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1. Introduction 
 

In the beginning of this millennium power density and related heating problems practically 
stopped the exponential frequency increase of single core processors and limited availability 
of instruction-level parallelism (ILP) in general purpose applications started to limit the 
speedup achievable by increasing the number of simultaneously executed instructions in 
superscalar processors that along with architectural improvements in exploitation of 
memory hierarchies used to roughly duplicate the performance of processors in every 
second year for decades. In order to be able to continue the increasing trend of 
computational performance, all major processor manufacturers have switched to chip 
multiprocessors (CMP) integrating multiple processor cores on a single chip and switching 
the focus of parallelism from ILP to thread-level parallelism (TLP), because the number of 
transistors per chip still tends to increase exponentially with every new generation of silicon 
technology (ITRS, 2007) and high amounts of TLP is easier to extract than ILP. 
Manufacturers have ambitious plans to continue this development by roughly duplicating 
the number of cores per chip every second year, resulting to constellations with over 100 
cores in ten years (Intel, 2006). This will, however, not happen without problems, because 
current CMP architectures and related programming models do not support simple 
migration to parallel computing, so called automatic parallelization of existing sequential 
code has been turned out to be extremely difficult for general purpose programs, writing 
explicitly parallel versions of programs has turned out to be tedious, error-prone and 
expensive, and achieving linear speed-ups with respect to the number of cores appears to be 
limited to only small classes of well-behaving algorithms. These problems are caused by 
inability of current architectures to hide the latency of shared memory accesses (or 
intercommunication), lack of synchronicity in execution of computational threads as well as 
too weak models and low-level primitives of parallel computing forcing a programmer to 
explicitly take care of data partitioning to maximize locality, functionality mapping 
supporting data partitioning, synchronization of subtasks, and communication. Without 
solving these problems, it is hard to imagine that parallel computing would be able to 
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supersede sequential computing from being the main paradigm of general purpose 
computing. Furthermore, if nothing is done, the performance of future processors will 
remain the same while the utilization of processor cores for single computational problems 
will decrease as the number of cores per chip increases. 
The importance of providing easy-to-use programming models has been discovered in 
parallel computing research long before the era of CMPs (Schwarz, 1966; Karp and Miller, 
1969). The culmination of this early active research period was achieved with the invention 
of the parallel random access machine (PRAM) in the late 70’s being able to abstract the essence 
of parallel computing into a conceptually simple and beautiful model being a logical 
extension the widely used model of sequential computation (Fortune and Wyllie, 1978). A 
PRAM consists of a set of processors working under the same clock and a uniform single 
step accessible shared memory connected to them (see Figure 1). Programming with the 
PRAM model is much easier than with the weaker asynchronous models since with PRAM a 
programmer knows all the time the exact state of the threads due to synchrony of 
instruction execution, partitioning and mapping problems are eliminated—a programmer 
can just put all the data requiring interaction to the shared memory so that all processors can 
uniformly access it—and communication happens simply via accessing synchronously 
shared variables in the shared memory. One clear evidence for this is that there exists a rich 
theory of algorithms for the PRAM model (Jaja, 1992; Keller et al., 2001), which can not be 
said for the other models that are typically asynchronous and highly architecture 
dependent. Unfortunately, realization of a computer supporting the PRAM model has 
turned out to be very challenging. Namely, in our early research (Forsell, 1994) we have 
shown that the direct implementation of the multiport memory being the key to PRAM 
implementation is not physically feasible with the known silicon technology if the number 
of ports is higher than, say 4, due to quadratic wiring area increase with respect to the 
number of ports. An indirect implementation, based on executing multiple threads per 
processor core to hide the latency of the memory system, high-bandwidth 
intercommunication network with randomization to avoid congestion, and wave-based 
synchronization mechanism, is known from the early 90’s (Ranade, 1991), but so far the 
proposed architectures (Schwarz, 1980; Ranade et al., 1987; Alverson et al., 1990; Abolhassan 
et al., 1993; Imai, et al., 2000; Vishkin et al., 2008) have been unable to provide feasibility, 
scalability, instruction-level parallelism (ILP) support, low thread-level parallelism (TLP) 
support, and cost-efficiency to lure processor manufacturers to employ them in their 
products. 

Common clock

Word-wise accessible shared memo ry

Read/write operations from/to shared memo ry

P2 P3 P4P1

 
Fig. 1. Parallel random access machine.

In this chapter, we introduce a configurable chip multiprocessor architecture, TOTAL 
ECLIPSE, for realizing one of the most powerful PRAM variants, the arbitrary multioperation 
concurrent read concurrent write (MCRCW) PRAM model. In addition to standard arbitrary 
concurrent read concurrent write (CRCW) PRAM capable of concurrent reads and writes so 
that in the case of a write arbitrary of the participating threads succeeds, MCRCW provides 
multioperations that can e.g. sum the values sent by all participating threads into a memory 
location concurrently. The architecture is optimized for efficient execution of programs 
containing enough TLP to hide the latency of the intercommunication network and co-
exploitation of virtual ILP with TLP but it is also able to execute programs with low TLP 
efficiently by providing seamless configurability of PRAM threads to non-uniform memory 
access (NUMA) (Swan et.al., 1977) bunches combining the computational power of two or 
more threads within a processor core. We will describe the principles of PRAM realization, 
integration of NUMA bunching to TOTAL ECLIPSE operation, as well as overall 
architectural structure and operation of the TOTAL ECLIPSE architecture. Performance 
evaluation by executing simple programs with a clock-accurate simulator is provided and 
silicon area and power consumption estimations of selected TOTAL ECLIPSE CMP 
configurations are given. This chapter acts also as a case-driven introduction to novel 
techniques for parallel architectures, unknown from the theory of sequential architectures. 
The rest of the chapter is organized so that in Section 2 we describe the principles of 
realizing PRAM on a physically feasible silicon platform. In Section 3 we describe the 
TOTAL ECLIPSE architecture making use of these principles and additional architectural 
techniques, in Section 4 we evaluate the performance, silicon area and power consumption 
of selected TOTAL ECLIPSE CMPs, and finally in Section 5 we give conclusions. 

 
2. Realizing the Parallel Random Access Machine 
 

Realizing PRAM on silicon has turned out to be very challenging problem. In addition to the 
theoretical complexity of direct implementation mentioned in Section 1 (Forsell, 1994), a 
stronger claim arguing that required bandwidth rules any realization unfeasible was 
published already in the previous year with the introduction of the LogP model (Culler, 
1993). While the complexity of direct implementation can be overcome by using an indirect 
implementation technique reported a few years earlier (Valiant, 1990; Ranade, 1991), the 
latter claim has been controversial from the very beginning. The tremendous progress in 
VLSI technology currently allowing for more than billion transistors and ten on-chip wiring 
layers with wiring pitch of only 45 nm has raised the capacity and practically achievable 
bisection bandwidth of a single microchip to a level where these old capacity/bandwidth 
precautions do not hold any more. In addition, these numbers are predicted to grow for still 
more than ten years making even more complex integrated systems feasible  (ITRS, 2007). 
Finally, recent estimations on the area and power, and even FPGA and silicon prototypes of 
PRAM or PRAM-like CMPs (Vishkin, 2007; Forsell and Roivainen, 2008) prove that PRAM 
realizations are indeed physically feasible. In this section we describe the principles of 
realizing the PRAM model as formulated by (Ranade, 1991; Leppänen 1996). 
The current approach for advanced CMPs is to use a cache coherent distributed shared memory 
(CC-SM) machine consisting of a number of processor cores with local caches connected to 
memory modules via an asynchronous communication network (see Figure 2). In order to 
try to hide the latency of the distributed memory system, caches are being kept coherent 
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supersede sequential computing from being the main paradigm of general purpose 
computing. Furthermore, if nothing is done, the performance of future processors will 
remain the same while the utilization of processor cores for single computational problems 
will decrease as the number of cores per chip increases. 
The importance of providing easy-to-use programming models has been discovered in 
parallel computing research long before the era of CMPs (Schwarz, 1966; Karp and Miller, 
1969). The culmination of this early active research period was achieved with the invention 
of the parallel random access machine (PRAM) in the late 70’s being able to abstract the essence 
of parallel computing into a conceptually simple and beautiful model being a logical 
extension the widely used model of sequential computation (Fortune and Wyllie, 1978). A 
PRAM consists of a set of processors working under the same clock and a uniform single 
step accessible shared memory connected to them (see Figure 1). Programming with the 
PRAM model is much easier than with the weaker asynchronous models since with PRAM a 
programmer knows all the time the exact state of the threads due to synchrony of 
instruction execution, partitioning and mapping problems are eliminated—a programmer 
can just put all the data requiring interaction to the shared memory so that all processors can 
uniformly access it—and communication happens simply via accessing synchronously 
shared variables in the shared memory. One clear evidence for this is that there exists a rich 
theory of algorithms for the PRAM model (Jaja, 1992; Keller et al., 2001), which can not be 
said for the other models that are typically asynchronous and highly architecture 
dependent. Unfortunately, realization of a computer supporting the PRAM model has 
turned out to be very challenging. Namely, in our early research (Forsell, 1994) we have 
shown that the direct implementation of the multiport memory being the key to PRAM 
implementation is not physically feasible with the known silicon technology if the number 
of ports is higher than, say 4, due to quadratic wiring area increase with respect to the 
number of ports. An indirect implementation, based on executing multiple threads per 
processor core to hide the latency of the memory system, high-bandwidth 
intercommunication network with randomization to avoid congestion, and wave-based 
synchronization mechanism, is known from the early 90’s (Ranade, 1991), but so far the 
proposed architectures (Schwarz, 1980; Ranade et al., 1987; Alverson et al., 1990; Abolhassan 
et al., 1993; Imai, et al., 2000; Vishkin et al., 2008) have been unable to provide feasibility, 
scalability, instruction-level parallelism (ILP) support, low thread-level parallelism (TLP) 
support, and cost-efficiency to lure processor manufacturers to employ them in their 
products. 

 
Fig. 1. Parallel random access machine.
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containing enough TLP to hide the latency of the intercommunication network and co-
exploitation of virtual ILP with TLP but it is also able to execute programs with low TLP 
efficiently by providing seamless configurability of PRAM threads to non-uniform memory 
access (NUMA) (Swan et.al., 1977) bunches combining the computational power of two or 
more threads within a processor core. We will describe the principles of PRAM realization, 
integration of NUMA bunching to TOTAL ECLIPSE operation, as well as overall 
architectural structure and operation of the TOTAL ECLIPSE architecture. Performance 
evaluation by executing simple programs with a clock-accurate simulator is provided and 
silicon area and power consumption estimations of selected TOTAL ECLIPSE CMP 
configurations are given. This chapter acts also as a case-driven introduction to novel 
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The rest of the chapter is organized so that in Section 2 we describe the principles of 
realizing PRAM on a physically feasible silicon platform. In Section 3 we describe the 
TOTAL ECLIPSE architecture making use of these principles and additional architectural 
techniques, in Section 4 we evaluate the performance, silicon area and power consumption 
of selected TOTAL ECLIPSE CMPs, and finally in Section 5 we give conclusions. 
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Realizing PRAM on silicon has turned out to be very challenging problem. In addition to the 
theoretical complexity of direct implementation mentioned in Section 1 (Forsell, 1994), a 
stronger claim arguing that required bandwidth rules any realization unfeasible was 
published already in the previous year with the introduction of the LogP model (Culler, 
1993). While the complexity of direct implementation can be overcome by using an indirect 
implementation technique reported a few years earlier (Valiant, 1990; Ranade, 1991), the 
latter claim has been controversial from the very beginning. The tremendous progress in 
VLSI technology currently allowing for more than billion transistors and ten on-chip wiring 
layers with wiring pitch of only 45 nm has raised the capacity and practically achievable 
bisection bandwidth of a single microchip to a level where these old capacity/bandwidth 
precautions do not hold any more. In addition, these numbers are predicted to grow for still 
more than ten years making even more complex integrated systems feasible  (ITRS, 2007). 
Finally, recent estimations on the area and power, and even FPGA and silicon prototypes of 
PRAM or PRAM-like CMPs (Vishkin, 2007; Forsell and Roivainen, 2008) prove that PRAM 
realizations are indeed physically feasible. In this section we describe the principles of 
realizing the PRAM model as formulated by (Ranade, 1991; Leppänen 1996). 
The current approach for advanced CMPs is to use a cache coherent distributed shared memory 
(CC-SM) machine consisting of a number of processor cores with local caches connected to 
memory modules via an asynchronous communication network (see Figure 2). In order to 
try to hide the latency of the distributed memory system, caches are being kept coherent 

www.intechopen.com



Parallel and Distributed Computing42

during execution by using a high-speed cache coherence mechanism, usually based on 
distributed directories (Lenoski, 1992). The problems of CC-SMs are that for general purpose 
parallel algorithms the cache coherence maintenance traffic consumes already the most of 
the intercommunication network bandwidth, for demanding memory access patterns caches 
would need to be multiported, thus non-scalable (Forsell, 1994) or severe performance 
degrading sequentialization will occur, and for fine-grained parallel functionality the 
asynchrony of the machine makes programming very difficult. It is hard to solve all these 
problems together without taking a radically different approach like shared memory 
emulation connecting a set of processor cores without caches to memory modules via a 
high-bandwidth synchronous intercommunication network (Ranade, 1991; Leppänen, 1996). 
In it, the latency is hidden with low-overhead multithreading exploiting slackness of 
parallel computation, i.e. executing other threads while one is referring the memory in a 
pipelined way. We call the obtained solution emulated shared memory (ESM) machine (see 
Figure 2). A bit similar cacheless solution is used with some synchronous SIMD and vector 
machines, but they can not execute code including control parallelism efficiently. 
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Fig. 2. Cache coherent shared memory (left) versus emulated shared memory approach 
(right) (P=processor core, C=local cache, M=memory module).
 
There exists a number of theoretical studies summarized in (Leppänen, 1996) that formally 
prove that this kind of on ESM can work-optimally simulate the PRAM with a high 
probability if the following preconditions related to the network topology, and congestion 
avoidance are guaranteed: 
(i) The bandwidth requirements of certain extreme cases causing all the references to be 

headed to a low number of (or even single) memory module(s) are reduced to an ability 
to route random traffic by using a hashing of memory locations that is randomly selected 
from a family of hashings (Dietzfelbinger et.al., 1994). 

(ii) To handle random communication the bisection bandwidth of the network must be at 
least O(number of cores). 

(iii)Synchronization of memory references can be handled by the synchronization wave 
technique that works with acyclic networks in which special synchronization packets are 
sent by the processors to the memory modules and vice versa (Ranade, 1991). The idea is 
that when a processor has sent all its packets on their way, it sends a synchronization 
packet. Synchronization packets from various sources push on the actual packets, and 
spread to all possible paths, where the actual packets could go. When a node receives a 
synchronization packet from one of its inputs, it waits, until it has received a 

synchronization packet from all of its inputs, then it forwards the synchronization wave 
to all of its outputs. The synchronization wave may not bypass any actual packets and 
vice versa. When a synchronization wave sweeps over a network, all nodes and 
processors receive exactly one synchronization packet via each input link and send 
exactly one via each output link. 

Another necessary condition for practical PRAM implementations is that the used CMP 
architecture needs to be ultimately implementable with current silicon technology. Due to 
relatively decreasing signal propagation speed on shrinking silicon technologies, variable 
link length intercommunication network topologies, including all logarithmic diameter 
constellations (trees, fat trees, butterflies, hypercubes, etc.) fail to provide performance 
scalability with respect to the number of processor cores, while fixed link length topologies 
like coated meshes, sparse meshes and multimeshes have no such scalability problems 
(Leppänen, 1996; Forsell, 2002; Forsell and Leppänen, 2005). 

 
3. TOTAL ECLIPSE 
 

Embedded Chip-Level Integrated Parallel SupErcomputer (ECLIPSE) is an architectural 
framework for general purpose chip multiprocessors and multiprocessor systems on chip 
(MP-SOC), but is extendable also to multichip constellations (Forsell, 2002). It lends many 
ideas from our early work on the Instruction-Level Parallel Shared Memory (IPSM) machine 
originally reported in (Forsell, 1997) as well as earlier PRAM realization research (Ranade, 
1991; Leppänen, 1996) and network on chip (NOC) research (Jantsch, 2003). Unfortunately, the 
original ECLIPSE architecture is only able to support the exclusive read exclusive write 
(EREW) PRAM model which is not able to match the performance of MCRCW PRAM, but 
requires logarithmically longer execution times for a large number of parallel computational 
problems even though optimal parallel algorithms are used. In addition, it fails to support 
efficient execution of low-TLP functionalities because for organizational reasons it features a 
relatively high minimum number of threads per processor, dropping the utilization of a core 
to as low as the reciprocal of that value in the case of a functionality having only one thread. 
Our renewed proposal for a universal general purpose CMP is the TOTAL ECLIPSE 
architecture that realizes the arbitrary MCRCW PRAM model and supports NUMA 
execution for processor-wise thread bunches making execution of low-TLP functionalities as 
efficient as with standard sequential processors using the NUMA convention. A TOTAL 
ECLIPSE consists of P Tp-threaded (constituting total T = PTp threads) F-functional unit 
MBTAC processor cores with dedicated instruction memory and local data memory 
modules, P Tp-line step caches and scratchpads attached to processors, P fast data memory 
modules, and a high-bandwidth multimesh interconnection network (see Figure 3). 
In the following subsections we describe the processor, memory system, and 
communication network of the TOTAL ECLIPSE architecture as well as the key architectural 
techniques used in them to realize the properties of it. Due to simplicity reasons and lack of 
space, we limit ourselves to describing an integer-only version of the architecture. Inclusion 
of floating point support to this class of architectures should be, however, as straightforward 
as for any other architecture. Supporting application-specific acceleration of functionalities, 
like graphics, multimedia, and communications, is also left out because they can be 
implemented efficiently with already relatively well-known architectural solutions that may 
be used along with TOTAL ECLIPSE, making the overall system architecture slightly 
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during execution by using a high-speed cache coherence mechanism, usually based on 
distributed directories (Lenoski, 1992). The problems of CC-SMs are that for general purpose 
parallel algorithms the cache coherence maintenance traffic consumes already the most of 
the intercommunication network bandwidth, for demanding memory access patterns caches 
would need to be multiported, thus non-scalable (Forsell, 1994) or severe performance 
degrading sequentialization will occur, and for fine-grained parallel functionality the 
asynchrony of the machine makes programming very difficult. It is hard to solve all these 
problems together without taking a radically different approach like shared memory 
emulation connecting a set of processor cores without caches to memory modules via a 
high-bandwidth synchronous intercommunication network (Ranade, 1991; Leppänen, 1996). 
In it, the latency is hidden with low-overhead multithreading exploiting slackness of 
parallel computation, i.e. executing other threads while one is referring the memory in a 
pipelined way. We call the obtained solution emulated shared memory (ESM) machine (see 
Figure 2). A bit similar cacheless solution is used with some synchronous SIMD and vector 
machines, but they can not execute code including control parallelism efficiently. 
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Fig. 2. Cache coherent shared memory (left) versus emulated shared memory approach 
(right) (P=processor core, C=local cache, M=memory module).
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efficient execution of low-TLP functionalities because for organizational reasons it features a 
relatively high minimum number of threads per processor, dropping the utilization of a core 
to as low as the reciprocal of that value in the case of a functionality having only one thread. 
Our renewed proposal for a universal general purpose CMP is the TOTAL ECLIPSE 
architecture that realizes the arbitrary MCRCW PRAM model and supports NUMA 
execution for processor-wise thread bunches making execution of low-TLP functionalities as 
efficient as with standard sequential processors using the NUMA convention. A TOTAL 
ECLIPSE consists of P Tp-threaded (constituting total T = PTp threads) F-functional unit 
MBTAC processor cores with dedicated instruction memory and local data memory 
modules, P Tp-line step caches and scratchpads attached to processors, P fast data memory 
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In the following subsections we describe the processor, memory system, and 
communication network of the TOTAL ECLIPSE architecture as well as the key architectural 
techniques used in them to realize the properties of it. Due to simplicity reasons and lack of 
space, we limit ourselves to describing an integer-only version of the architecture. Inclusion 
of floating point support to this class of architectures should be, however, as straightforward 
as for any other architecture. Supporting application-specific acceleration of functionalities, 
like graphics, multimedia, and communications, is also left out because they can be 
implemented efficiently with already relatively well-known architectural solutions that may 
be used along with TOTAL ECLIPSE, making the overall system architecture slightly 
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heterogeneous (Forsell, 2009). In such a heterogeneous TOTAL ECLIPSE system, however, 
the performance of TOTAL ECLIPSE unit in general purpose parallel execution would make 
useless techniques used in some current heterogeneous systems that map even some general 
purpose functionality to general purpose GPUs rather than standard multicore CPUs to gain 
modest speedups (although this happens often with the cost of reduced utilization, 
increased power consumption, and more difficult programmability). 
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Fig. 3. Block diagram of the TOTAL ECLIPSE architecture (P=processor, M=shared data 
memory module, L=local data memory module, I=instruction memory module, a= active 
memory unit, c=step cache, t=scratchpad, and s=switch). 

 
3.1 Processor 
Multibunched/threaded Architecture with Chaining (MBTAC) is a dual-mode VLIW processor 
architecture designed for realizing both a strong PRAM model on a physically distributed 
memory architecture (so called PRAM mode) and an efficient NUMA model for low TLP 
locality-optimized code (so called NUMA mode) (Forsell, 2009). An MBTAC processor has A 
ALUs, M memory units, M hash address calculation units, a compare unit, a sequencer, and 
a register file of R registers per thread on a deep, cyclic, hazard-free interthread pipeline for 
the PRAM mode execution and a local ALU, a local memory unit, a local sequencer, and a 
register file of R registers per thread bunch on a four stage pipeline for the NUMA mode 
execution (see Figure 4). The NUMA mode pipeline is overlapped/merged with the first 
four stages of the PRAM mode pipeline so that most of the hardware, including one ALU 
and all registers, can be shared between the modes. Other parts of the processor include a 
step cache and scratchpad that are used to implement concurrent memory access and 
multioperations. MBTAC has a VLIW-style instruction set with a chain-like fixed execution 
ordering of subinstructions with a mechanism for using the result of a subinstruction as an 
operand of the following subinstructions in the chain for the PRAM mode and standard 
parallel organization of functional units for the NUMA mode (see Appendix A for the list of 
subinstructions). There is a hardware assisted synchronization mechanism for a limited 
number of concurrent fast barriers, while a bit slower software based solution utilizing 
multioperations can be used to provide an arbitrary number of simultaneous barriers 
(Forsell, 2006). 

MBTAC supports overlapped execution of a variable number of threads and thread bunches 
and seamless dynamic switching between them with special instructions. Multithreading is 
implemented as a Tp-stage, cyclic interthread pipeline for hiding the latency of the memory 
system and maximizing the overlapping of execution in the PRAM mode. Switching 
between threads and bunch slots happens in zero time, because threads proceed in the 
pipeline only during the forward time. If a thread tries to refer memory when the 
intercommunication network is busy, the whole pipeline is suspended until the network 
becomes available again. After issuing a memory read, the thread can wait the reply for at 
most Mw<Tp clock cycles before the pipeline freezes until the reply arrives. For the NUMA 
mode, forwading is used to reduce the number of pipeline hazards to two delay slots per 
each executed control transfer instruction. 
 

 
Fig. 4. Block diagram of the MBTAC processor 
 
The PRAM and NUMA models are linked to the architecture so that a full cycle in the 
pipeline corresponds typically to a single PRAM step and a full cycle of execution for a 
bunch with B thread slots corresponds typically to executing B consecutive instructions. 
During a step, each thread of each processor of the CMP executes an instruction, including 
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heterogeneous (Forsell, 2009). In such a heterogeneous TOTAL ECLIPSE system, however, 
the performance of TOTAL ECLIPSE unit in general purpose parallel execution would make 
useless techniques used in some current heterogeneous systems that map even some general 
purpose functionality to general purpose GPUs rather than standard multicore CPUs to gain 
modest speedups (although this happens often with the cost of reduced utilization, 
increased power consumption, and more difficult programmability). 
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Fig. 3. Block diagram of the TOTAL ECLIPSE architecture (P=processor, M=shared data 
memory module, L=local data memory module, I=instruction memory module, a= active 
memory unit, c=step cache, t=scratchpad, and s=switch). 
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Fig. 4. Block diagram of the MBTAC processor 
 
The PRAM and NUMA models are linked to the architecture so that a full cycle in the 
pipeline corresponds typically to a single PRAM step and a full cycle of execution for a 
bunch with B thread slots corresponds typically to executing B consecutive instructions. 
During a step, each thread of each processor of the CMP executes an instruction, including 
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at most M shared memory reference subinstructions, and sends a synchronization wave. 
Therefore a step lasts for multiple, at least Tp+1, clock cycles. 
In the following subsections we take a detailed look at special architectural techniques, 
chaining, step caches, and scratchpads, used in TOTAL ECLIPSE. 

 
3.1.1 Low and low-level parallelism exploitation via chaining and bunching 
The organization of the PRAM mode functional units in MBTAC is targeted for exploiting 
ILP during steps of parallel execution. Therefore functional units in MBTAC are connected 
as a chain, so that a unit is able to use the results of its predecessors in the chain (Forsell, 
1997; Forsell, 2003). Since multiple threads are executed in an overlapped way, it possible to 
execute dependent subinstructions during a step unlike with parallel functional unit 
organization of sequential processors (see Figure 5). We call this new class of parallelism 
virtual instruction level parallelism. In order to maximize the obtained speedup, the ordering 
of functional units in the chain is selected according to the average ordering of instructions 
in a basic block: Two thirds of the ALUs form the beginning of the chain. They are followed 
by the memory units and the rest of the ALUs. The compare unit and the sequencer are 
located in the end of the chain, because comparing and branching happen always in the end 
of basic blocks. In the NUMA mode, the local functional units are organized in parallel like 
in a standard single threaded VLIW processor because chaining would cause a lot of 
pipeline hazards for bunches and actually degrade the performance. 
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Fig. 5. Chaining and bunching. 
 
Efficient execution of low TLP code is implemented by making the thread storage 
configurable/indirect and pipeline suitable for sequential execution so that multiple thread 

execution slots can be assigned to efficiently execute a single NUMA mode thread bunch by 
just using the same thread storage address for all of them (Forsell, 2009). This way a bunch 
can use thread slots to execute multiple instructions during a step removing the low TLP 
performance bottleneck of the original Eclipse (see Figure 5). The number of concurrent 
bunches per processor can be everything from zero (PRAM mode) to Tp/2 and they can 
occur in parallel with PRAM mode threads. Bunches can only access local memories since 
there is no efficient and easy-to-use mechanism to hide the latency of memory references in 
low TLP situations. Required indirect thread storaging is implemented by storing threads 
into a multiported and multithreaded register block (like in the SUN Sparc Tx-series) rather 
than in the pipeline registers, and by adding a thread address storage pointer for each 
thread (see leftmost registers of the TID dual chain in Figure 4). In order to set a group of 
threads to use just one thread storage, i.e. to execute a single thread for all the thread slots, a 
programmer needs just to set the thread storage pointers to a single value selected out of the 
values of the thread storage pointers with the JOIN instruction. Similarly, splitting the 
bunch back to separate threads happens by restoring the old numbering of the thread slots 
with the SPLIT instruction. 

 
3.1.2 Concurrent access and step caches 
The PRAM support machinery of TOTAL ECLIPSE allows for arbitrary concurrent reads 
and writes to memory locations. For a concurrent read, all threads participating the access 
give the same results. In the case of a concurrent write, the data of an arbitrary thread 
participating the write will be written to the target location. This is implemented by using 
step caches, which are associative memory buffers in which data stays valid only to the end 
of ongoing step of multithreaded execution (Forsell, 2005). The main contribution of step 
caches to concurrent accesses is that they step-wisely filter out everything but the first 
reference for each referenced memory location. This reduces the number of requests per 
location to P allowing them to be processed sequentially on a single ported memory module 
assuming Tp ≥ P (see Figure 6). 
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at most M shared memory reference subinstructions, and sends a synchronization wave. 
Therefore a step lasts for multiple, at least Tp+1, clock cycles. 
In the following subsections we take a detailed look at special architectural techniques, 
chaining, step caches, and scratchpads, used in TOTAL ECLIPSE. 

 
3.1.1 Low and low-level parallelism exploitation via chaining and bunching 
The organization of the PRAM mode functional units in MBTAC is targeted for exploiting 
ILP during steps of parallel execution. Therefore functional units in MBTAC are connected 
as a chain, so that a unit is able to use the results of its predecessors in the chain (Forsell, 
1997; Forsell, 2003). Since multiple threads are executed in an overlapped way, it possible to 
execute dependent subinstructions during a step unlike with parallel functional unit 
organization of sequential processors (see Figure 5). We call this new class of parallelism 
virtual instruction level parallelism. In order to maximize the obtained speedup, the ordering 
of functional units in the chain is selected according to the average ordering of instructions 
in a basic block: Two thirds of the ALUs form the beginning of the chain. They are followed 
by the memory units and the rest of the ALUs. The compare unit and the sequencer are 
located in the end of the chain, because comparing and branching happen always in the end 
of basic blocks. In the NUMA mode, the local functional units are organized in parallel like 
in a standard single threaded VLIW processor because chaining would cause a lot of 
pipeline hazards for bunches and actually degrade the performance. 
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Step caches operate similarly as ordinary caches with a few notable exceptions: Each time a 
multithreaded processor refers to the shared data memory a step cache search is performed. 
A hit is detected on a cache line if the line is in use, the address tag matches the tag of the 
line, and the least significant bits of step of the reference matches the step of the line. In the 
case of a hit, a write is just ignored while a read is just completed by accessing the data from 
the cache. In the case of a miss, the reference is stored into the cache using the replacement 
policy at hands and marked as pending (for reads). At the same time with storing the 
reference information to the cache line, the reference itself is sent to the lower-level memory 
system. When a reply of a read arrives from the memory, the data is put to the data field of 
the line storing the reference information and the pending field is cleared. The structure of a 
step cache is similar to ordinary caches, but it has two extra fields—pending and step—and 
a block for decaying (Kaxiras, 2001) the data belonging to previous steps before their step 
field matches again to the least significant bits of current step (see Figure 7). Cache 
coherency problems are avoided due to a short life-time of references in the cache, since 
operations made during a step are independent by the definition parallel execution. The 
TOTAL ECLIPSE CMPs involved in our evaluations in Section 4 use As -way set associative 
step caches with the least recently used (LRU) replacement policy of size Tp lines attached to 
each processor and scratchpads. 
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Fig. 7. Organization of an As -way associative step cache.

3.1.3 Multioperations and scratchpads 
Scratchpads are addressable memory buffers that are used to store memory access data to 
keep the associativity of step caches limited in implementing multioperations and thread 
bunches with a help of step caches, and minimal on-core and off-core ALUs that take care of 
actual intra-processor and inter-processor computation for multioperations (Forsell, 2006) 
(see Figures 3 and 4). Scratchpads are organized with step caches to so called scratchpad - 
step cache units. A scratchpad - step cache unit for MBTAC processor consists of a Tp-line 
scratchpad, a Tp-line step cache, and a simple multioperation ALU for executing incoming 
concurrent references, multioperations and arbitrary ordered multiprefixes sequentially (see 
Figure 8). 
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Fig. 8. Implementation of multioperations with scratchpads and step caches. Detailed 
description of this logic can be found in (Forsell, 2006). 
 
Ordinary multioperations are implemented as two consecutive single step operations (see 
Appendix A for a list of available multioperations). During the first step, a starting 
operation (BMxx for multioperations or BMPxx for arbitrary ordered multiprefix operations) 
executes a processor-wise multioperation against a step cache location without making any 
reference to the external memory system (see Figure 9). During the second step, an ending 
operation (EMxx for multioperations or EMPxx for arbitrary ordered multiprefix operations) 
performs the rest of the multioperation so that the first reference to a previously initialized 
memory location triggers an external memory reference using the processor-wise 
multioperation result as an operand. The external memory references that are targeted to the 
same location are processed in the active memory unit of the corresponding memory 
module according to the type of the multioperation. In the case of arbitrary ordered 
multiprefixes the reply data is sent back to scratchpads of participating processors. The 
consecutive references are completed against the step cached reply data. It can happen that a 
consecutive reference is made to a location while the external reference is being processed. 
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Step caches operate similarly as ordinary caches with a few notable exceptions: Each time a 
multithreaded processor refers to the shared data memory a step cache search is performed. 
A hit is detected on a cache line if the line is in use, the address tag matches the tag of the 
line, and the least significant bits of step of the reference matches the step of the line. In the 
case of a hit, a write is just ignored while a read is just completed by accessing the data from 
the cache. In the case of a miss, the reference is stored into the cache using the replacement 
policy at hands and marked as pending (for reads). At the same time with storing the 
reference information to the cache line, the reference itself is sent to the lower-level memory 
system. When a reply of a read arrives from the memory, the data is put to the data field of 
the line storing the reference information and the pending field is cleared. The structure of a 
step cache is similar to ordinary caches, but it has two extra fields—pending and step—and 
a block for decaying (Kaxiras, 2001) the data belonging to previous steps before their step 
field matches again to the least significant bits of current step (see Figure 7). Cache 
coherency problems are avoided due to a short life-time of references in the cache, since 
operations made during a step are independent by the definition parallel execution. The 
TOTAL ECLIPSE CMPs involved in our evaluations in Section 4 use As -way set associative 
step caches with the least recently used (LRU) replacement policy of size Tp lines attached to 
each processor and scratchpads. 
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3.1.3 Multioperations and scratchpads 
Scratchpads are addressable memory buffers that are used to store memory access data to 
keep the associativity of step caches limited in implementing multioperations and thread 
bunches with a help of step caches, and minimal on-core and off-core ALUs that take care of 
actual intra-processor and inter-processor computation for multioperations (Forsell, 2006) 
(see Figures 3 and 4). Scratchpads are organized with step caches to so called scratchpad - 
step cache units. A scratchpad - step cache unit for MBTAC processor consists of a Tp-line 
scratchpad, a Tp-line step cache, and a simple multioperation ALU for executing incoming 
concurrent references, multioperations and arbitrary ordered multiprefixes sequentially (see 
Figure 8). 
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Fig. 8. Implementation of multioperations with scratchpads and step caches. Detailed 
description of this logic can be found in (Forsell, 2006). 
 
Ordinary multioperations are implemented as two consecutive single step operations (see 
Appendix A for a list of available multioperations). During the first step, a starting 
operation (BMxx for multioperations or BMPxx for arbitrary ordered multiprefix operations) 
executes a processor-wise multioperation against a step cache location without making any 
reference to the external memory system (see Figure 9). During the second step, an ending 
operation (EMxx for multioperations or EMPxx for arbitrary ordered multiprefix operations) 
performs the rest of the multioperation so that the first reference to a previously initialized 
memory location triggers an external memory reference using the processor-wise 
multioperation result as an operand. The external memory references that are targeted to the 
same location are processed in the active memory unit of the corresponding memory 
module according to the type of the multioperation. In the case of arbitrary ordered 
multiprefixes the reply data is sent back to scratchpads of participating processors. The 
consecutive references are completed against the step cached reply data. It can happen that a 
consecutive reference is made to a location while the external reference is being processed. 
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In that case, the operation is marked as pending and completed as the result is available. 
This does not slow down the processing any way since one additional simple ALU is located 
to the end of memory access pipeline segment in MBTAC (see Figure 4). Since MBTAC uses 
limited associativity step caches, scratchpads are used to store the id of the initiator thread 
of each multioperation sequence to the step cache and internal initiator thread id (IT) 
register as well as reference information to a storage that saves the information regardless of 
possible conflicts that may wipe away information on references from the step cache. A 
scratchpad has a field for data, address and pending for each thread of the processor. With a 
help of scratchpads, multioperations are implemented by using sequences of two 
instructions: Data to be written in the step cache is also written to the scratchpad, id of the 
first thread referencing a certain location is stored to the step cache and IT register (for the 
rest of references), the pending bit for multioperations is kept in the scratchpad rather than 
in the step cache, reply data is stored to the scratchpad rather than to the step cache, and 
reply data for the ending operation is retrieved from the scratchpad rather than from the 
step cache (Forsell, 2006). 
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Fig. 9. Implementation of multioperations with scratchpads and step caches. 
 
Since many efficient parallel algorithms make use of limited concurrent access, constituting 
of, say, at most square root T references per step, we have implemented faster single 
instruction limited multioperations that execute in single step. These instructions do not use 
multioperation units of processors but just active memory ALUs to perform their operations. 

 

3.2 Memory modules 
Total ECLIPSE has three types of memory modules—local data memory modules, shared 
data memory modules, and instruction memory modules. For performance reasons, they are 
accessed via dedicated local data, shared data, and instruction memory ports of processors, 
respectively (see Figure 10). The local memory modules are aimed for storing data local to 
threads of a processor and NUMA mode data while all the shared data is located to 
distributed shared data memory modules emulating the ideal PRAM memory. Instruction 
memory modules are aimed to keep the program code for each processor. The modules are 
connected together so that all memory locations can be accessed via the shared data memory 
port but giving high priority to accesses from local data memory and instruction memory 
ports (see Figure 10). 
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During normal operation, the on-chip shared data, local data, and instruction memory 
modules are isolated from each other to guarantee high-bandwidth local data, shared data, 
and instruction streams to processors. The access (and cycle) times of local data and 
instruction modules equal to one system clock cycle. The access time of shared data modules 
need to be half of the system clock cycle or alternatively Tp must be at least 2P or a small and 
fast module-level cache (allowing for multioperation related data to be read and written 
during a single clock cycle) is needed for each memory module. A local data memory 
module is just a standard memory module. A shared data memory module consists of an 
active memory unit and data memory itself (see Figure 3). An active memory unit consists of 
a simple ALU and fetcher (Forsell, 2006). Active memory units allow one to perform 
arbitrary ordered multiprefix operations and multioperations that e.g. sum all the references 
that are targeted to a memory location during a step helping to drop the lower bound of the 
execution time of some parallel algorithms by a logarithmic factor and perform flexible 
synchronizations (including arbitrary number of simultaneous barriers) between threads. 
Instruction memory modules are similar to data memory modules except they do not have 
active memory units, the length of instruction words is different to that of data words 
depending on the architectural parameters, and there are no write lines from the 
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In that case, the operation is marked as pending and completed as the result is available. 
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step cache (Forsell, 2006). 
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During normal operation, the on-chip shared data, local data, and instruction memory 
modules are isolated from each other to guarantee high-bandwidth local data, shared data, 
and instruction streams to processors. The access (and cycle) times of local data and 
instruction modules equal to one system clock cycle. The access time of shared data modules 
need to be half of the system clock cycle or alternatively Tp must be at least 2P or a small and 
fast module-level cache (allowing for multioperation related data to be read and written 
during a single clock cycle) is needed for each memory module. A local data memory 
module is just a standard memory module. A shared data memory module consists of an 
active memory unit and data memory itself (see Figure 3). An active memory unit consists of 
a simple ALU and fetcher (Forsell, 2006). Active memory units allow one to perform 
arbitrary ordered multiprefix operations and multioperations that e.g. sum all the references 
that are targeted to a memory location during a step helping to drop the lower bound of the 
execution time of some parallel algorithms by a logarithmic factor and perform flexible 
synchronizations (including arbitrary number of simultaneous barriers) between threads. 
Instruction memory modules are similar to data memory modules except they do not have 
active memory units, the length of instruction words is different to that of data words 
depending on the architectural parameters, and there are no write lines from the 
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instructions fetcher to instruction memory modules.  If the data or program code of the 
application does not fit into the on-chip memory, expensive external memory access 
prefetches with interleaving, banking and module-level caching are needed. In this chapter, 
however, we consider on-chip memory configurations only. 

 
3.3 Interconnection network 
The TOTAL ECLIPSE network is a Mc-way double acyclic two-dimensional multi mesh 
(Forsell and Leppänen, 2005) (see Figure 11). It has separate lines for references going from 
processors to memories and for replies from memories to processors to maximize the 
throughput for read-intensive portions of code. Memory locations are distributed across the 
data modules by a randomly chosen polynomial hashing function for avoiding congestion 
of messages and hot spots (Ranade, 1991; Dietzfelbinger et.al., 1994). References are routed 
by using a simple greedy algorithm on a randomly selected submesh. Deadlocks are not 
possible during communication because the network is acyclic. Separation of steps and their 
synchronization is guaranteed with the synchronization wave technique allowing for 
independent clocking or asynchronous links between the processor cores. 
To exploit locality, the switches related to processor-memory module pairs are grouped as 
superswitches (see Figure 11). This kind of a two-level structure allows for sending a 
message from a resource to any of the switches belonging to a superswitch in a single clock 
cycle. A superswitch consists of Mc switches that are connected to a processor and memory 
module via dedicated output decoders and switch elements. Each switch consists of 8 switch 
elements that have two to three input and output links. A switch element consists of logic 
blocks for determining the right output link (select direction), arbitration logic, and output 
queues storing the outgoing messages (see Figure 11). A switch element routes an incoming 
message to an output buffer according to the target information of the message if there is 
room for it in the buffer. If multiple incoming messages need to be routed to a single output 
buffer simultaneously it is waited until there is room in the buffer for all of them before 
transferring them simultaneously to the output buffer. If an incoming message is not 
allowed to proceed to the output buffer, the busy signal is activated in the corresponding 
input. 
The processors send memory requests (reads and writes) and synchronization messages to 
the memory modules and modules send replies and synchronization messages back to 
processors. A message is built of a single parallel flit consisting of dedicated fields for 
message type, data access width, target address, return address and data (Forsell, 2005). 
Messages are routed at the rate of at most one hop per clock cycle by using a simple greedy 
algorithm with two intermediate targets (see Figure 11): A message is first sent to a first 
intermediate target, which is a randomly chosen switch in a superswitch related to the 
sending resource (this determines the submesh to be used for routing). Then the message is 
routed greedily (go to the right row and then go to the right column) to the second 
intermediate target, which is the switch of the selected submesh in the superswitch related 
to the target resource. Finally the message is routed from the second intermediate target to 
the target resource. Routing memory replies back to the processors is made in the same way, 
but using the memory reply network. Synchronization messages follow the same paths from 
processors to memories and back to processors. 
 

 
Fig. 11. Block diagrams of a Mc-way double acyclic multimesh network (top), superswitch 
(middle), and switch element (bottom) for a 64-processor TOTAL ECLIPSE CMP. 
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blocks for determining the right output link (select direction), arbitration logic, and output 
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message to an output buffer according to the target information of the message if there is 
room for it in the buffer. If multiple incoming messages need to be routed to a single output 
buffer simultaneously it is waited until there is room in the buffer for all of them before 
transferring them simultaneously to the output buffer. If an incoming message is not 
allowed to proceed to the output buffer, the busy signal is activated in the corresponding 
input. 
The processors send memory requests (reads and writes) and synchronization messages to 
the memory modules and modules send replies and synchronization messages back to 
processors. A message is built of a single parallel flit consisting of dedicated fields for 
message type, data access width, target address, return address and data (Forsell, 2005). 
Messages are routed at the rate of at most one hop per clock cycle by using a simple greedy 
algorithm with two intermediate targets (see Figure 11): A message is first sent to a first 
intermediate target, which is a randomly chosen switch in a superswitch related to the 
sending resource (this determines the submesh to be used for routing). Then the message is 
routed greedily (go to the right row and then go to the right column) to the second 
intermediate target, which is the switch of the selected submesh in the superswitch related 
to the target resource. Finally the message is routed from the second intermediate target to 
the target resource. Routing memory replies back to the processors is made in the same way, 
but using the memory reply network. Synchronization messages follow the same paths from 
processors to memories and back to processors. 
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Fig. 11. Block diagrams of a Mc-way double acyclic multimesh network (top), superswitch 
(middle), and switch element (bottom) for a 64-processor TOTAL ECLIPSE CMP. 
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4. Evaluation 
 

In order to evaluate the performance and scalability achievable with the TOTAL ECLIPSE 
architecture on realistic and physically feasible CMPs we made a number of simulations on 
different CMP configurations and estimated the silicon area and power consumption of the 
used configurations with analytical modeling. 
For performance tests, we mapped parallel and sequential e-language versions of seven 
parallel computational problems of which three are fixed size and others depend on the 
number of threads in a processor core (see Table 1) to PRAM thread groups and NUMA 
bunches, compiled, optimized (e-compiler options -O2 -ilp -fast) and loaded them to three 
CMP configurations having 4, 16 and 64 ten-FU 512-threaded MBTAC processors (see Table 
2), and executed them with our clock accurate CMP simulator modified for the TOTAL 
ECLIPSE architecture. 
 In order to evaluate the PRAM mode execution performance, we executed the parallel 
versions of the programs in the TOTAL ECLIPSE CMPs in the PRAM mode and in ideal 
PRAMs having similar configurations. The results as relative execution time are shown in 
Figure 12. We can observe that the PRAM mode execution speed of TOTAL ECLIPSE is very 
close to that of ideal PRAM, mean overheads being 0.8%, 1.7%, and 1.4% for E4, E16, and 
E64, respectively. 
 

 SEQUENTIAL PARALLEL  
Name N E P W E P=W Explanation 
aprefix T N 1 N 1 N Determine an 

arbitrary ordered 
multiprefix of an 
array of N integers 

fft 64 N log N 1 N log N 1 N2 Perform a 64-point 
complex Fourier 
transform using 
fixed point 
arithmetic on 
integer ALUs 

max T N 1 N 1 N Find the 
maximum of a 
table of N words 

mmul 16 N3 1 N3 1 N3 Compute the 
product of two 16-
element matrixes 

sort 64 N log N 1 N log N 1 N2 Sort a table of 64 
integers 

spread T N 1 N 1 N Spread an integer 
to all N threads 

sum T N 1 N 1 N Compute the sum 
of an array of N 
integers 

Table 1. Evaluated computational problems and features of their sequential and parallel 
implementations (E=execution time, M=size of the key string, N=size of the problem, 
P=number of processors, T=number of threads, W=work). Note that fft, mmul, and sort are 
fixed size problems, while others depend on T. 

 Symbol E4 E16 E64 DLX 
Model of computing Mtlp PRAM

/ 
NUMA 

PRAM
/ 
NUMA 

PRAM
/ 
NUMA 

RAM 

ILP model in the PRAM 
mode 

Milpp chained 
VLIW 

chained 
VLIW 

chained 
VLIW 

 

ILP model in the NUMA 
mode 

Milpn VLIW VLIW VLIW 5-stage 
pipelin
e 

Processors P 4 16 64 1 
Threads per processors Tp 512 512 512 1 
Total number of threads T 2048 8192 32768 1 
FUs in the PRAM mode Fp 10 10 10 - 
FUs in the NUMA mode Fn 3 3 3 4 
On-chip shared data 
memory 

Msd 2 MB 8 MB 32 MB - 

On-chip local data 
memory 

Mld 2 MB 8 MB 32 MB - 

On-chip banks access 
time 

Ab 1 c 1 c 1 c 1 c 

On-chip bank cycle time Cb 1 c 1 c 1 c 1 c 
Length of FIFOs Q 16 16 16  
Step cache associativity Ac 4 4 4 - 

Table 2. Evaluated configurations (c=processor clock cycles). DLX is a single threaded RISC 
processor described in (Hennessy and Patterson, 2003). The Random Access Machine (RAM) 
model is a computing model used in sequential computers. 
 

 
Fig. 12. The relative execution time of TOTAL ECLIPSE CMPs compared to ideal PRAMs 
with similar configuration (PRAM=1.0, shorter is better). 
 
The NUMA mode performance was measured by executing the sequential versions of the 
programs in a single thread of a CMP in both PRAM and NUMA modes. In NUMA mode 
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ECLIPSE architecture. 
 In order to evaluate the PRAM mode execution performance, we executed the parallel 
versions of the programs in the TOTAL ECLIPSE CMPs in the PRAM mode and in ideal 
PRAMs having similar configurations. The results as relative execution time are shown in 
Figure 12. We can observe that the PRAM mode execution speed of TOTAL ECLIPSE is very 
close to that of ideal PRAM, mean overheads being 0.8%, 1.7%, and 1.4% for E4, E16, and 
E64, respectively. 
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Table 2. Evaluated configurations (c=processor clock cycles). DLX is a single threaded RISC 
processor described in (Hennessy and Patterson, 2003). The Random Access Machine (RAM) 
model is a computing model used in sequential computers. 
 

 
Fig. 12. The relative execution time of TOTAL ECLIPSE CMPs compared to ideal PRAMs 
with similar configuration (PRAM=1.0, shorter is better). 
 
The NUMA mode performance was measured by executing the sequential versions of the 
programs in a single thread of a CMP in both PRAM and NUMA modes. In NUMA mode 
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execution all the threads of a single processor were joined to a single NUMA bunch. The 
results of these simulations as execution time are illustrated in Figure 13. We see that the 
NUMA mode indeed provides better performance for sequential programs than the PRAM 
mode, but is not able to exploit virtual ILP up to degree possible in the PRAM mode. The 
mean speedups of using the NUMA mode are 13200%, 13196%, and 13995% for E4, E16, and 
E64, respectively. This does not, however, mean that these NUMA bunches can solve these 
computational problems faster than the PRAM mode if parallel solutions are used. Namely, 
the parallel solutions are 1421%, 3111%, and 6889% faster than the best sequential ones for 
E4, E16, and E64, respectively. Note that the speedup is not linear with respect to the 
number of processors, since 3 out of 7 benchmarks are fixed size computational problems. 
 

 
Fig. 13. The execution time of sequential solutions of the computational problems on a single 
thread of a singe MBTAC processor core in the PRAM mode and on a 512-thread NUMA 
bunch in a single MBTAC processor core. 
 
 To show seamless configurability between NUMA and PRAM modes in the TOTAL 
ECLIPSE architecture, we measured the NUMA mode execution time for sort algorithm for 
a bunch with different number of threads ranging from 1 to 512 threads per bunch in the E4 
configuration. The results are shown in Figure 14. We can see linear performance increase as 
the number of threads per the bunch increases (note that the thread scale is exponential). 

 
Fig. 14. Execution time of as a function of number of threads in the bunch for E4 CESM 
configuration. 
 
We compared also the NUMA mode performance of TOTAL ECLIPSE CMPs to that of a 
single threaded five-stage basic pipelined RISC processor DLX (Hennessy and Patterson, 

2003) by executing all the sequential programs in a single DLX processor with a single step 
accessible on-chip memory (like the local memories of TOTAL ECLIPSE cores) and in a 
single NUMA bunch composed of the threads of a single processor of TOTAL ECLIPSE. In 
order to commit fair comparison, we took the variable size of the problems aprefix, max, 
spread, and sum into account in our measurements so that the amount of actual 
computation (and the computational problem itself) is the same for the both architectures. In 
addition, the same compiler and even compilation were used to eliminate the effect of the 
compiler. TOTAL ECLIPSE code was obtained from DLX code just by doing binary 
translation (Forsell, 2003). The results are shown in Figure 15. Although the code is not 
optimized with a VLIW compiler for TOTAL ECLIPSE’s NUMA bunching, it provides a bit 
better performance than DLX, the average speedup being 8.8%. This is due to more efficient 
ILP architecture of TOTAL ECLIPSE cores. 
 Finally, we estimated silicon area, power consumption, and maximum clock frequency 
figures for E4, E16, and E64 with configurable memory modules implemented on a high-
performance 65 nm silicon process. The estimations are based on models presented 
(Pamunuwa et. al., 2003), ITRS 2007, and careful counting of architectural elements broken 
down to gate counts. The wire delay model gives maximum clock frequency 1.29 GHz for 
E4, E16 and E64 assuming 135 nm global interconnect wiring with repeaters. The area and 
power results are shown in Figure 16. These figures except the clock frequency are 
somewhat comparable to those of a X86 class multi-core high-frequency superscalar 
processor. 
 

 
Fig. 15. Relative execution time of 512-thread NUMA bunches compared to 5-stage 
pipelined DLX processor with the same memory setup (DLX=1.0, shorter is better). 
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accessible on-chip memory (like the local memories of TOTAL ECLIPSE cores) and in a 
single NUMA bunch composed of the threads of a single processor of TOTAL ECLIPSE. In 
order to commit fair comparison, we took the variable size of the problems aprefix, max, 
spread, and sum into account in our measurements so that the amount of actual 
computation (and the computational problem itself) is the same for the both architectures. In 
addition, the same compiler and even compilation were used to eliminate the effect of the 
compiler. TOTAL ECLIPSE code was obtained from DLX code just by doing binary 
translation (Forsell, 2003). The results are shown in Figure 15. Although the code is not 
optimized with a VLIW compiler for TOTAL ECLIPSE’s NUMA bunching, it provides a bit 
better performance than DLX, the average speedup being 8.8%. This is due to more efficient 
ILP architecture of TOTAL ECLIPSE cores. 
 Finally, we estimated silicon area, power consumption, and maximum clock frequency 
figures for E4, E16, and E64 with configurable memory modules implemented on a high-
performance 65 nm silicon process. The estimations are based on models presented 
(Pamunuwa et. al., 2003), ITRS 2007, and careful counting of architectural elements broken 
down to gate counts. The wire delay model gives maximum clock frequency 1.29 GHz for 
E4, E16 and E64 assuming 135 nm global interconnect wiring with repeaters. The area and 
power results are shown in Figure 16. These figures except the clock frequency are 
somewhat comparable to those of a X86 class multi-core high-frequency superscalar 
processor. 
 

 
Fig. 15. Relative execution time of 512-thread NUMA bunches compared to 5-stage 
pipelined DLX processor with the same memory setup (DLX=1.0, shorter is better). 
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Fig. 16. Silicon area and power consumption estimates for E4, E16, and E64 with 
configurable memory module  at 1.29 MHz on a high-performance 65 nm technology 
(Com=communication network, Mem=memory modules, and Proc=processors). 

 
5. Conclusion 
 

We have introduced the TOTAL ECLIPSE CMP architecture providing an efficient 
realization of PRAM. In addition to providing synchronous access to the shared memory, it 
allows for concurrent references to memory location, special multioperations performing 
computations between the participating threads, modes for efficient parallel execution and 
fast sequential operation combining the computational power of threads and seamless 
configurability between these modes. According to our evaluation TOTAL ECLIPSE 
provides in many cases performance close to similarly configured ideal PRAM, while the 
silicon area and power consumption are somewhat comparable to the current commercial 
CMPs. This chapter acts also as a case-driven introduction to novel parallel architecture 
techniques, including synchronization wave, cacheless memory organization, chaining, step 
caching, bunching, and scratchpads, that are unknown from the theory of sequential 
architectures. Our future research interests related to this topic include building FPGA and 
silicon prototypes of TOTAL ECLIPSE, addressing the off-chip memory efficiency problem, 
as well as investigating the limits of practical scalability of this kind of architectures. 
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Appendix A. Core instruction set of TOTAL ECLIPSE 
 

The core instruction set of the integer-only version of the proposed MBTAC processor of 
TOTAL ECLIPSE consists of an instruction that can be further divided to the A ALU 
subinstructions, M memory subinstructions, a single compare unit subinstruction, a single 
sequencer subinstruction, O immediate operand subinstructions, and Wb write back 
subinstructions in the PRAM mode and to an ALU subinstruction, a memory subinstruction, 
a sequencer subinstruction, and two write back subinstructions in the NUMA mode. The 
following list shows the available subinstructions for each class of units: 
 

Memory Unit subinstructions 
LDBn Xx Load byte from memory n address Xx in MU n 
LDBUn Xx Load byte from memory n address Xx unsigned in MU n 
LDHn Xx Load halfword from memory n address Xx in MU n 
LDHUn Xx Load halfword from memory n address Xx unsigned in MU n 
LDn Xx Load word from memory n address Xx in MU n 
STBn Xx,Xy Store byte Xx to memory n address Xy in MU n 
STHn Xx,Xy Store halfword Xx to memory n address Xy in MU n 
STn Xx,Xy Store word Xx to memory n address Xy in MU n 
MADDn Xx,Xy Add multiple Xx to active memory Xy in MU n 
MSUBn Xx,Xy Subtract multiple Xx to active memory Xy in MU n 
MANDn Xx,Xy And multiple Xx to active memory Xy in MU n 
MORn Xx,Xy Or multiple Xx to active memory Xy in MU n 
MMAXn Xx,Xy Max multiple Xx to active memory Xy in MU n 
MMAXUn Xx,Xy Max unsigned multiple Xx to active memory Xy in MU n 
MMINn Xx,Xy Min multiple Xx to active memory Xy in MU n 
MMINUn Xx,Xy Min unsigned multiple Xx to active memory Xy in MU n 
MPADDn Xx,Xy Arbitrary multiprefix add Xx to active memory Xy in MU n 
MPSUBn Xx,Xy Arbitrary multiprefix subtract Xx to active memory Xy in MU n 
MPANDn Xx,Xy Arbitrary multiprefix and Xx to active memory Xy in MU n 
MPORn Xx,Xy Arbitrary multiprefix or Xx to active memory Xy in MU n 
MPMAXn Xx,Xy Arbitrary multiprefix max Xx to active memory Xy in MU n 
MPMAXUn Xx,Xy Arbitrary multiprefix max unsigned Xx to active memory Xy in  

 MU n 
MPMINn Xx,Xy Arbitrary multiprefix min Xx to active memory Xy in MU n 
MPMINUn Xx,Xy Arbitrary multiprefix min unsigned Xx to active memory Xy in MU n 
BMADDn Xx,Xy Begin add multiple Xx to active memory Xy in MU n 
BMSUBn Xx,Xy Begin subtract multiple Xx to active memory Xy in MU n 
BMANDn Xx,Xy Begin and multiple Xx to active memory Xy in MU n 
BMORn Xx,Xy Begin or multiple Xx to active memory Xy in MU n 
BMMAXn Xx,Xy Begin max multiple Xx to active memory Xy in MU n 
BMMAXUn Xx,Xy Begin max unsigned multiple Xx to active memory Xy in MU n 
BMMINn Xx,Xy Begin min multiple Xx to active memory Xy in MU n 
BMMINUn Xx,Xy Begin min unsigned multiple Xx to active memory Xy in MU n 
EMADDn Xx,Xy End add multiple Xx to active memory Xy in MU n 
EMSUBn Xx,Xy End subtract multiple Xx to active memory Xy in MU n 
EMANDn Xx,Xy End and multiple Xx to active memory Xy in MU n 
EMORn Xx,Xy End or multiple Xx to active memory Xy in MU n 
EMMAXn Xx,Xy End max multiple Xx to active memory Xy in MU n 
EMMAXUn Xx,Xy End max unsigned multiple Xx to active memory Xy in MU n 
EMMINn Xx,Xy End min multiple Xx to active memory Xy in MU n 
EMMINUn Xx,Xy End min unsigned multiple Xx to active memory Xy in MU n 
BMPADDn Xx,Xy Begin arbitrary multiprefix add Xx to active memory Xy in MU n 
BMPSUBn Xx,Xy Begin arbitrary multiprefix subtract Xx to active memory Xy in MU n 
BMPANDn Xx,Xy Begin arbitrary multiprefix and Xx to active memory Xy in MU n 
BMPORn Xx,Xy Begin arbitrary multiprefix or Xx to active memory Xy in MU n 
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BMPMAXn Xx,Xy Begin arbitrary multiprefix max Xx to active memory Xy in MU n 
BMPMAXUn Xx,Xy Begin arbitrary multiprefix max unsigned Xx to active memory Xy in 
  MU n 
BMPMINn Xx,Xy Begin arbitrary multiprefix min Xx to active memory Xy in MU n 
BMPMINUn Xx,Xy Begin arbitrary multiprefix min unsigned Xx to active memory Xy in 
  MU n 
EMPADDn Xx,Xy End arbitrary multiprefix add Xx to active memory Xy in MU n 
EMPSUBn Xx,Xy End arbitrary multiprefix subtract Xx to active memory Xy in MU n 
EMPANDn Xx,Xy End arbitrary multiprefix and Xx to active memory Xy in MU n 
EMPORn Xx,Xy End arbitrary multiprefix or Xx to active memory Xy in MU n 
EMPMAXn Xx,Xy End arbitrary multiprefix max Xx to active memory Xy in MU n 
EMPMAXUn Xx,Xy End arbitrary multiprefix max unsigned Xx to active memory Xy in 
  MU n 
EMPMINn Xx,Xy End arbitrary multiprefix min Xx to active memory Xy in MU n 
EMPMINUn Xx,Xy End arbitrary multiprefix min unsigned Xx to active memory Xy in 
  MU n 
 
Write Back subinstructions 
WBn Xx Write Xx to register Rn. 
 
Arithmetic and Logical Unit subinstructions 
ADDn Xx,Xy Add Xx and Xy in ALU n 
SUBn Xx,Xy Subtract Xy from Xx in ALU n 
MULn Xx,Xy Multiply Xx by Xy in ALU n 
MULUn Xx,Xy Multiply Xx by Xy in ALU n unsigned 
DIVn Xx,Xy Divide Xx by Xy in ALU n 
DIVUn Xx,Xy Divide Xx by Xy in ALU n unsigned 
MODn Xx,Xy Determine Xx modulo Xy in ALU n 
MODUn Xx,Xy Determine Xx modulo Xy in ALU n unsigned 
LOGDn Xx Determine ROUNDDOWN(Log2 Xx) in ALU n 
LOGUn Xx Determine ROUNDUP(Log2 Xx) in ALU n 
SELn Xx,Xy Select Xx or Xy according to the result of previous compare operation 
   in functional unit chain (Xx if res=1, Xy if res=0) 
MAXU Xx,Xy Determine maximum of Xx,Xy in ALU n unsigned 
MAX Xx,Xy Determine maximum of Xx,Xy in ALU n 
MINU Xx,Xy Determine minimum of Xx,Xy in ALU n unsigned 
MIN Xx,Xy Determine minimum of Xx,Xy in ALU n 
SHRn Xx,Xy Shift right Xx by Xy in ALU n 
SHLn Xx,Xy Shift left Xx by Xy in ALU n 
SHRAn Xx,Xy Shift right Xx by Xy in ALU n arithmetic 
RORn Xx,Xy Rotate right Xx by Xy in ALU n 
ROLn Xx,Xy Rotate left Xx by Xy in ALU n 
ANDn Xx,Xy And of Xx and Xy in ALU n 
ORn Xx,Xy Or of Xx and Xy in ALU n 
XORn Xx,Xy Exclusive or of Xx and Xy in ALU n 
ANDNn Xx,Xy And not of Xx and Xy in ALU n 

ORNn Xx,Xy Or not of Xx and Xy in ALU n 
XNORn Xx,Xy Exclusive nor of Xx and Xy in ALU n 
CSYNCn Xx Set up barrier synchronization group Xx in ALU n 
SEQn Xx,Xy Set result=-1 if Xx = Xy else result=0 in ALU n 
SNEn Xx,Xy Set result=-1 if Xx ≠ Xy else result=0 in ALU n 
SLTn Xx,Xy Set result=-1 if Xx < Xy else result=0 in ALU n 
SLEn Xx,Xy Set result=-1 if Xx ≤ Xy else result=0 in ALU n 
SGTn Xx,Xy Set result=-1 if Xx > Xy else result=0 in ALU n 
SGEn Xx,Xy Set result=-1 if Xx ≥ Xy else result=0 in ALU n 
SLTUn Xx,Xy Set result=-1 if Xx < Xy unsigned else result=0 in ALU n 
SLEUn Xx,Xy Set result=-1 if Xx ≤ Xy unsigned else result=0 in ALU n 
SGTUn Xx,Xy Set result=-1 if Xx > Xy unsigned else result=0 in ALU n 
SGEUn Xx,Xy Set result=-1 if Xx ≥ Xy unsigned else result=0 in ALU n 
 
Immediate Operand Input subinstructions 
OPn d Input value d into operand n 
 
 
Compare Unit subinstructions 
SEQ Xx,Xy Set IC if Xx equals Xy 
SNE Xx,Xy Set IC if Xx not equals Xy 
SLT Xx,Xy Set IC if Xx is less than Xy 
SLE Xx,Xy Set IC if Xx is less than or equals Xy 
SGT Xx,Xy Set IC if Xx is greater than Xy 
SGE Xx,Xy Set IC if Xx is greater than or equals Xy 
SLTU Xx,Xy Set IC if Xx is less than Xy unsigned 
SLEU Xx,Xy Set IC if Xx is less than or equals Xy unsigned 
SGTU Xx,Xy Set IC if Xx is greater than Xy unsigned 
SGEU Xx,Xy Set IC if Xx is greater than or equals Xy unsigned 
 
Sequencer subinstructions 
BEQZ Ox Branch to Ox if IC equals zero 
BNEZ Ox Branch to Ox if IC not equals zero 
JMP Xx Jump to Xx 
JMPL Xx Jump and link PC+1 to register RA 
TRAP Xx Trap 
JOIN Xx Join all the threads to a NUMA bunch Xx 
SPLIT Xx Split all the current NUMA bunches back to PRAM mode threads 
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BMPMAXn Xx,Xy Begin arbitrary multiprefix max Xx to active memory Xy in MU n 
BMPMAXUn Xx,Xy Begin arbitrary multiprefix max unsigned Xx to active memory Xy in 
  MU n 
BMPMINn Xx,Xy Begin arbitrary multiprefix min Xx to active memory Xy in MU n 
BMPMINUn Xx,Xy Begin arbitrary multiprefix min unsigned Xx to active memory Xy in 
  MU n 
EMPADDn Xx,Xy End arbitrary multiprefix add Xx to active memory Xy in MU n 
EMPSUBn Xx,Xy End arbitrary multiprefix subtract Xx to active memory Xy in MU n 
EMPANDn Xx,Xy End arbitrary multiprefix and Xx to active memory Xy in MU n 
EMPORn Xx,Xy End arbitrary multiprefix or Xx to active memory Xy in MU n 
EMPMAXn Xx,Xy End arbitrary multiprefix max Xx to active memory Xy in MU n 
EMPMAXUn Xx,Xy End arbitrary multiprefix max unsigned Xx to active memory Xy in 
  MU n 
EMPMINn Xx,Xy End arbitrary multiprefix min Xx to active memory Xy in MU n 
EMPMINUn Xx,Xy End arbitrary multiprefix min unsigned Xx to active memory Xy in 
  MU n 
 
Write Back subinstructions 
WBn Xx Write Xx to register Rn. 
 
Arithmetic and Logical Unit subinstructions 
ADDn Xx,Xy Add Xx and Xy in ALU n 
SUBn Xx,Xy Subtract Xy from Xx in ALU n 
MULn Xx,Xy Multiply Xx by Xy in ALU n 
MULUn Xx,Xy Multiply Xx by Xy in ALU n unsigned 
DIVn Xx,Xy Divide Xx by Xy in ALU n 
DIVUn Xx,Xy Divide Xx by Xy in ALU n unsigned 
MODn Xx,Xy Determine Xx modulo Xy in ALU n 
MODUn Xx,Xy Determine Xx modulo Xy in ALU n unsigned 
LOGDn Xx Determine ROUNDDOWN(Log2 Xx) in ALU n 
LOGUn Xx Determine ROUNDUP(Log2 Xx) in ALU n 
SELn Xx,Xy Select Xx or Xy according to the result of previous compare operation 
   in functional unit chain (Xx if res=1, Xy if res=0) 
MAXU Xx,Xy Determine maximum of Xx,Xy in ALU n unsigned 
MAX Xx,Xy Determine maximum of Xx,Xy in ALU n 
MINU Xx,Xy Determine minimum of Xx,Xy in ALU n unsigned 
MIN Xx,Xy Determine minimum of Xx,Xy in ALU n 
SHRn Xx,Xy Shift right Xx by Xy in ALU n 
SHLn Xx,Xy Shift left Xx by Xy in ALU n 
SHRAn Xx,Xy Shift right Xx by Xy in ALU n arithmetic 
RORn Xx,Xy Rotate right Xx by Xy in ALU n 
ROLn Xx,Xy Rotate left Xx by Xy in ALU n 
ANDn Xx,Xy And of Xx and Xy in ALU n 
ORn Xx,Xy Or of Xx and Xy in ALU n 
XORn Xx,Xy Exclusive or of Xx and Xy in ALU n 
ANDNn Xx,Xy And not of Xx and Xy in ALU n 

ORNn Xx,Xy Or not of Xx and Xy in ALU n 
XNORn Xx,Xy Exclusive nor of Xx and Xy in ALU n 
CSYNCn Xx Set up barrier synchronization group Xx in ALU n 
SEQn Xx,Xy Set result=-1 if Xx = Xy else result=0 in ALU n 
SNEn Xx,Xy Set result=-1 if Xx ≠ Xy else result=0 in ALU n 
SLTn Xx,Xy Set result=-1 if Xx < Xy else result=0 in ALU n 
SLEn Xx,Xy Set result=-1 if Xx ≤ Xy else result=0 in ALU n 
SGTn Xx,Xy Set result=-1 if Xx > Xy else result=0 in ALU n 
SGEn Xx,Xy Set result=-1 if Xx ≥ Xy else result=0 in ALU n 
SLTUn Xx,Xy Set result=-1 if Xx < Xy unsigned else result=0 in ALU n 
SLEUn Xx,Xy Set result=-1 if Xx ≤ Xy unsigned else result=0 in ALU n 
SGTUn Xx,Xy Set result=-1 if Xx > Xy unsigned else result=0 in ALU n 
SGEUn Xx,Xy Set result=-1 if Xx ≥ Xy unsigned else result=0 in ALU n 
 
Immediate Operand Input subinstructions 
OPn d Input value d into operand n 
 
 
Compare Unit subinstructions 
SEQ Xx,Xy Set IC if Xx equals Xy 
SNE Xx,Xy Set IC if Xx not equals Xy 
SLT Xx,Xy Set IC if Xx is less than Xy 
SLE Xx,Xy Set IC if Xx is less than or equals Xy 
SGT Xx,Xy Set IC if Xx is greater than Xy 
SGE Xx,Xy Set IC if Xx is greater than or equals Xy 
SLTU Xx,Xy Set IC if Xx is less than Xy unsigned 
SLEU Xx,Xy Set IC if Xx is less than or equals Xy unsigned 
SGTU Xx,Xy Set IC if Xx is greater than Xy unsigned 
SGEU Xx,Xy Set IC if Xx is greater than or equals Xy unsigned 
 
Sequencer subinstructions 
BEQZ Ox Branch to Ox if IC equals zero 
BNEZ Ox Branch to Ox if IC not equals zero 
JMP Xx Jump to Xx 
JMPL Xx Jump and link PC+1 to register RA 
TRAP Xx Trap 
JOIN Xx Join all the threads to a NUMA bunch Xx 
SPLIT Xx Split all the current NUMA bunches back to PRAM mode threads 
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