2 and P4 spend about 75.6% of their time waiting for processes
P3 and P5 to complete their computing phase.
Case B: Using the software-controlled hardware prioritization, we increased the priority of
P3 and P5 (the most computing intensive processes) up to 6, while the priority of P2 and P4
are set to 5 (remember that what really matters is the difference between the thread
priorities, here P2 and P4 are running with less priority than in Case A).
Figure 5(b) shows how the imbalance has been reduced, also reducing the total execution
time (from 81.64 sec to 76.98 sec, 5.71% of improvement).
Case C: We increased again the amount of hardware resources assigned to P3 and P5 in
order to speed them up.
Indeed, we obtained an even more balanced situation where all the processes compute for
(roughly) the same amount of time. The total execution time reduces to 74.90 sec (8.26% of
improvement over Case A).
Case D: Next, we increased again the amount of resources given to P3 and P5. As we can
see from Figure 5(d) we reversed the imbalance, i.e., now P3 and P5 are much faster than P2
and P4 and spend most of their time waiting. As a result the execution time (95.71 sec)
increases.

Test Proc Core % Comp Priority Exec. Time
A P1

P2
P3
P4
P5

1
1
1
2
2

0.02
24.32
98.99
24.31
99.99

4
4
4
4
4

81.64s

B P1
P2
P3
P4
P5

1
1
1
2
2

0.02
51.16
99.82
51.18
99.98

4
5
6
5
6

76.98s

C P1
P2
P3
P4
P5

1
1
1
2
2

0.03
98.96
98.56
97.01
98.37

4
4
6
4
6

74.90s

D P1
P2
P3
P4
P5

1
1
1
2
2

0.02
99.87
73.25
99.72
73.25

4
3
6
3
6

95.71s

Table 4. Metbench balanced and imbalanced characterization

Case D shows an interesting property of the IBM POWER5 hardware priority mechanism:
the hardware thread priority implementation is a powerful tool but the performance of the
penalized process can be reduced more than linearly (in fact, exponentially) (Boneti et al.
2008a), thus, P2 and P4 can become the new bottlenecks.

www.intechopen.com

Using hardware resource allocation to balance HPC applications 131

In this experiment we introduce imbalance in the MPI application by assigning to a worker
a larger load than the one assigned to the worker on the same core. In this way, the faster
worker will spend most of its time waiting for the slower worker to process its load. As we
will see in Section 4.2 this scenario is quite common for both standard benchmarks and real
applications. Figure 5 shows the effect of the hardware resource allocation on Metbench.
Each horizontal line represents the activity of a process and each color represents a different
state: dark bars show computing time while grey bars show waiting time. In this example,
processes P1 (the master), P2, and P3 are mapped to the first core of the POWER5, while
processes P4 and P5 are mapped to the other core. The x-axis represents time.

(a) Metbench Case A

(b) Metbench Case B

(c) Metbench Case C

(d) Metbench Case D

Fig. 5. Effect of the hardware thread prioritization on Metbench. Each trace represents only
some iterations of the application.

Case A: Figure 5(a) represents our reference case, i.e., the MPI application is running with
default priorities (4). As we can see from Figure 5(a) Metbench shows a great imbalance:

more specifically, processes P2 and P4 spend about 75.6% of their time waiting for processes
P3 and P5 to complete their computing phase.
Case B: Using the software-controlled hardware prioritization, we increased the priority of
P3 and P5 (the most computing intensive processes) up to 6, while the priority of P2 and P4
are set to 5 (remember that what really matters is the difference between the thread
priorities, here P2 and P4 are running with less priority than in Case A).
Figure 5(b) shows how the imbalance has been reduced, also reducing the total execution
time (from 81.64 sec to 76.98 sec, 5.71% of improvement).
Case C: We increased again the amount of hardware resources assigned to P3 and P5 in
order to speed them up.
Indeed, we obtained an even more balanced situation where all the processes compute for
(roughly) the same amount of time. The total execution time reduces to 74.90 sec (8.26% of
improvement over Case A).
Case D: Next, we increased again the amount of resources given to P3 and P5. As we can
see from Figure 5(d) we reversed the imbalance, i.e., now P3 and P5 are much faster than P2
and P4 and spend most of their time waiting. As a result the execution time (95.71 sec)
increases.

Test Proc Core % Comp Priority Exec. Time
A P1

P2
P3
P4
P5

1
1
1
2
2

0.02
24.32
98.99
24.31
99.99

4
4
4
4
4

81.64s

B P1
P2
P3
P4
P5

1
1
1
2
2

0.02
51.16
99.82
51.18
99.98

4
5
6
5
6

76.98s

C P1
P2
P3
P4
P5

1
1
1
2
2

0.03
98.96
98.56
97.01
98.37

4
4
6
4
6

74.90s

D P1
P2
P3
P4
P5

1
1
1
2
2

0.02
99.87
73.25
99.72
73.25

4
3
6
3
6

95.71s

Table 4. Metbench balanced and imbalanced characterization

Case D shows an interesting property of the IBM POWER5 hardware priority mechanism:
the hardware thread priority implementation is a powerful tool but the performance of the
penalized process can be reduced more than linearly (in fact, exponentially) (Boneti et al.
2008a), thus, P2 and P4 can become the new bottlenecks.

www.intechopen.com

Parallel and Distributed Computing132

4.2. BT-MZ
Block Tri-diagonal (BT) is one of the NAS Parallel Benchmarks (NPB) suite. BT solves
discretized versions of the unsteady, compressible Navier-Stokes equations in three spatial
dimensions, operating on a structured discretization mesh. BT Multi-Zone (BT-MZ) (Jin and
der Wijngaart, 2006) is a variation of the BT benchmark which uses several meshes (named
zones) for, in realistic applications, a single mesh is not enough to describe a complex
domain.
Besides the complexity of the algorithm, BT-MZ shows a behavior very similar to our
Metbench benchmark: every process in the MPI application performs some computation on
its part of the data set and then exchanges data with its neighbors asynchronously (using
mpi_isend() and mpi_irecv()); after this communication phase (which lasts for a very
short time, around 0.10% of the total execution time) each process waits (with a
mpi_waitall() function) for its neighbors to complete their communication phases. In this
way, each process gets synchronized with its neighbors (note that this does not mean that
each process gets synchronized with all the other processes). Once a process has exchanged
all the data it had to exchange, a new iteration can start and the previous behavior repeats
again until the end of the application (in our experiments we used BT-MZ with default
values: class A with 200 iterations).

(a) BT-MZ Case A

(b) BT-MZ Case B

(C) BT-MZ Case C

(D) BT-MZ Case D

Fig. 6. Effect of the hardware thread prioritization on BT-MZ. Each trace represents only
some iterations of the application. Communication has been removed to increase clearness

Case A: Figure 6(a) shows the BT behavior in the reference case, i.e. when process Pi is
assigned to CPUi and the priority of all the processes is 4. After an initialization phase
(white bars at the beginning of the execution of each task), all the processes reach a barrier
(synchronization point). From this point on, the real algorithm starts: during every iteration,
each process alternate computing phases (black) with synchronization phases (grey).
It is easy to see from Figure 6(a) that BT-MZ shows a great imbalance5. The imbalance is
caused by the fact that some processes (for example process P1) have a small part of the data
to work on, while other processes (for example, processes P4) have a large amount of data to
take care of. It is also clear that process P4 is the bottleneck of the application and that
speeding up this process will improve overall performance.

Test Proc Core % Comp Priority Exec. Time
ST P1

P2
1
2

49.33
99.46

7
7

108.32s

A P1
P2
P3
P4

1
1
2
2

17.63
28.91
66.47
99.72

4
4
4
4

81.64s

B P1
P2
P3
P4

1
2
2
1

52.33
99.64
28.87
46.26

3
3
6
6

127.91s

C P1
P2
P3
P4

1
2
2
1

65.32
99.68
53.78
85.88

4
4
6
6

75.62s

D P1
P2
P3
P4

1
2
2
1

82.73
73.68
66.40
99.72

4
4
5
6

66.88s

Table 5. BT-MZ balanced and imbalanced characterization

Case B: In order to solve the imbalance introduced by data repartition in BT-MZ, we ran
process P1 and P4 on the same core and assigned more hardware resources to the latter,
improving its performance while decreasing P1’s performance. This mapping seems
reasonable, as our goal is to increase the performance of P4 (the most computing intensive
process) and we know that, with this operation, we will reduce the performance of the
process running on the same core with P4. We chose P1 because it is the process with the
shortest computation phase.
In our first attempt to reduce the imbalance we assigned priority 3 to processes P1 and P2
and priority 6 to processes P3 and P4. Figure 6(b) shows how the imbalance has been
inverted: process P1 now takes longer than P4 and the new bottleneck is now process P2,
which is also running with priority 3. As a consequence, the total execution time increases

5Even if the goal of this chapter is not to show whether SMT processors are useful in HPC or not, the
table also shows the ST mode performance (only one process per core) of the application.

www.intechopen.com

Using hardware resource allocation to balance HPC applications 133

4.2. BT-MZ
Block Tri-diagonal (BT) is one of the NAS Parallel Benchmarks (NPB) suite. BT solves
discretized versions of the unsteady, compressible Navier-Stokes equations in three spatial
dimensions, operating on a structured discretization mesh. BT Multi-Zone (BT-MZ) (Jin and
der Wijngaart, 2006) is a variation of the BT benchmark which uses several meshes (named
zones) for, in realistic applications, a single mesh is not enough to describe a complex
domain.
Besides the complexity of the algorithm, BT-MZ shows a behavior very similar to our
Metbench benchmark: every process in the MPI application performs some computation on
its part of the data set and then exchanges data with its neighbors asynchronously (using
mpi_isend() and mpi_irecv()); after this communication phase (which lasts for a very
short time, around 0.10% of the total execution time) each process waits (with a
mpi_waitall() function) for its neighbors to complete their communication phases. In this
way, each process gets synchronized with its neighbors (note that this does not mean that
each process gets synchronized with all the other processes). Once a process has exchanged
all the data it had to exchange, a new iteration can start and the previous behavior repeats
again until the end of the application (in our experiments we used BT-MZ with default
values: class A with 200 iterations).

(a) BT-MZ Case A

(b) BT-MZ Case B

(C) BT-MZ Case C

(D) BT-MZ Case D

Fig. 6. Effect of the hardware thread prioritization on BT-MZ. Each trace represents only
some iterations of the application. Communication has been removed to increase clearness

Case A: Figure 6(a) shows the BT behavior in the reference case, i.e. when process Pi is
assigned to CPUi and the priority of all the processes is 4. After an initialization phase
(white bars at the beginning of the execution of each task), all the processes reach a barrier
(synchronization point). From this point on, the real algorithm starts: during every iteration,
each process alternate computing phases (black) with synchronization phases (grey).
It is easy to see from Figure 6(a) that BT-MZ shows a great imbalance5. The imbalance is
caused by the fact that some processes (for example process P1) have a small part of the data
to work on, while other processes (for example, processes P4) have a large amount of data to
take care of. It is also clear that process P4 is the bottleneck of the application and that
speeding up this process will improve overall performance.

Test Proc Core % Comp Priority Exec. Time
ST P1

P2
1
2

49.33
99.46

7
7

108.32s

A P1
P2
P3
P4

1
1
2
2

17.63
28.91
66.47
99.72

4
4
4
4

81.64s

B P1
P2
P3
P4

1
2
2
1

52.33
99.64
28.87
46.26

3
3
6
6

127.91s

C P1
P2
P3
P4

1
2
2
1

65.32
99.68
53.78
85.88

4
4
6
6

75.62s

D P1
P2
P3
P4

1
2
2
1

82.73
73.68
66.40
99.72

4
4
5
6

66.88s

Table 5. BT-MZ balanced and imbalanced characterization

Case B: In order to solve the imbalance introduced by data repartition in BT-MZ, we ran
process P1 and P4 on the same core and assigned more hardware resources to the latter,
improving its performance while decreasing P1’s performance. This mapping seems
reasonable, as our goal is to increase the performance of P4 (the most computing intensive
process) and we know that, with this operation, we will reduce the performance of the
process running on the same core with P4. We chose P1 because it is the process with the
shortest computation phase.
In our first attempt to reduce the imbalance we assigned priority 3 to processes P1 and P2
and priority 6 to processes P3 and P4. Figure 6(b) shows how the imbalance has been
inverted: process P1 now takes longer than P4 and the new bottleneck is now process P2,
which is also running with priority 3. As a consequence, the total execution time increases

5Even if the goal of this chapter is not to show whether SMT processors are useful in HPC or not, the
table also shows the ST mode performance (only one process per core) of the application.

www.intechopen.com

Parallel and Distributed Computing134

(127.91 sec instead of 81.62 sec), which means the new bottleneck runs for much longer than
the previous one.
Case C: In order to restore the original relative behavior between process P1 and P4 we
incremented the resources assigned to process P1 and P2. Figure 6(c) shows that P1 now
runs for less time than P4, as in Case A. In addition, giving more resource to P2 (which is
again the bottleneck) reduced the total execution time to 75.62 sec, with a 7.37% of
improvement with respect to Case A.
Case D: Finally, we can argue that P2 and P3 execute their operation on a similar amount of
data, therefore the amount of resources given to each process should not be as different as
for P1 and P4. In our last test, we still assigned priority 4 to P1 and 6 to P4, as in the
previous case, but we assigned priority 5 to P2 and 6 to P3, sharing resources between these
two processes running on the same core more equally. Figure 6(d) shows that the imbalance
has been reduced again with respect to Case C, in fact, now P2 and P3 compute more or less
for the same amount of time. Also the new bottleneck is P4, which is much shorter than P2
in Case C. Table 5 shows how the total execution time has also been reduced to 66.88 sec,
with an 18.08% of improvement over the reference Case A.

4.3. MetbenchVar

(a) MetbenchVar Case A

(b) MetbenchVar Case B

(c) MetbenchVar Case C

Fig. 7. Effect of the hardware thread prioritization on MetbenchVar

MetbenchVar is a slightly modified version of Metbench where the workers change their
behavior after k iteration. Figure 7(a) shows the standard execution of MetbenchVar with

k=15: at the beginning P2 and P4 execute a small load while P3 and P5 a large load. At the
15th iteration, P2 and P4 start to execute the large load while P3 and P5 perform their task
on the small load. In this way, we reverse the load imbalance at run time making the
application's behavior dynamic. At the 30th iteration, we switch again the behavior of the
tasks. Recall that, as it was the case for Metbench (Section 4.1), P1 does not perform any job
and presents no significant impact on performance, as it only waits for P2 to P5 to finish
their execution.
Figure 7(b) shows how the static prioritization works in this case: the application is perfectly
balanced in the first (iterations 1-15) and third period (iteration 31-45) but the imbalance is
reversed in the second period (iterations 16-30), as a result, in the second period the
application performs worst than in the standard case. Furthermore, for this workload, the
negative impact of applying the wrong prioritization is extremely high and, although for
two thirds of the cases the benchmark runs with the right priorities (4,6), the performance
degradation of running with the wrong priorities is by far more important. Overall, for this
program, the static prioritization presents 50% of performance degradation when compared
to the standard case of this benchmark.
Figure 7(c) shows that trying to decrease the priority difference between P2 and P3, and
between P4 and P5 does not improve the baseline either. In this case, when comparing to the
standard execution, statically applying a hardware prioritization still degrades performance
by 13.20%.

Fig. 8. Effect of the HPCSched on MetbenchVar.

The case where the application presents a dynamic behavior makes a strong motivation for
dynamic mechanisms. In fact, dynamic mechanisms proposed in (Boneti et al., 2008b) are
able to transparently balance this application and improve its execution time by 12.5%.
Figure 8 shows the trace of MetbenchVar when running with HPCSched's uniform
prioritization mechanism. The key of the improvement is the ability to change the priorities
during the application’s execution time, following the changes in its behavior.
Another very interesting point is that, for applications with very variable behavior, using
the overall relative computational time (or utilization) of a task can be tricky. For instance, if
we refer to the case A in Table 6, we can see that process P2 computes for 49.34% of the time,
while P3 processed for 74.65% of the time. It becomes intuitive that we should always
prioritize P2. However, let’s take a look at the utilization per phase: during the first phase,
the utilizations are 24.17%, 100.00%, 24.16%, 99.97%, during the second, they are 100%,
23.65%, 99.94%, 23.65%, finally, the third iteration has the same behavior as the first one. It
becomes clear why a constant prioritization is not good, and furthermore, that the overall
utilization is not a good indicator of imbalance for this application.

www.intechopen.com

Using hardware resource allocation to balance HPC applications 135

(127.91 sec instead of 81.62 sec), which means the new bottleneck runs for much longer than
the previous one.
Case C: In order to restore the original relative behavior between process P1 and P4 we
incremented the resources assigned to process P1 and P2. Figure 6(c) shows that P1 now
runs for less time than P4, as in Case A. In addition, giving more resource to P2 (which is
again the bottleneck) reduced the total execution time to 75.62 sec, with a 7.37% of
improvement with respect to Case A.
Case D: Finally, we can argue that P2 and P3 execute their operation on a similar amount of
data, therefore the amount of resources given to each process should not be as different as
for P1 and P4. In our last test, we still assigned priority 4 to P1 and 6 to P4, as in the
previous case, but we assigned priority 5 to P2 and 6 to P3, sharing resources between these
two processes running on the same core more equally. Figure 6(d) shows that the imbalance
has been reduced again with respect to Case C, in fact, now P2 and P3 compute more or less
for the same amount of time. Also the new bottleneck is P4, which is much shorter than P2
in Case C. Table 5 shows how the total execution time has also been reduced to 66.88 sec,
with an 18.08% of improvement over the reference Case A.

4.3. MetbenchVar

(a) MetbenchVar Case A

(b) MetbenchVar Case B

(c) MetbenchVar Case C

Fig. 7. Effect of the hardware thread prioritization on MetbenchVar

MetbenchVar is a slightly modified version of Metbench where the workers change their
behavior after k iteration. Figure 7(a) shows the standard execution of MetbenchVar with

k=15: at the beginning P2 and P4 execute a small load while P3 and P5 a large load. At the
15th iteration, P2 and P4 start to execute the large load while P3 and P5 perform their task
on the small load. In this way, we reverse the load imbalance at run time making the
application's behavior dynamic. At the 30th iteration, we switch again the behavior of the
tasks. Recall that, as it was the case for Metbench (Section 4.1), P1 does not perform any job
and presents no significant impact on performance, as it only waits for P2 to P5 to finish
their execution.
Figure 7(b) shows how the static prioritization works in this case: the application is perfectly
balanced in the first (iterations 1-15) and third period (iteration 31-45) but the imbalance is
reversed in the second period (iterations 16-30), as a result, in the second period the
application performs worst than in the standard case. Furthermore, for this workload, the
negative impact of applying the wrong prioritization is extremely high and, although for
two thirds of the cases the benchmark runs with the right priorities (4,6), the performance
degradation of running with the wrong priorities is by far more important. Overall, for this
program, the static prioritization presents 50% of performance degradation when compared
to the standard case of this benchmark.
Figure 7(c) shows that trying to decrease the priority difference between P2 and P3, and
between P4 and P5 does not improve the baseline either. In this case, when comparing to the
standard execution, statically applying a hardware prioritization still degrades performance
by 13.20%.

Fig. 8. Effect of the HPCSched on MetbenchVar.

The case where the application presents a dynamic behavior makes a strong motivation for
dynamic mechanisms. In fact, dynamic mechanisms proposed in (Boneti et al., 2008b) are
able to transparently balance this application and improve its execution time by 12.5%.
Figure 8 shows the trace of MetbenchVar when running with HPCSched's uniform
prioritization mechanism. The key of the improvement is the ability to change the priorities
during the application’s execution time, following the changes in its behavior.
Another very interesting point is that, for applications with very variable behavior, using
the overall relative computational time (or utilization) of a task can be tricky. For instance, if
we refer to the case A in Table 6, we can see that process P2 computes for 49.34% of the time,
while P3 processed for 74.65% of the time. It becomes intuitive that we should always
prioritize P2. However, let’s take a look at the utilization per phase: during the first phase,
the utilizations are 24.17%, 100.00%, 24.16%, 99.97%, during the second, they are 100%,
23.65%, 99.94%, 23.65%, finally, the third iteration has the same behavior as the first one. It
becomes clear why a constant prioritization is not good, and furthermore, that the overall
utilization is not a good indicator of imbalance for this application.

www.intechopen.com

Parallel and Distributed Computing136

On Case B of Table 6, the measured overall utilization is also misleading. We may believe
that the imbalance is not so different from the baseline Case A, however, for initial and final
phases the utilizations are: 99.63%, 99.90%, 98.52%, 99.94% and for the middle phase:
99.95%, 4.90%, 99.87%, 4.89%. On the previous cases, as the imbalance was constant, it was
not necessary to use per-phase utilization. Clearly, in the case of MetbenchVar, if the
utilization is used as a metric, it must be evaluated for each of the phases of the program.

Test Proc Core % Comp Priority Exec. Time
A P1

P2
P3
P4
P5

1
1
1
2
2

0.01
49.34
74.65
49.31
76.63

4
4
4
4
4

259.79s

B P1
P2
P3
P4
P5

1
1
1
2
2

0.00
99.43
40.65
99.35
40.64

4
4
6
4
6

388.75s

C P1
P2
P3
P4
P5

1
1
1
2
2

0.01
75.36
56.34
75.32
56.35

4
4
5
4
5

294.10s

HPCSched P1
P2
P3
P4
P5

1
1
1
2
2

0.01
90.11
93.95
89.28
93.75

-
-
-
-
-

227.33s

Table 6. MetbenchVar balanced and imbalanced characterization

4.4. Siesta
Our last experiment consists of running SIESTA as an example of real application. SIESTA
(SIESTA, 2009; Soler et al., 2002) is a method for ab initio order-N materials simulation,
specifically it is a self-consistent density functional method that uses standard norm-
conserving pseudo-potentials and a flexible, numerical linear combination of atomic orbitals
basis set, which includes multiple-zeta and polarization orbitals.
The application presents an imbalance caused by both the algorithm and the input set. For
this very interesting input set, a nanoparticle of barium titanate, SIESTA behavior is not
constant during each iteration, as can be seen in Figure 9(a); this makes our static balancing
solution not as good as for the BT-MZ case. Yet, we achieved an improvement of 8.1% of
execution time reduction with respect to the reference case (Case A).
Case A: Like for BT-MZ, Case A is the reference case, i.e., where process Pi is assigned to
CPUi and the priority of all the processes is set to 4. Figure 9(a) shows the trace for this
reference case. The program starts with an initialization phase (11.99% of the total time) at
the end of which each process in the application must reach a barrier. The initialization
phase already presents some little imbalance, which evidences how the input set makes

SIESTA imbalanced. In the internal parts, each process exchanges data only with a subset of
the other processes in the application, and then reaches a synchronization point
(WaitAll()), waiting for all the others to complete their jobs. In the last part, the processes
finalize their work (13.41% of the total time): after the last barrier, each process computes its
function on its sub-set of data and then ends. A complete execution of the program in this
configuration takes 858.57 secs.
Case B: As we can see from the trace in Figure 9(a) is not easy to understand how to balance
the application and whether our balancing approach is worth. However, Table 7 shows
some more information about SIESTA (hard to retrieve from the trace): processes P1 and P2
spend a considerable amount of time waiting for P3 and P4 to reach the barrier. Thus, the
first hint would be to put P1 and P3 on one core and P2 and P4 on the other and then play
with priority. We tried this case but then we realized that P2 and P3 have almost the same
amount of data to work on. Thus, in Case B we put P2 and P3 on the first core and P1 and
P4 on the second one and increased the priority of P3 and P4 to 5. In this case we achieved a
little improvement of 1.24% (the total execution time is 847.91 sec). Figure 9(b) shows that, in
this new configuration, P2 is the new bottleneck of the finalization part.

(a) SIESTA Case A

(b) SIESTA Case B

(c) SIESTA Case C

 (d) SIESTA Case D

Fig. 9. Effect of the hardware thread prioritization on SIESTA

www.intechopen.com

Using hardware resource allocation to balance HPC applications 137

On Case B of Table 6, the measured overall utilization is also misleading. We may believe
that the imbalance is not so different from the baseline Case A, however, for initial and final
phases the utilizations are: 99.63%, 99.90%, 98.52%, 99.94% and for the middle phase:
99.95%, 4.90%, 99.87%, 4.89%. On the previous cases, as the imbalance was constant, it was
not necessary to use per-phase utilization. Clearly, in the case of MetbenchVar, if the
utilization is used as a metric, it must be evaluated for each of the phases of the program.

Test Proc Core % Comp Priority Exec. Time
A P1

P2
P3
P4
P5

1
1
1
2
2

0.01
49.34
74.65
49.31
76.63

4
4
4
4
4

259.79s

B P1
P2
P3
P4
P5

1
1
1
2
2

0.00
99.43
40.65
99.35
40.64

4
4
6
4
6

388.75s

C P1
P2
P3
P4
P5

1
1
1
2
2

0.01
75.36
56.34
75.32
56.35

4
4
5
4
5

294.10s

HPCSched P1
P2
P3
P4
P5

1
1
1
2
2

0.01
90.11
93.95
89.28
93.75

-
-
-
-
-

227.33s

Table 6. MetbenchVar balanced and imbalanced characterization

4.4. Siesta
Our last experiment consists of running SIESTA as an example of real application. SIESTA
(SIESTA, 2009; Soler et al., 2002) is a method for ab initio order-N materials simulation,
specifically it is a self-consistent density functional method that uses standard norm-
conserving pseudo-potentials and a flexible, numerical linear combination of atomic orbitals
basis set, which includes multiple-zeta and polarization orbitals.
The application presents an imbalance caused by both the algorithm and the input set. For
this very interesting input set, a nanoparticle of barium titanate, SIESTA behavior is not
constant during each iteration, as can be seen in Figure 9(a); this makes our static balancing
solution not as good as for the BT-MZ case. Yet, we achieved an improvement of 8.1% of
execution time reduction with respect to the reference case (Case A).
Case A: Like for BT-MZ, Case A is the reference case, i.e., where process Pi is assigned to
CPUi and the priority of all the processes is set to 4. Figure 9(a) shows the trace for this
reference case. The program starts with an initialization phase (11.99% of the total time) at
the end of which each process in the application must reach a barrier. The initialization
phase already presents some little imbalance, which evidences how the input set makes

SIESTA imbalanced. In the internal parts, each process exchanges data only with a subset of
the other processes in the application, and then reaches a synchronization point
(WaitAll()), waiting for all the others to complete their jobs. In the last part, the processes
finalize their work (13.41% of the total time): after the last barrier, each process computes its
function on its sub-set of data and then ends. A complete execution of the program in this
configuration takes 858.57 secs.
Case B: As we can see from the trace in Figure 9(a) is not easy to understand how to balance
the application and whether our balancing approach is worth. However, Table 7 shows
some more information about SIESTA (hard to retrieve from the trace): processes P1 and P2
spend a considerable amount of time waiting for P3 and P4 to reach the barrier. Thus, the
first hint would be to put P1 and P3 on one core and P2 and P4 on the other and then play
with priority. We tried this case but then we realized that P2 and P3 have almost the same
amount of data to work on. Thus, in Case B we put P2 and P3 on the first core and P1 and
P4 on the second one and increased the priority of P3 and P4 to 5. In this case we achieved a
little improvement of 1.24% (the total execution time is 847.91 sec). Figure 9(b) shows that, in
this new configuration, P2 is the new bottleneck of the finalization part.

(a) SIESTA Case A

(b) SIESTA Case B

(c) SIESTA Case C

 (d) SIESTA Case D

Fig. 9. Effect of the hardware thread prioritization on SIESTA

www.intechopen.com

Parallel and Distributed Computing138

Case C: In the previous case we obtained a little improvement, still the application results
quite imbalanced. We realized that, since P2 and P3 work, more or less, on the same amount
of data, using a different priority for these two processes may introduce even more
imbalance. Figure 9(b) shows that, indeed, this is the case. In Case C we restored the original
relative behavior between process P2 and P3 setting both their priority to 4 (i.e., the
difference is 0). Figure 9(c) shows how the application is now more balanced. For example,
looking at the initialization and the finalization part, it is possible to see that the processes
are much more balanced than in Case A and Case B. In fact, re-balancing SIESTA reduces
the total execution time to 798.20 sec, an improvement of 8.1% with respect to the reference
case.
Case D: Following the same idea of the previous case (i.e., leave P2 and P3 with the same
priority and play with P1 and P4), we increased the amount of resources assigned to P4,
penalizing P1. Figure 9(d) shows how we reverse the imbalance: SIESTA is again
imbalanced, though in a different way than in the reference case. In Case D, P1 (the process
with less hardware resources) is the bottleneck (in the initialization, finalization and most of
the internal phases) and the total execution time increases to 976.35 sec, with a loss of
13.72%.

Test Proc Core % Comp Priority Exec. Time
ST P1

P2
1
2

81.79
93.72

7
7

1236.05s

A P1
P2
P3
P4

1
1
2
2

75.94
75.24
82.08
93.47

4
4
4
4

858.57s

B P1
P2
P3
P4

2
1
1
2

79.57
87.06
72.04
77.73

4
4
5
5

847.91s

C P1
P2
P3
P4

2
1
1
2

83.04
79.66
80.78
78.74

4
4
4
5

789.20s

D P1
P2
P3
P4

2
1
1
2

90.76
65.74
68.08
63.95

4
4
4
6

976.35s

Table 7. SIESTA balanced and imbalanced characterization

BT-MZ and SIESTA are two cases of non-balanced HPC applications, though their
imbalance is quite different. BT-MZ executes several iterations, all of them similar from the
execution time, CPU utilization and imbalance point of view. SIESTA also executes several
iterations, but each iteration is not necessarily similar to the previous or the next one. In
particular, the process that computes the most is not the same across all the iterations. For
example, in the i-th iteration P1 could be the bottleneck while in the (i+1)-th the most
computing process could be P4. This behavior suggests that a good balancing mechanism

would prioritize P1 in the i-th and P4 in the i+1-th iteration. Our static approach does not
allow us to play in this way as we assign the priority at the beginning of the execution and
never change them during the execution. We argue that a dynamic mechanism is required
to correctly set priorities for applications that change their behavior throughout their
execution.

5. Related work

Traditional solutions to attack the problem of load imbalance in HPC applications typically
use dynamic data re-distribution. For OpenMP applications load balancing may be
performed using some of the existing loop scheduling algorithms that assigns iterations to
software threads dynamically (Aygade et al., 2003). MPI applications are much more
complex because data communications are defined explicitly in the algorithm by
programmers. Static approaches for distributing data using sophisticated tools have been
proposed: for example, METIS (METIS, 2009) analyzes data and tries to find the best data
distribution. These approaches achieve good performance results but have the drawback
that they must be repeated for each input data set and architecture. Dynamic approaches
have also been proposed in the literature (Schloegel et al., 2000) and (Walshaw and Cross,
2002). The authors try to solve the load-balancing problem of irregular applications by
proposing mesh repartitioning algorithms and evaluating the convenience of repartitioning
the mesh or adjusting it.
Processing re-distribution is another approach that consists of assigning more resources to
those processes that compute for longer. In the case of OpenMP, this can be useful when
using nested parallelism, assigning more software threads to those groups with high load
(Duran et al., 2005). The case of MPI is much more complex because the number of processes
is statically determined when starting the job (in case of malleable jobs), or when compiling
the application (in case of rigid jobs). This problem has been also approached through
hybrid programming models, combining MPI and OpenMP. Huang and Tafti (Huang and
Tafti, 1999) balance irregular applications by modifying the computational power rather
than using the typical mesh redistribution. In their work, the application detects the
overloading of some of its processes and tries to solve the problem by creating new software
threads at run time. They observe that one of the difficulties of this method is that they do
not control the operating system decisions which could oppose their own ones.
Concerning the use of SMT architectures for HPC applications, several studies (Curtis-
Maury and Wang, 2005; Celebioglu et al, 2004) show that Hyper-Threading (the SMT
implementation of Intel Processors) improve performance for some workloads. However,
for other workloads there are many conflicts when accessing shared resources, creating a
negative impact on the performance. In (Curtis-Maury and Wang, 2005) the study is
performed for MPI applications while in (Celebioglu et al, 2004) the study focuses in
OpenMP applications. In (Celebioglu et al, 2004) the authors propose a mechanism that,
given a multiprocessor machine with Hyper-Threading processors, dynamically deactivates
the Hyper-Threading in some processors in order to improve the performance of the
workload under study.
The solution presented in this chapter is orthogonal to both the software thread re-
distribution and the dynamically activating Hyper-Threading. Let's assume that we want to
run an HPC application on a cluster having several IBM POWER5 processors. The proposal
in (Celebioglu et al, 2004) can be used to determine in which cores SMT has to be

www.intechopen.com

Using hardware resource allocation to balance HPC applications 139

Case C: In the previous case we obtained a little improvement, still the application results
quite imbalanced. We realized that, since P2 and P3 work, more or less, on the same amount
of data, using a different priority for these two processes may introduce even more
imbalance. Figure 9(b) shows that, indeed, this is the case. In Case C we restored the original
relative behavior between process P2 and P3 setting both their priority to 4 (i.e., the
difference is 0). Figure 9(c) shows how the application is now more balanced. For example,
looking at the initialization and the finalization part, it is possible to see that the processes
are much more balanced than in Case A and Case B. In fact, re-balancing SIESTA reduces
the total execution time to 798.20 sec, an improvement of 8.1% with respect to the reference
case.
Case D: Following the same idea of the previous case (i.e., leave P2 and P3 with the same
priority and play with P1 and P4), we increased the amount of resources assigned to P4,
penalizing P1. Figure 9(d) shows how we reverse the imbalance: SIESTA is again
imbalanced, though in a different way than in the reference case. In Case D, P1 (the process
with less hardware resources) is the bottleneck (in the initialization, finalization and most of
the internal phases) and the total execution time increases to 976.35 sec, with a loss of
13.72%.

Test Proc Core % Comp Priority Exec. Time
ST P1

P2
1
2

81.79
93.72

7
7

1236.05s

A P1
P2
P3
P4

1
1
2
2

75.94
75.24
82.08
93.47

4
4
4
4

858.57s

B P1
P2
P3
P4

2
1
1
2

79.57
87.06
72.04
77.73

4
4
5
5

847.91s

C P1
P2
P3
P4

2
1
1
2

83.04
79.66
80.78
78.74

4
4
4
5

789.20s

D P1
P2
P3
P4

2
1
1
2

90.76
65.74
68.08
63.95

4
4
4
6

976.35s

Table 7. SIESTA balanced and imbalanced characterization

BT-MZ and SIESTA are two cases of non-balanced HPC applications, though their
imbalance is quite different. BT-MZ executes several iterations, all of them similar from the
execution time, CPU utilization and imbalance point of view. SIESTA also executes several
iterations, but each iteration is not necessarily similar to the previous or the next one. In
particular, the process that computes the most is not the same across all the iterations. For
example, in the i-th iteration P1 could be the bottleneck while in the (i+1)-th the most
computing process could be P4. This behavior suggests that a good balancing mechanism

would prioritize P1 in the i-th and P4 in the i+1-th iteration. Our static approach does not
allow us to play in this way as we assign the priority at the beginning of the execution and
never change them during the execution. We argue that a dynamic mechanism is required
to correctly set priorities for applications that change their behavior throughout their
execution.

5. Related work

Traditional solutions to attack the problem of load imbalance in HPC applications typically
use dynamic data re-distribution. For OpenMP applications load balancing may be
performed using some of the existing loop scheduling algorithms that assigns iterations to
software threads dynamically (Aygade et al., 2003). MPI applications are much more
complex because data communications are defined explicitly in the algorithm by
programmers. Static approaches for distributing data using sophisticated tools have been
proposed: for example, METIS (METIS, 2009) analyzes data and tries to find the best data
distribution. These approaches achieve good performance results but have the drawback
that they must be repeated for each input data set and architecture. Dynamic approaches
have also been proposed in the literature (Schloegel et al., 2000) and (Walshaw and Cross,
2002). The authors try to solve the load-balancing problem of irregular applications by
proposing mesh repartitioning algorithms and evaluating the convenience of repartitioning
the mesh or adjusting it.
Processing re-distribution is another approach that consists of assigning more resources to
those processes that compute for longer. In the case of OpenMP, this can be useful when
using nested parallelism, assigning more software threads to those groups with high load
(Duran et al., 2005). The case of MPI is much more complex because the number of processes
is statically determined when starting the job (in case of malleable jobs), or when compiling
the application (in case of rigid jobs). This problem has been also approached through
hybrid programming models, combining MPI and OpenMP. Huang and Tafti (Huang and
Tafti, 1999) balance irregular applications by modifying the computational power rather
than using the typical mesh redistribution. In their work, the application detects the
overloading of some of its processes and tries to solve the problem by creating new software
threads at run time. They observe that one of the difficulties of this method is that they do
not control the operating system decisions which could oppose their own ones.
Concerning the use of SMT architectures for HPC applications, several studies (Curtis-
Maury and Wang, 2005; Celebioglu et al, 2004) show that Hyper-Threading (the SMT
implementation of Intel Processors) improve performance for some workloads. However,
for other workloads there are many conflicts when accessing shared resources, creating a
negative impact on the performance. In (Curtis-Maury and Wang, 2005) the study is
performed for MPI applications while in (Celebioglu et al, 2004) the study focuses in
OpenMP applications. In (Celebioglu et al, 2004) the authors propose a mechanism that,
given a multiprocessor machine with Hyper-Threading processors, dynamically deactivates
the Hyper-Threading in some processors in order to improve the performance of the
workload under study.
The solution presented in this chapter is orthogonal to both the software thread re-
distribution and the dynamically activating Hyper-Threading. Let's assume that we want to
run an HPC application on a cluster having several IBM POWER5 processors. The proposal
in (Celebioglu et al, 2004) can be used to determine in which cores SMT has to be

www.intechopen.com

Parallel and Distributed Computing140

deactivated. For those cores with the SMT feature active, hardware prioritization can be
used to select the appropriate hardware priority to reduce imbalance. Compared with
software thread-distribution, hardware prioritization can be seen as low level solution for
load balancing.

6. Summary

In this chapter we present the problem of imbalance in HPC applications. In fact, some
applications show an imbalanced behavior, i.e., some processes require more time to
complete their computing phase while all the other processes are waiting at some
synchronization point and cannot move forward. We show the reasons for imbalance and
some examples where the application is imbalanced because of data distribution (NAS BT-
MZ), or because of the application's input (SIESTA).
We also present the idea of using software controlled allocation of the hardware resources
to perform load-balance of HPC applications. Experimental cases show how using a
modified Linux kernel to control a processor capable to dynamically assign processor
resources to running contexts (the IBM POWER5 in this case), reduces the application
imbalance and, therefore, improves overall performance. The experiments performed show
an improvement up to 18% for a widely used BT-MZ benchmark and up to 8.1% for a real
application (SIESTA). These results do not require putting the burden of balancing the
application on the programmer and are independent from the used programming model. In
addition, we show cases where the application presents variable behavior. We discuss on
why it motivates the use of automatic load-balancers based on software-controlled
hardware resource allocation.
From the case studies presented, it is possible to conclude that the hardware resource
allocation in multithreaded processors is an important tool that allows to load-balance HPC
applications, improving significantly their performance.

7. References

Alpert, D. (2003). Will microprocessor become simpler? Microprocessor Report.
Ayguade, E., Blainey, B., Duran, A., Labarta, J., Martinez, F., Martorell, X., and Silvera, R.

(2003). Is the schedule clause really necessary in openMP? In Proceedings of the 4th
International Workshop on OpenMP Applications and Tools (WOMPAT’03), volume
2716 of Lecture Notes in Computer Science (LNCS), pages 147–159, Toronto,
Canada. Springer-Verlag (New York).

Boneti, C., Cazorla, F. J., Gioiosa, R., Buyuktosunoglu, A., Cher, C.-Y., and Valero, M.
(2008a). Software-controlled priority characterization of POWER5 processor. In
Proceedings of the 35th International Symposium on Computer Architecture (ISCA’08),
Beijing. ACM SIGARCH.

Boneti, C., Gioiosa, R., Cazorla, F. J., and Valero, M. (2008b). A dynamic scheduler for
balancing HPC applications. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC’08), Austin, TX.
IEEE/ACM.

Bossen, D. C., Tendler, J. M., and Reick, K. (2002). Power4 system design for high reliability.
IEEE Micro, 22(2):16–24.

Cazorla, F. J., Knijnenburg, P. M. W., Sakellariou, R., Fernandez, E., Ramirez, A., and Valero,
M. (2006). Predictable performance in SMT processors: Synergy between the OS
and SMTs. IEEE Transactions on Computers, 55(7):785– 799.

Celebioglu, O., Saify, A., Leng, T., Hsieh, J., Mashayekhi, V., and Rooholamini, R. (2004).
The performance impact of computational efficiency on HPC clusters with hyper-
threading technology. In Proceedings of the 3rd International Workshop on Performance
Modeling, Evaluation, and Optimization of Parallel and Distributed Systems
(PMEOPDS’04), Santa Fe, New Mexico, USA. IEEE Computer Society (Los
Alamitos, CA).

Curtis-Maury, M. and Wang, T. (2005). Integrating multiple forms of multithreaded
execution on multi-SMT systems: A study with scientific applications. In
Proceedings of the 2nd International Conference on the Quantitative Evaluation of Systems
(QEST’05), pages 199–209, Torino, Italy. IEEE Computer Society.

Duran, A., Gonzalez, M., Corbalan, J., Martorell, X., Ayguade, E., Labarta, J., and Silvera, R.
(2005). Automatic thread distribution for nested parallelism in OpenMP. In
Proceedings of the 19th ACM International Conference on Supercomputing (ICS’05),
pages 121–130, Cambridge, Massachusetts, USA.

Gibbs, B., Atyam, B., Berres, F., Blanchard, B., Castillo, L., Coelho, P., Guerin, N., Liu, L.,
Maciel, C. D., Sosa, C., and Thirumalai, R. (2005). Advanced POWER Virtualization
on IBM eServer p5 Servers: Architecture and Performance Considerations. IBM Redbook.
IBM, International Technical Support Organization, Austin, TX, USA.

Gioiosa, R., Petrini, F., Davis, K., and Lebaillif-Delamare, F. (2004). Analysis of system
overhead on parallel computers. In Proceedings of the 4th IEEE International
Symposium on Signal Processing and Information Technology (ISSPIT’04), pages 387–
390, Rome, Italy.

Huang, W. and Tafti, D. (1999). A parallel computing framework for dynamic power
balancing in adaptive mesh refinement applications. In Proceedings of the Parallel
Computational Fluid Dynamics (PCFD’99).

IBM (2005a). User Instruction Set Architecture version 2.02. Number 1 in PowerPC
Architecture books.

IBM (2005b). PowerPC Operating Environment Architecture version 2.02. Number 3 in PowerPC
Architecture books.

IBM (2005c). PowerPC Virtual Environment Architecture version 2.02. Number 2 in PowerPC
Architecture books.

IBM (2008). Cell broadband engine programming handbook v1.11.
IBM, Sony, and Toshiba (2006). Cell broadband engine architecture v1.01.
Jin, H. and der Wijngaart, R. F. V. (2006). Performance characteristics of the multi-zone NAS

parallel benchmarks. Journal of Parallel and Distributed Computing, 66(5):674– 685.
Kalla, R. N., Sinharoy, B., and Tendler, J. M. (2003). SMT implementation in POWER5. In Hot

Chips, volume 15.
Kalla, R. N., Sinharoy, B., and Tendler, J. M. (2004). IBM POWER5 Chip: a dual-core

multithreaded processor. IEEE Micro, 24(2):40–47.
Labarta, J., Girona, S., Pillet, V., Cortes, T., and Gregoris, L. (1996). DiP: A parallel program

development environment. In Proceedings of the 2nd International Conference on
Parallel Processing (Euro-Par’96), volume II of Lecture Notes in Computer Science,
pages 665–674, Lyon, France. Springer.

www.intechopen.com

Using hardware resource allocation to balance HPC applications 141

deactivated. For those cores with the SMT feature active, hardware prioritization can be
used to select the appropriate hardware priority to reduce imbalance. Compared with
software thread-distribution, hardware prioritization can be seen as low level solution for
load balancing.

6. Summary

In this chapter we present the problem of imbalance in HPC applications. In fact, some
applications show an imbalanced behavior, i.e., some processes require more time to
complete their computing phase while all the other processes are waiting at some
synchronization point and cannot move forward. We show the reasons for imbalance and
some examples where the application is imbalanced because of data distribution (NAS BT-
MZ), or because of the application's input (SIESTA).
We also present the idea of using software controlled allocation of the hardware resources
to perform load-balance of HPC applications. Experimental cases show how using a
modified Linux kernel to control a processor capable to dynamically assign processor
resources to running contexts (the IBM POWER5 in this case), reduces the application
imbalance and, therefore, improves overall performance. The experiments performed show
an improvement up to 18% for a widely used BT-MZ benchmark and up to 8.1% for a real
application (SIESTA). These results do not require putting the burden of balancing the
application on the programmer and are independent from the used programming model. In
addition, we show cases where the application presents variable behavior. We discuss on
why it motivates the use of automatic load-balancers based on software-controlled
hardware resource allocation.
From the case studies presented, it is possible to conclude that the hardware resource
allocation in multithreaded processors is an important tool that allows to load-balance HPC
applications, improving significantly their performance.

7. References

Alpert, D. (2003). Will microprocessor become simpler? Microprocessor Report.
Ayguade, E., Blainey, B., Duran, A., Labarta, J., Martinez, F., Martorell, X., and Silvera, R.

(2003). Is the schedule clause really necessary in openMP? In Proceedings of the 4th
International Workshop on OpenMP Applications and Tools (WOMPAT’03), volume
2716 of Lecture Notes in Computer Science (LNCS), pages 147–159, Toronto,
Canada. Springer-Verlag (New York).

Boneti, C., Cazorla, F. J., Gioiosa, R., Buyuktosunoglu, A., Cher, C.-Y., and Valero, M.
(2008a). Software-controlled priority characterization of POWER5 processor. In
Proceedings of the 35th International Symposium on Computer Architecture (ISCA’08),
Beijing. ACM SIGARCH.

Boneti, C., Gioiosa, R., Cazorla, F. J., and Valero, M. (2008b). A dynamic scheduler for
balancing HPC applications. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC’08), Austin, TX.
IEEE/ACM.

Bossen, D. C., Tendler, J. M., and Reick, K. (2002). Power4 system design for high reliability.
IEEE Micro, 22(2):16–24.

Cazorla, F. J., Knijnenburg, P. M. W., Sakellariou, R., Fernandez, E., Ramirez, A., and Valero,
M. (2006). Predictable performance in SMT processors: Synergy between the OS
and SMTs. IEEE Transactions on Computers, 55(7):785– 799.

Celebioglu, O., Saify, A., Leng, T., Hsieh, J., Mashayekhi, V., and Rooholamini, R. (2004).
The performance impact of computational efficiency on HPC clusters with hyper-
threading technology. In Proceedings of the 3rd International Workshop on Performance
Modeling, Evaluation, and Optimization of Parallel and Distributed Systems
(PMEOPDS’04), Santa Fe, New Mexico, USA. IEEE Computer Society (Los
Alamitos, CA).

Curtis-Maury, M. and Wang, T. (2005). Integrating multiple forms of multithreaded
execution on multi-SMT systems: A study with scientific applications. In
Proceedings of the 2nd International Conference on the Quantitative Evaluation of Systems
(QEST’05), pages 199–209, Torino, Italy. IEEE Computer Society.

Duran, A., Gonzalez, M., Corbalan, J., Martorell, X., Ayguade, E., Labarta, J., and Silvera, R.
(2005). Automatic thread distribution for nested parallelism in OpenMP. In
Proceedings of the 19th ACM International Conference on Supercomputing (ICS’05),
pages 121–130, Cambridge, Massachusetts, USA.

Gibbs, B., Atyam, B., Berres, F., Blanchard, B., Castillo, L., Coelho, P., Guerin, N., Liu, L.,
Maciel, C. D., Sosa, C., and Thirumalai, R. (2005). Advanced POWER Virtualization
on IBM eServer p5 Servers: Architecture and Performance Considerations. IBM Redbook.
IBM, International Technical Support Organization, Austin, TX, USA.

Gioiosa, R., Petrini, F., Davis, K., and Lebaillif-Delamare, F. (2004). Analysis of system
overhead on parallel computers. In Proceedings of the 4th IEEE International
Symposium on Signal Processing and Information Technology (ISSPIT’04), pages 387–
390, Rome, Italy.

Huang, W. and Tafti, D. (1999). A parallel computing framework for dynamic power
balancing in adaptive mesh refinement applications. In Proceedings of the Parallel
Computational Fluid Dynamics (PCFD’99).

IBM (2005a). User Instruction Set Architecture version 2.02. Number 1 in PowerPC
Architecture books.

IBM (2005b). PowerPC Operating Environment Architecture version 2.02. Number 3 in PowerPC
Architecture books.

IBM (2005c). PowerPC Virtual Environment Architecture version 2.02. Number 2 in PowerPC
Architecture books.

IBM (2008). Cell broadband engine programming handbook v1.11.
IBM, Sony, and Toshiba (2006). Cell broadband engine architecture v1.01.
Jin, H. and der Wijngaart, R. F. V. (2006). Performance characteristics of the multi-zone NAS

parallel benchmarks. Journal of Parallel and Distributed Computing, 66(5):674– 685.
Kalla, R. N., Sinharoy, B., and Tendler, J. M. (2003). SMT implementation in POWER5. In Hot

Chips, volume 15.
Kalla, R. N., Sinharoy, B., and Tendler, J. M. (2004). IBM POWER5 Chip: a dual-core

multithreaded processor. IEEE Micro, 24(2):40–47.
Labarta, J., Girona, S., Pillet, V., Cortes, T., and Gregoris, L. (1996). DiP: A parallel program

development environment. In Proceedings of the 2nd International Conference on
Parallel Processing (Euro-Par’96), volume II of Lecture Notes in Computer Science,
pages 665–674, Lyon, France. Springer.

www.intechopen.com

Parallel and Distributed Computing142

Le, H. Q., Starke, W. J., Fields, J. S., O’Connell, F. P., Nguyen, D. Q., Ronchetti, B. J., Sauer,
W., Schwarz, E. M., and Vaden, M. T. (2007). IBM POWER6 microarchitecture. IBM
Journal of Research and Development, 51(6):639– 662.

Marr, D. T., Binns, F., Hill, D. L., Hinton, G., Koufaty, D. A., Miller, J. A., and Upton, M.
(2002). Hyper-threading technology architecture and microarchitecture. Intel Technology
Journal, 6(1):4–15.

Metis - family of multilevel partitioning algorithms (2009).
http://glaros.dtc.umn.edu/gkhome/views/metis.

Moreto, M., Cazorla, F. J., Ramirez, A., and Valero, M. (2008). MLP-aware dynamic cache
partitioning. In Proceedins of the 3rd International Conference on High Performance
Embedded Architectures and Compilers (HiPEAC’08), volume 4917 of Lecture Notes in
Computer Science, pages 337–352, Goteborg, Sweden. Springer.

NASA. NAS parallel benchmarks (2009).
http://www.nas.nasa.gov/Resources/Software/npb.html

Petrini, F., Kerbyson, D. J., and Pakin, S. (2003). The case of the missing supercomputer
performance: Achieving optimal performance on the 8, 192 processors of ASCI Q.
In International Conference for High Perfromance Computing, Networking, Storage and
Analysis (SC’03), page 55. IEEE/ACM SIGARCH.

Qureshi, M. K. and Patt, Y. N. (2006). Utility-based cache partitioning: A low-overhead,
high-performance, runtime mechanism to partition shared caches. In Proceedings of
the 39th International Symposium on Microar- chitecture (MICRO’06), pages 423–432.
IEEE Computer Society.

Schloegel, K., Karypis, G., and Kumar, V. (2000). Parallel multilevel algorithms for multi-
constraint graph partitioning. In Proceedings of the 6th International Conference on
Parallel Processing (Euro-Par’00), volume 1900 of LNCS, pages 296–310. Springer-
Verlag, Berlin.

Serrano, M. J., Wood, R. C., and Nemirovsky, M. (1993). A study on multistreamed
superscalar processors. Technical Report 93-05, University of California Santa
Barbara.

SIESTA: A linear-scaling density-functional method (2009). http://www.uam.es/siesta/
Sinharoy, B., Kalla, R. N., Tendler, J. M., Eickemeyer, R. J., and Joyner, J. B. (2005). POWER5

system microarchitecture. IBM Journal of Research and Development, 49(4/5):505– 521.
Soler, J. M., Artacho, E., Gale, J. D., Garcia, A., Junquera, J., Ordejon, P., and Sanchez-Portal,

D. (2002). The SIESTA method for ab initio order-n materials simulation. Journal of
Physics: Condensed Matter, 14(11).

The TOP500 Supercomputing Sites (2007). http://www.top500.org/lists/2007/06.
Tsafrir, D., Etsion, Y., Feitelson, D. G., and Kirkpatrick, S. (2005). System noise, os clock

ticks, and fine- grained parallel applications. In Proceedings of the 19th International
Conference on Supercomputing (ICS ’05), pages 303–312, New York, NY, USA. ACM
Press.

Tullsen, D. M., Eggers, S. J., and Levy, H. M. (1995). Simultaneous multithreading:
Maximizing on-chip parallelism. Proceedings of the 22nd Annual International
Symposium on Computer Architecture (ISCA’95), pages 392–403.

Walshaw, C. H. and Cross, M. (2002). Dynamic mesh partitioning and load-balancing for
parallel computational mechanics codes. In Computational Mechanics Using High
Performance Computing, pages 79–94. Saxe-Coburg Publications, Stirling

www.intechopen.com

Parallel and Distributed Computing

Edited by Alberto Ros

ISBN 978-953-307-057-5

Hard cover, 290 pages

Publisher InTech

Published online 01, January, 2010

Published in print edition January, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The 14 chapters presented in this book cover a wide variety of representative works ranging from hardware

design to application development. Particularly, the topics that are addressed are programmable and

reconfigurable devices and systems, dependability of GPUs (General Purpose Units), network topologies,

cache coherence protocols, resource allocation, scheduling algorithms, peertopeer networks, largescale

network simulation, and parallel routines and algorithms. In this way, the articles included in this book

constitute an excellent reference for engineers and researchers who have particular interests in each of these

topics in parallel and distributed computing.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Carlos Boneti, Roberto Gioiosa, Francisco J. Cazorla and Mateo Valero (2010). Using Hardware Resource

Allocation to Balance HPC Applications, Parallel and Distributed Computing, Alberto Ros (Ed.), ISBN: 978-953-

307-057-5, InTech, Available from: http://www.intechopen.com/books/parallel-and-distributed-

computing/using-hardware-resource-allocation-to-balance-hpc-applications

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

