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Abstract 
Research in Artificial Intelligence has been a forerunner in developing the most detailed and 
formalized theories that characterize and create consistent abstraction hierarchies for 
planning and problem solving. However, the representational methods to exploit these 
theories are complicated, which limit their application into many disciplines, specifically 
engineering. The objective of this chapter is threefold: to simplify the representation of 
current AI-based planning, to identify the properties that ensure effective development of 
abstraction hierarchies, and accordingly, to develop a methodology for effective and 
consistent generation of abstraction hierarchies. The proposed methodology achieves these 
objectives by integrating the well-established AI hierarchical abstraction theories with 
Steward’s practical Design Structure Matrices (DSM). The developed methodology consists 
of three phases. In the first phase, the literal space and its interactions are formally defined 
and their interactions are represented as a DSM. The second phase involves clustering 
literals to abstract classes according to the manner by which they communicate. Finally, in 
the third phase, the abstract literals are stratified into a loop-free abstraction hierarchy. The 
approach expands the capabilities of AI-based planning and problem solving abstraction 
hierarchies and improves their functionality by enabling integration and compatibility with 
practical DSM planning tools. The effectiveness of the developed methodology is 
demonstrated by applying it to the conceptual design on a high voltage cable manufactring 
facility.  
Keywords: Abstraction; Design Structured Matrix; Hierarchy; Planning; State-Space Representation 

 
1. Introduction 
 

Abstraction Hierarchies (AHs) are used commonly to represent various large-scale and 
complex problems (Lam 1996; Holte & Choueiry 2003; Sebastia, Onaindia et al. 2006). Their 
values have been realized across a wide spectrum of applications mainly to reduce the 
complexity of problems and to improve solution efficiency (Holte & Choueiry 2003; Aleisa 
2005). AHs are also used to speed up the development time, save resources, and provide 
aggregate intelligent output (Goldin & Klahr 1981; Aleisa 2008). In addition, AH produces 
designs that are easier to interpret validate and update compared to not using hierarchies. 
Moreover, AHs help explore design alternatives and produce intelligent decisions at an 

3

www.intechopen.com



 New, Advanced Technologies48

early stage of the design or plan (Sacerdoti 1974; Taylor & Henderson 1994; Reddy 1996) . 
Furthermore, AHs assist in focusing on important aspects of the design problem(Hoover & 
Rinderle 1994; Sarjoughian, Zeigler et al. 1998; Zeigler, Praehofer et al. 2000). For 
computational efficiency, AHs have also allows parallel execution of models (Kiran, 
Cetinkaya et al. 2001), facilitates the utilization of the off-shelf models legacy (McGraw & 
MacDonald), and enhances model reusability and rapid prototyping (Zeigler 1987; Lin, Yeh 
et al. 1996; Pidd 1996; Praehofer 1996; Chen & Ghosh 1997; Pidd & Castro 1998; Aleisa & Lin 
2008). However, despite AHs’ significant benefits, there is a lack of formal methodologies 
for hierarchical abstraction generation suitable for engineering design. In fact, hierarchical 
abstraction in general has been described as a “black art” (Knoblock 1994). In this research, 
we aim to provide a formal hierarchical abstraction methodology to represent and plan 
engineering design problems at multiple levels of abstraction. Such that partial design 
solutions obtained at some abstraction level is preserved while the design is augmented at 
more detailed levels. The objectives of the methodology are three fold: 

(1) to develop a representation for engineering design that supports hierarchical 
abstraction,  

(2) to specify the clustering criteria according to which the abstraction process is 
defined, and  

(3) to develop a layering method, by which clusters of abstracted design parameters 
should be stratified in a hierarchy, without inducing any backtracking in the design 
process. 

In other words, this research proposes a representation, extracts properties that characterize 
efficient abstraction methods, and proposes a methodology that utilizes an AI-based 
analysis of efficient systems but overcomes their complications. The methodology consists of 
three phases. In Phase I, a literal space representation is proposed to represent planning 
problems in a DSM-based format. In Phase II, the interactions within the literal space 
framework are utilized to cluster literals into abstract classes. Finally, in Phase III the 
abstract classes are stratified to construct loop-free abstraction hierarchies.  
The reminder of this chapter is structured as follows: first we provide a brief literature 
review of some of the most persistent abstraction systems and the reason why they are 
cumbersome when applied to engineering designs. This necessitates the need for this 
research. Next we dedicate a separate section to explain each of the three developmental 
phases of our hierarchical abstraction methodology. Then we provide some analysis on the 
methodology and theoretically proof that it is loop-free. Finally, we demonstrate the 
effectiveness of the methodology on the design process of a local high voltage cable 
manufacturing facility.  

 
2. Background 
 

As indicated earlier, AHs have been used to investigate and explore different alternatives 
earlier in the plan. Moreover, AHs have assisted analysts in focusing on vital aspects of a 
problem (Hoover & Rinderle 1994; Sarjoughian, Zeigler et al. 1998), leaving inferior details 
to be determined later. Despite AHs’ benefits, the process of developing hierarchical models 
is more of an art form (Knoblock 1994). The most detailed analysis of abstraction was 
conducted by research in Artificial Intelligence, specifically, in the fields of planning and 
problem solving (Giunchiglia & Walsh 1992; Armano, Cherchi et al. 2003). ABSTRIPS 

(Sacerdoti 1974; Giunchiglia 1999), one of the earliest abstractions, uses a state-space 
representation based on a STRIPS (Stanford University Research Institute Planning System) 
framework. The successors of ABSTRIPS are many, including PRODIGY/EBL (Minton 
1988), ABTWEAK (Yang 1990), PABLO (Christensen 1991), ALPINE(Knoblock 1994), 
HIGHPOINT (Bacchus & Yang 1992) and more (see (Friske & Ribeiro 2006; Marie, Priyang et 
al. 2008)). A comparison of the most persistent abstraction research is provided in Table 1. 

 
3. The Effectiveness of Abstraction Methods and Applications 
 

Hierarchical models are a result of an iterative application of some abstraction methods. 
That is, an ordered sequence of abstraction spaces constitutes the skeleton of an abstraction 
hierarchy (Knoblock 1994; Giunchiglia 1999). Therefore, since abstraction processes are the 
building blocks of an AH, the efficiency of the abstraction process directly influences that of 
the AH. For this reason, the properties of effective abstraction need to be thoroughly 
investigated, which is the topic of the next section. 
 

Author(s) Measure of 
detail Abstraction Approach Autom-

atic? 
Assumptions/ Notes/ 

Contributions 
Hobbs ’85 
Subramanian 
‘89 

Piece of data Reasoning arguments - 
Suggested abstraction by 
proposing arguments without 
developing an algorithm 

Knoblock ‘90   
Ellman ‘93 Piece of data  Relevance reasoning - 

Showed computational savings 
gained by using abstractions both 
empirically and theoretically when 
applying relevance reasoning 
approaches 
No backtracking is assumed 

Knoblock ‘94 Domain 
dependent 

tractable algorithm  
that drops irrelevant  
literals from original 
 problem  

Yes 
Domain independent, only input is 
problem formulation, satisfies 
monotonicity property 

Giunchiglia & 
Walsh ‘92 

Elements of the 
system or the 
language 

Mapping between  
systems, set theory 
 and reasoning  

- 
Established the foundation for 
abstraction theory and classified 
various types of abstractions 

Bacchus & Yang 
’92 Piece of data  

Constantly removing  
details to simplify the 
 search space 

Yes 

Discussed the Downward refinement 
property (DRP) and showed how 
hierarchical problem solving 
techniques that lack this property has 
no advantage over nonhierarchical 
methods 

Holte et al.’96  Piece of data  

Used caching 
 techniques to avoid expanding 
the same searches in successive 
 searches  

Yes An admissible A* search technique 

Lu & Tcheng ‘91 

Number of 
decision 
variable in the 
model 

Combined inductive learning 
approaches with optimization 
techniques to evaluate 
decisions made at different 
levels of abstraction 

Yes 

Proposed AIMS (Adaptive and 
integrative modeling system) 
methodology that automatically 
abstracts detailed systems using 
machine learning approaches 

Pooley ‘91 Atomic 
processes 

Abstract using  
graphical  
technique  
configuration 
 diagrams 

No 
Atomic processes from the activity 
diagram are coupled to form 
configuration diagrams 
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early stage of the design or plan (Sacerdoti 1974; Taylor & Henderson 1994; Reddy 1996) . 
Furthermore, AHs assist in focusing on important aspects of the design problem(Hoover & 
Rinderle 1994; Sarjoughian, Zeigler et al. 1998; Zeigler, Praehofer et al. 2000). For 
computational efficiency, AHs have also allows parallel execution of models (Kiran, 
Cetinkaya et al. 2001), facilitates the utilization of the off-shelf models legacy (McGraw & 
MacDonald), and enhances model reusability and rapid prototyping (Zeigler 1987; Lin, Yeh 
et al. 1996; Pidd 1996; Praehofer 1996; Chen & Ghosh 1997; Pidd & Castro 1998; Aleisa & Lin 
2008). However, despite AHs’ significant benefits, there is a lack of formal methodologies 
for hierarchical abstraction generation suitable for engineering design. In fact, hierarchical 
abstraction in general has been described as a “black art” (Knoblock 1994). In this research, 
we aim to provide a formal hierarchical abstraction methodology to represent and plan 
engineering design problems at multiple levels of abstraction. Such that partial design 
solutions obtained at some abstraction level is preserved while the design is augmented at 
more detailed levels. The objectives of the methodology are three fold: 

(1) to develop a representation for engineering design that supports hierarchical 
abstraction,  

(2) to specify the clustering criteria according to which the abstraction process is 
defined, and  

(3) to develop a layering method, by which clusters of abstracted design parameters 
should be stratified in a hierarchy, without inducing any backtracking in the design 
process. 

In other words, this research proposes a representation, extracts properties that characterize 
efficient abstraction methods, and proposes a methodology that utilizes an AI-based 
analysis of efficient systems but overcomes their complications. The methodology consists of 
three phases. In Phase I, a literal space representation is proposed to represent planning 
problems in a DSM-based format. In Phase II, the interactions within the literal space 
framework are utilized to cluster literals into abstract classes. Finally, in Phase III the 
abstract classes are stratified to construct loop-free abstraction hierarchies.  
The reminder of this chapter is structured as follows: first we provide a brief literature 
review of some of the most persistent abstraction systems and the reason why they are 
cumbersome when applied to engineering designs. This necessitates the need for this 
research. Next we dedicate a separate section to explain each of the three developmental 
phases of our hierarchical abstraction methodology. Then we provide some analysis on the 
methodology and theoretically proof that it is loop-free. Finally, we demonstrate the 
effectiveness of the methodology on the design process of a local high voltage cable 
manufacturing facility.  

 
2. Background 
 

As indicated earlier, AHs have been used to investigate and explore different alternatives 
earlier in the plan. Moreover, AHs have assisted analysts in focusing on vital aspects of a 
problem (Hoover & Rinderle 1994; Sarjoughian, Zeigler et al. 1998), leaving inferior details 
to be determined later. Despite AHs’ benefits, the process of developing hierarchical models 
is more of an art form (Knoblock 1994). The most detailed analysis of abstraction was 
conducted by research in Artificial Intelligence, specifically, in the fields of planning and 
problem solving (Giunchiglia & Walsh 1992; Armano, Cherchi et al. 2003). ABSTRIPS 

(Sacerdoti 1974; Giunchiglia 1999), one of the earliest abstractions, uses a state-space 
representation based on a STRIPS (Stanford University Research Institute Planning System) 
framework. The successors of ABSTRIPS are many, including PRODIGY/EBL (Minton 
1988), ABTWEAK (Yang 1990), PABLO (Christensen 1991), ALPINE(Knoblock 1994), 
HIGHPOINT (Bacchus & Yang 1992) and more (see (Friske & Ribeiro 2006; Marie, Priyang et 
al. 2008)). A comparison of the most persistent abstraction research is provided in Table 1. 

 
3. The Effectiveness of Abstraction Methods and Applications 
 

Hierarchical models are a result of an iterative application of some abstraction methods. 
That is, an ordered sequence of abstraction spaces constitutes the skeleton of an abstraction 
hierarchy (Knoblock 1994; Giunchiglia 1999). Therefore, since abstraction processes are the 
building blocks of an AH, the efficiency of the abstraction process directly influences that of 
the AH. For this reason, the properties of effective abstraction need to be thoroughly 
investigated, which is the topic of the next section. 
 

Author(s) Measure of 
detail Abstraction Approach Autom-

atic? 
Assumptions/ Notes/ 

Contributions 
Hobbs ’85 
Subramanian 
‘89 

Piece of data Reasoning arguments - 
Suggested abstraction by 
proposing arguments without 
developing an algorithm 

Knoblock ‘90   
Ellman ‘93 Piece of data  Relevance reasoning - 

Showed computational savings 
gained by using abstractions both 
empirically and theoretically when 
applying relevance reasoning 
approaches 
No backtracking is assumed 

Knoblock ‘94 Domain 
dependent 

tractable algorithm  
that drops irrelevant  
literals from original 
 problem  

Yes 
Domain independent, only input is 
problem formulation, satisfies 
monotonicity property 

Giunchiglia & 
Walsh ‘92 

Elements of the 
system or the 
language 

Mapping between  
systems, set theory 
 and reasoning  

- 
Established the foundation for 
abstraction theory and classified 
various types of abstractions 

Bacchus & Yang 
’92 Piece of data  

Constantly removing  
details to simplify the 
 search space 

Yes 

Discussed the Downward refinement 
property (DRP) and showed how 
hierarchical problem solving 
techniques that lack this property has 
no advantage over nonhierarchical 
methods 

Holte et al.’96  Piece of data  

Used caching 
 techniques to avoid expanding 
the same searches in successive 
 searches  

Yes An admissible A* search technique 

Lu & Tcheng ‘91 

Number of 
decision 
variable in the 
model 

Combined inductive learning 
approaches with optimization 
techniques to evaluate 
decisions made at different 
levels of abstraction 

Yes 

Proposed AIMS (Adaptive and 
integrative modeling system) 
methodology that automatically 
abstracts detailed systems using 
machine learning approaches 

Pooley ‘91 Atomic 
processes 

Abstract using  
graphical  
technique  
configuration 
 diagrams 

No 
Atomic processes from the activity 
diagram are coupled to form 
configuration diagrams 
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Yager ‘94 Piece of data Neural Networks Yes 

Can Handle nonnumeric data, 
developed a function that 
transforms a group of data into a 
single data point 

Hoover & 
Rinderle ‘94 

System 
parameters/ 
variables 

Relevance reasoning, concept of 
focusing abstractions and 
Gröbner bases 

Yes 

Based on Gröbner bases, assumed 
focusing abstractions change the 
scope not accuracy, limited to 
polynomial equation formulations  

Kramer & 
Unger’92 

Number of 
operators in 
each level 

Subsuming Abstraction Yes 

The process is type oriented 
operator abstracting process that 
aims on diminishing the number of 
operators in the detailed level 

Taylor & 
Henderson ‘94 

Features and 
forms of a 
mechanical 
design  

Generalization/ specialization 
and aggregation/ 
decomposition 

No 

Showed the relationships between 
forms and features in a mechanical 
design and showed how abstraction 
could aid the design process 

Bisantz & 
Vicente ‘94 

Components 
and detailed 
functions of a 
system 

Aggregation/ 
decomposition  
and a physical/ 
functional  
abstraction  
approaches 

No 

Presented how to abstract a system 
using two orthogonal dimensions 
simultaneously, the part/whole and 
the physical functional dimension 

Reddy ‘96 
Details of 
system design 
specifications 

Form empirical models from 
training examples using 
multiple learning algorithms  

Yes 

Multiple learning approaches 
includes: statistical regression, 
neural networks, inductive learning 
algorithms  

Fox & Long ‘95 Details of a plan Subsumption abstractions - 
Discussed how DRP would indicate 
if a hierarchical decomposition is 
worthwhile   

Sisti & Farr ‘98 
Depends on the 
model to be 
abstracted 

Abstracted  
Models 
 using  
boundary, 
 behavior and 
 form abstractions 

No 

Objective was to improve accuracy 
at aggregate level, compared the 
terms accuracy, complexity and 
level of detail and showed how to 
create model hierarchies that can 
be interconnected and reused 

Table 1. A comparison of the most persistent research in abstraction 
 
4. The Seven Desirable Properties of Abstraction Methods 
 

This section extracts properties that would render an abstraction method to be effective. 
These include the following characteristics: 
(1) Formal. Abstraction methodologies are by large case-dependent, with little to be 

generalized. Thus, there is a need to develop abstraction methods using well-structured 
languages and consistent terminology, and to support them with a sound theoretical 
basis. 

(2) Complete. A complete abstraction hierarchy is one that achieves all the steps and 
preconditions required (Russell & Norvig 1995). On the other hand, an incomplete 
abstraction hierarchy is described as a theory-decreasing (TD) abstraction (Giunchiglia 
& Walsh 1992). TD abstractions exhibit deficiency by losing information while 
abstracting, therefore lacking integrity and affecting the quality of obtained abstract 
solutions. 

(3) Computable. Despite the indispensable need for expertise to articulate effective 
abstractions, abstraction methods must consist of quantifiable and computable 
techniques to enable automation(Friske & Ribeiro 2006) and generalization(Pels 2006). 

(4) Produce simpler models. When applied to a problem, an abstraction method should 
produce simpler models that are easier to understand, handle, and solve compared to 
the original problem representation (Zeigler 1976; Lu & Tcheng 1991; Manfaat, Duffy et 
al. 1998; Kemke & Walker 2006). 

(5) Tractable. Abstraction methods should not involve computational 
complexities(Gimenez & Jonsson 2008). If so, then the purpose of abstraction is defeated 
and abstraction will be futile.  

(6) Reduce cost. For abstraction to be effective, the cost of creating an abstract model, 
solving the problem with the abstract model and mapping the solution back to the 
original representation should be inexpensive, compared to solving the problem 
directly using its original (or detailed) representation (Bacchus & Yang 1992; Levy 1994; 
Debbie 2003; Zucker 2003) 

(7) Produce consistent and cumulative refinement. This is achieved when backtracking is 
avoided during the exploitation of an abstraction hierarchy. Eliminating backtracking 
means that there is no need to resolve any established elements from higher abstract 
levels in the abstraction hierarchy. As this property is particularly important for 
achieving efficient designs, it is further elaborated in the next section. 

 
4.1 Consistent and cumulative refinement (ccr) properties 
This chapter uses the term consistent and cumulative refinement (CCR) properties to refer to 
properties that preserve intermediate solutions or results obtained at abstract levels. The 
essence of the CCR properties is that already established aspects at higher abstraction levels 
need not be altered as more details are introduced at lower abstraction levels(Zucker 2003). 
Among the most formalized CCR properties is the Ordered Monotonicity Property (OMP) 
of Knoblock (Knoblock 1990; Knoblock 1994). According to Knoblock (Knoblock 1994), OMP 
guarantees that the structure of an abstract solution is not changed by the process of refining 
it. For this property to hold, the abstraction hierarchy needs to partition a problem, such that 
the parts of the problem already solved in an abstract space are maintained while the 
remaining parts of the problem are solved. OMP has the advantage of being 
computationally tractable, while it is also able to capture a large class of abstraction 
problems. However, OMP is a heuristic, and thus does not guarantee a reduction of the 
search space. 
 
Another CCR property is the Downward Refinement Property (DRP) (Bacchus & Yang 1992; 
Helmert 2006). A planning domain is said to possess DRP if all abstract plans can be 
consistently refined without backtracking across abstraction levels (Fox & Long 1995). 
Bacchus and Yang (Bacchus & Yang 1992) emphasized that when DRP holds, backtracking 
needs never occur across various levels of the abstraction hierarchy, indicating a hierarchical 
decomposition is worthwhile(Zucker 2003). However, being a heuristic, DRP encounters 
difficulties similar to those of OMP. 
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Yager ‘94 Piece of data Neural Networks Yes 

Can Handle nonnumeric data, 
developed a function that 
transforms a group of data into a 
single data point 

Hoover & 
Rinderle ‘94 

System 
parameters/ 
variables 

Relevance reasoning, concept of 
focusing abstractions and 
Gröbner bases 

Yes 

Based on Gröbner bases, assumed 
focusing abstractions change the 
scope not accuracy, limited to 
polynomial equation formulations  

Kramer & 
Unger’92 

Number of 
operators in 
each level 

Subsuming Abstraction Yes 

The process is type oriented 
operator abstracting process that 
aims on diminishing the number of 
operators in the detailed level 

Taylor & 
Henderson ‘94 

Features and 
forms of a 
mechanical 
design  

Generalization/ specialization 
and aggregation/ 
decomposition 

No 

Showed the relationships between 
forms and features in a mechanical 
design and showed how abstraction 
could aid the design process 

Bisantz & 
Vicente ‘94 

Components 
and detailed 
functions of a 
system 

Aggregation/ 
decomposition  
and a physical/ 
functional  
abstraction  
approaches 

No 

Presented how to abstract a system 
using two orthogonal dimensions 
simultaneously, the part/whole and 
the physical functional dimension 

Reddy ‘96 
Details of 
system design 
specifications 

Form empirical models from 
training examples using 
multiple learning algorithms  

Yes 

Multiple learning approaches 
includes: statistical regression, 
neural networks, inductive learning 
algorithms  

Fox & Long ‘95 Details of a plan Subsumption abstractions - 
Discussed how DRP would indicate 
if a hierarchical decomposition is 
worthwhile   

Sisti & Farr ‘98 
Depends on the 
model to be 
abstracted 

Abstracted  
Models 
 using  
boundary, 
 behavior and 
 form abstractions 

No 

Objective was to improve accuracy 
at aggregate level, compared the 
terms accuracy, complexity and 
level of detail and showed how to 
create model hierarchies that can 
be interconnected and reused 

Table 1. A comparison of the most persistent research in abstraction 
 
4. The Seven Desirable Properties of Abstraction Methods 
 

This section extracts properties that would render an abstraction method to be effective. 
These include the following characteristics: 
(1) Formal. Abstraction methodologies are by large case-dependent, with little to be 

generalized. Thus, there is a need to develop abstraction methods using well-structured 
languages and consistent terminology, and to support them with a sound theoretical 
basis. 

(2) Complete. A complete abstraction hierarchy is one that achieves all the steps and 
preconditions required (Russell & Norvig 1995). On the other hand, an incomplete 
abstraction hierarchy is described as a theory-decreasing (TD) abstraction (Giunchiglia 
& Walsh 1992). TD abstractions exhibit deficiency by losing information while 
abstracting, therefore lacking integrity and affecting the quality of obtained abstract 
solutions. 

(3) Computable. Despite the indispensable need for expertise to articulate effective 
abstractions, abstraction methods must consist of quantifiable and computable 
techniques to enable automation(Friske & Ribeiro 2006) and generalization(Pels 2006). 

(4) Produce simpler models. When applied to a problem, an abstraction method should 
produce simpler models that are easier to understand, handle, and solve compared to 
the original problem representation (Zeigler 1976; Lu & Tcheng 1991; Manfaat, Duffy et 
al. 1998; Kemke & Walker 2006). 

(5) Tractable. Abstraction methods should not involve computational 
complexities(Gimenez & Jonsson 2008). If so, then the purpose of abstraction is defeated 
and abstraction will be futile.  

(6) Reduce cost. For abstraction to be effective, the cost of creating an abstract model, 
solving the problem with the abstract model and mapping the solution back to the 
original representation should be inexpensive, compared to solving the problem 
directly using its original (or detailed) representation (Bacchus & Yang 1992; Levy 1994; 
Debbie 2003; Zucker 2003) 

(7) Produce consistent and cumulative refinement. This is achieved when backtracking is 
avoided during the exploitation of an abstraction hierarchy. Eliminating backtracking 
means that there is no need to resolve any established elements from higher abstract 
levels in the abstraction hierarchy. As this property is particularly important for 
achieving efficient designs, it is further elaborated in the next section. 

 
4.1 Consistent and cumulative refinement (ccr) properties 
This chapter uses the term consistent and cumulative refinement (CCR) properties to refer to 
properties that preserve intermediate solutions or results obtained at abstract levels. The 
essence of the CCR properties is that already established aspects at higher abstraction levels 
need not be altered as more details are introduced at lower abstraction levels(Zucker 2003). 
Among the most formalized CCR properties is the Ordered Monotonicity Property (OMP) 
of Knoblock (Knoblock 1990; Knoblock 1994). According to Knoblock (Knoblock 1994), OMP 
guarantees that the structure of an abstract solution is not changed by the process of refining 
it. For this property to hold, the abstraction hierarchy needs to partition a problem, such that 
the parts of the problem already solved in an abstract space are maintained while the 
remaining parts of the problem are solved. OMP has the advantage of being 
computationally tractable, while it is also able to capture a large class of abstraction 
problems. However, OMP is a heuristic, and thus does not guarantee a reduction of the 
search space. 
 
Another CCR property is the Downward Refinement Property (DRP) (Bacchus & Yang 1992; 
Helmert 2006). A planning domain is said to possess DRP if all abstract plans can be 
consistently refined without backtracking across abstraction levels (Fox & Long 1995). 
Bacchus and Yang (Bacchus & Yang 1992) emphasized that when DRP holds, backtracking 
needs never occur across various levels of the abstraction hierarchy, indicating a hierarchical 
decomposition is worthwhile(Zucker 2003). However, being a heuristic, DRP encounters 
difficulties similar to those of OMP. 
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5. Integrating the Design Structured Matrix to AI Hierarchical Abstraction 
 

Formulated by Steward (Steward 1981), the Design Structure Matrix (DSM) a.k.a. 
dependency structure matrix, is a project modeling tool to plan, represent and analyze the 
flow of information among different tasks of complex design projects (McCord 1993; 
Browning 2001). DSM is a square binary matrix with  rows and columns, where  is the 
number of design tasks under consideration (Warfield 1973). If task i  is dependent on task 
j , then the entry of the respective column j  and row i  is unity or marked with an 
X (Browning 1999; Yassine, Falkenburg et al. 1999). Off-diagonal marks represent coupling 
between tasks, marks in the upper triangle in DSM represent feedforward coupling, and 
marks in the lower triangle represent feedback coupling (Rogers 1996). The DSM tasks are 
rearranged in order to eliminate feedback marks. Then, the DSM is partitioned into blocks of 
tasks that simultaneously depend on one another. Three different relationships can be 
identified from a partitioned DSM: sequential, parallel and coupled tasks. A task can be 
performed sequentially if its row contains a mark just below the diagonal; a task is parallel if 
there are no marks linking it with other tasks; coupled tasks are ones that  hinder a 
partitioned DSM to be lower triangular (Yassine, Falkenburg et al. 1999). Finally, feedback 
marks are removed from the DSM in a processes called tearing (Steward 1981) to initiate 
sequencing within blocks (Eppinger, Whitney et al. 1994).  
This research intends to utilize the DSM representational advantage to simplify AI-based 
abstraction hierarchies.  

 
6. Hierarchical Abstraction Methodology for Structuring Literal Spaces 
 

The presented hierarchical abstraction methodology consists of three phases: representation, 
abstraction and layering. The representation phase were literal spaces are formulated into a 
transposed DSM. In the second phase, the abstraction phase, the problem literals are 
clustered into mutually-exclusive abstract equivalence classes (AECs). Finally, in the third 
phase, the layering phase, the different AECs are stratified into multiple levels of a hierarchy 
using a level assignment algorithm (LAA). The three phases of the methodology are 
illustrated in Fig. 1and are discussed in greater detail in the following sections. 
 

 
Fig. 1. Hierarchical Abstraction Methodology 

 
6.1 Phase I: The literal space representation 
Let li denote a positive or a negative literal i ,  where a literal is defined as an atomic expression 
or the negation of an atomic expression (Luger 2002). The literal space Ω is a set that consists of 
all literals under consideration. Similarly, O  denotes the set of operators,  ( 1,2,...,k p= ), such 
that 1 2{ , ,..., }pO o o o= . Analogous to the STRIPS framework, for each operator , let kp be the set 
that contains all the preconditions. A precondition set kp  is the set of some literals il Î W  that 
need to be achieved prior to the application of an operator. Similarly, we define ke  to be the set of 
effects of operator ko , where an effect is the set of some achieved literals il Î W  that resulted from 
applying an operator. For that we write each operator a as an ordered tuple of ( , )o p e . It is 
possible for  kp  or  to be empty, indicating that a specific operator k  does not require 
preconditions nor result in any effects respectively. As an example,  describes an operator ko with 
no preconditions and literal il  of effects, which is typical for initialization operators.  
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5. Integrating the Design Structured Matrix to AI Hierarchical Abstraction 
 

Formulated by Steward (Steward 1981), the Design Structure Matrix (DSM) a.k.a. 
dependency structure matrix, is a project modeling tool to plan, represent and analyze the 
flow of information among different tasks of complex design projects (McCord 1993; 
Browning 2001). DSM is a square binary matrix with  rows and columns, where  is the 
number of design tasks under consideration (Warfield 1973). If task i  is dependent on task 
j , then the entry of the respective column j  and row i  is unity or marked with an 
X (Browning 1999; Yassine, Falkenburg et al. 1999). Off-diagonal marks represent coupling 
between tasks, marks in the upper triangle in DSM represent feedforward coupling, and 
marks in the lower triangle represent feedback coupling (Rogers 1996). The DSM tasks are 
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partitioned DSM to be lower triangular (Yassine, Falkenburg et al. 1999). Finally, feedback 
marks are removed from the DSM in a processes called tearing (Steward 1981) to initiate 
sequencing within blocks (Eppinger, Whitney et al. 1994).  
This research intends to utilize the DSM representational advantage to simplify AI-based 
abstraction hierarchies.  

 
6. Hierarchical Abstraction Methodology for Structuring Literal Spaces 
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phase, the layering phase, the different AECs are stratified into multiple levels of a hierarchy 
using a level assignment algorithm (LAA). The three phases of the methodology are 
illustrated in Fig. 1and are discussed in greater detail in the following sections. 
 

 
Fig. 1. Hierarchical Abstraction Methodology 
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6.1.1 Formalizing Interactions among literals and operators 
The representation of operators in terms of their preconditions and effects indicates a causal 
relationship between them. This is the result of having some operators ,k ko o O¢ Î  ( k k ¢¹ ) 
where; hence ko contains among its effects some literal l Î W  that is part of the 
preconditions of ko ¢  that are required for it to be applied. If the above holds, then we say 
that ko  establishes some literals for ko ¢ . Establishment is formally defined below. 

 Establishment definition: Let operators ,k ko o O¢ Î where k k ¢¹ , and literal l Î W . 
Let ke  be the set of effects of , and kp ¢ be the set of preconditions of ko ¢ . We say that 

ko  establishes literal l for ko ¢  ( ( , ,{ })k kestablishes o o l¢ ) if and only if 
 
l$ Î W , such that     (1) 

 kl eÎ , and           (2) 
 

Establishment has been requisitely used in the literature of planning and problem solving within 
the field of Artificial Intelligence (AI). However, establishment definitions usually impose an 
additional restriction on the precedence between two operators with respect to a plan. 
Nevertheless, this restriction is not necessary in this context since it is not intended to produce the 
shortest possible sequence of operators that transform the initial state to the goal state.  
When operators’ precedence constraints are not imposed within the establishment 
definition, establishments can be interpreted as causal links common in engineering 
applications. In engineering practices, it is customary to represent causality in a matrix 
representation (Warfield 1973). In this research, we define two types of causal links that 
result among operators and literals respectively. These causal links are discussed in the 
following sections. 
Operator causality definition:  Let ,k ko o O¢ Î  and l Î W ; the operator causality link kka ¢  is 
defined as follows: 
 

                           1        if ( , ,{ }) for some 
 0        otherwise

k k
kk

establishes o o l l
a ¢

¢

ìïï= íïïî
                    (1) 

 
The above definition indicates that if  ( , ,{ })k kestablishes o o l¢  holds for some operators ,k ko o O¢ Î  
and some l Î W , then according to the establishment definition l  must be a precondition and an 
effect in ko  and ko ¢  respectively (i.e. , kl e ¢Î ). If this is the case, then the operator causal link kka ¢  

is greater than zero. Fig. 2 shows a digraph of the operator causality definition. 
 

 
Fig. 2. Digraph of operator causality 

l

kp

l

ke 

1kka  

 Causality within Operators 
Operator causality defined earlier identifies the relationships among the different operators. 
Literal causality however, describes the relationship among literals within operators.  
Literal causality definition:  Let literals ,i jl l Î W  and let ,k kp e  be respectively the 
preconditions and effects of operator ko OÎ ; the literal causality link  is defined as follows: 
 

                               {1             if ;  ,  and 
0            otherwise

k i k j k
ij

o O l p l e
r

$ Î Î Î
=         (2) 

 
Therefore, the causality link ijr  is nonnegative when literals il and jl  belong to the set of 
preconditions and effects respectively of any arbitrary operator in O . Fig 3 illustrates literal 
causality among three operators, while Fig. 4 shows the corresponding operator causality 
and establishment of the former Figure.  
 

 
Fig. 3. Literal causality among the literals of three related hypothetical operators 
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Fig. 4. Establishment resulting from the example given in Fig. 3 
 
Let [ ]ijr=R  define a literal causality matrix of size n n´  whose entries follow Eq (2). In 
graph theory (Deo 1974), R  corresponds to a node-to-node incidence matrix. Moreover, the 
transposed form of the R  matrix (i.e. TR ) has an equivalent structure to that of a 
DSM(Aleisa & Lin 2009). This allows us to exploit the well-established methods of DSM to 
structure literal spaces, while still remaining consistent with the previous literature on state-
space literature, the theory of ordered relations (Dartmouth College Writing Group. & 
Cogan 1958) and Markov Chains by considering the transposed form. 

 
6.2 Accessibility and communication among literals 
In this research, we use (S)R to indicate that the matrix R is multiplied s times by 
 itself. Based on matrix theory, we can interpret ( ) 0S

ijr ³  as the ability to reach literal j from 
i , passing through s  literals or alternatively through the application of s  operators. Note 
that we shall refer to (1)

ijr by ijr for simplicity. Based on the interpretation of ( ) 0S
ijr ³ , we 

define literal accessibility and communication. 
Accessibility: We say that jl  is accessible from il  ( ( , )i jaccessible l l ), if and only if ( ) 0s

ijr >  
through a number of operators, 1,2,...s = . 
 If there is no operator ko  applied on il , then the value of il  is assumed to remain 
unaffected. Hence, it is legitimate to assume that every literal is accessible at least by itself, 
therefore: 
 

                                              0ijr ³  , i j" =             (3) 
 

Therefore, accessibility has two relational properties: 
(1) Reflexive, based on Eq.(3). 
(2) Transitive, since: 
 

                                                       

( , ) ( , )

( , ),

, ,

i j j k

i k

i j k

accessible p p accessible p p

accessible p p

p p p

Ç



" Î W

,                          (4) 

 
Communication:  Let ,i jl l Î W , il  and jl  communicate ( ( , )i jcommunicate l l ) if and only if the 
following holds:  

3o1o 2o

O

1 2 2( , ,{ })establishes o o l 2 3 6 7( , ,{ , })establishes o o l l

                                                        ( , ) ( , )i j j iaccessible l l accessible l lÇ                   (5) 
 
Alternatively, communication between two literals ,i jl l Î W  implies that the following hold: 
 

                                                   ( ) 0s
ijr > , ( ) 0s

jir >  for some 1,2,...s =                 (6) 
 

Let [ ]ijr=R  define a literal causality matrix of size n n´ . The transposed form of the R  
matrix (i.e. ) has an equivalent structure to that of a DSM. This allows us to exploit the well-
established methods of DSM to structure literal spaces. 

 
7. Phase II: Abstraction of the Literal Space 
 

This phase creates an abstract literal space of Ω, denoted by w  by clustering the literals 
under consideration into mutually-exclusive partitions.  
Eq. (6) shows that communication is a reflexive, symmetric and transitive relation. A 
relation that exhibits these properties is an equivalence relation (Kemeny & Snell 1960). 
Equivalence relations have the ability to partition the universe Ω upon which it is defined to 
disjointed partitions (Dartmouth College Writing Group. & Cogan 1958). Each of these 
partitions defines a unique cluster of communicating literals, which is referred to as abstract 
equivalence classes. 

 
7.1 Abstract equivalence classes 
An abstract equivalence classes (AEC), denoted by kc ( 1,2,...,k m= ), is a set of literals by 
which all members of this set communicate with one another. k  corresponds to the number 
of kc wÍ . If the abstract literal space w  consists of a single AEC (i.e. 1k = ), is called 
irreducible to be consistent with the terminology used in Markov Chains (Kao 1997). 
Therefore, irreducibility implies that the literals of the original literal space Ω all 
communicate with one another. Because AECs are developed based on an equivalence 
relation (i.e. communication), then the following must hold: 
 

                                                     k
k

c
"

= Æ , k
k

c
"

= W , k"                           (7) 

 
7.2 The formation of AECS 
The equivalence class formation algorithm (ECFA) is used to abstract the literal space Ω 
into w . In ECFA, iT B denotes the to-list of jl , such that each iT  contains all the literals that 

jl  can access through one or more operators. Similarly a from-list iF  is defined to contain all 
the literals from which jl  is accessible through one or more operators. ic  is a set of 
communicating literals that contains il . The codes for constructing a To lists and a From 

lists are provided in Fig. 5 and Fig. 6 respectively. Detailed steps of these routines are 
provided in  (Gaver & Thompson 1973). 
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Fig. 5. Routine for constructing to-lists 
 
Constructing equivalence classes of literals:  Having obtained the to-list and from-list for each 
il , AECs can be obtained by intersecting the two sets  iT  and iF : 
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Fig. 6. Routine for constructing From-lists 

 
7.3 The aggregate interaction matrix  
The classification of literals into AECs leads to the discussion on aggregate interaction or 
flow that results among them. Let [ ]kkc ¢=C  denote the AECs interaction matrix for 
aggregate flow. Each entry kkc ¢ of C  is defined by the Boolean sum of the following equation:  
 

                        
k k

kk ij
i c j c

c r
¢

¢

Î Î

=åå                                     (9) 

 

C  is a square matrix of sizem m´ , where m  is the number of AECs in w . Each kkc ¢  
represents the summation of corresponding rows and columns of theR  matrix. Here, ( )sC  
denotes the C  matrix multiplied s  times by itself. As in the entries of the R  matrix, in C , 
if ( ) 0s

kkc ¢ >  for some 1,2,...s = , then there is an interaction between the two AECs k  and k ¢  
passing through s  aggregate interactions. Hence AEC k ¢  is accessible from AEC k . This 
leads to the definition of AEC accessibility. 

 
7.4 Classification of AECS: 
Another important characterization of AECs is whether an AEC is absorbing or  
transient, or maximal transient: 

 Absorbing AEC (AAEC): an AEC that does not access any other AEC but itself. 
Therefore, an AAEC kc ÍW  is one where: 
 

                                        0kkc ¢ =  , k k ¢" ¹                    (10) 
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 Transient AEC (TAEC): an AEC capable of accessing other AECs besides itself. A 
TAEC satisfies the following: 
 

                                           0kkc ¢$ > , k k ¢¹                     (11) 
 

 Maximal transient AEC (MTAEC): Is TAEC not accessed by any other TAEC beside 
itself, such that is must satisfy Eq.(9) together with: 
 

                                           0k kc ¢¢ ¢$ > , k k¢¢ ¢¹                       (12) 
 
7.5 Canonical form of the C  matrix 
To prepare the C  matrix for the layering phase, Its rows and columns are rearranged, such 
that the first m t-  ones contain the AAECs, while the remaining  t  ones contain the TAECs. 
When this segregation is applied to the C  matrix, then it is said to be in canonical form, 
denoted byC . A general structure of a C  matrix is given below: 

                         m t t

m t

t

-

æ ö÷ç ÷ç ÷ç ÷ç ÷- ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷= ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷çè ø

I 0

C

T Q

 

The resultant submatrices of  C  are as follows: 
(1) ( ) ( )m t m t- ´ -I  is the identity matrix, because an AAEC has only access to itself.  
(2) ( ) ( )m t t- ´0 consists entirely of zeros, since AAECs cannot access TAECs. 
(3) ( ) ( )t m t´ -T  represent accessibility from TAECs to each AAEC. 
(4) ( ) ( )t t´Q  depicts accessibility among TAECs. 

 
8. Phase III: Constructing the Hierarchy 
 

The construction of an AH is conducted in a recursive and bottom-up manner, where it 
starts from the lowest level of detail (level zero) and subsequently building higher levels 
based on the abstract class accessibility relationships that exist among different AECs. The 
layering process is designed to eliminate backtracking in the plan. 
Level zero is designated to include the details that can be postponed until the end when 
solving the problem hierarchically. However, leveln , the highest level of abstraction, includes 
the details that need to be considered in the beginning. Therefore, the algorithm builds the 
hierarchy in a bottom-up fashion, but expects it to be executed in a top-down fashion. 
 
8.1 Constraints for Loop-Free Level Assignments 
The assignment of literals to levels is based on the following constraints to guarantee loop 
free AHs. 

 Constraint 1(Literal Level Assignment Constraint):  Let ( )ilevel l denote the level of the 
design literal il in an AH. For all ,i jl l Î W , if ( ) 0s

ijr >  for some 0s > , then 
( ) ( )i jlevel l level l³  to avoid backtracking.  

The above constraint indicates that if il  accesses jl , then il  should at least be at the same or a 
higher level than. This confirms findings from previous literature on abstraction hierarchies 
for planning and problem solving,  particularly, Knoblock’s (Knoblock 1994) restriction to 
automatically generate loop-free AHs for planning and problem solving.  

 Constraint 2 (Communicating Literals Level Assignment Constraint):  Let 
( )ilevel l denote the level of design literal il in the AH. For all ,i jl l Î W , 

if ( , )i jcommunicate l l , then ( ) ( )i jlevel l level l= . 

If ( , )i jcommunicate l l , then by definition there exists 1( ) 0s
ijr >  and 2( ) 0s

jir >  for some 

1 2, 0s s > . Hence, by Constraint 1, ( ) ( )i jlevel l level l³  and ( ) ( )i jlevel l level l£ , which implies 
( ) ( )i jlevel l level l= . 
 Constraint 3 (AECs Level Assignment Constraint):  Let ( )klevel c denote the level of 

AEC k  in an AH. For all ,k kc c ¢ ÌW  where k k ¢¹ , if 0kkc ¢ > , then 
( ) ( )k klevel c level c ¢> to avoid backtracking. 

Constraint 3 is a direct result of applying Constraints 1 and 2. Based on the definition of 
accessibility, if ( ) 0s

kkc ¢ > then,  and i k j kl c l c ¢¢$ Î $ Î  such that ( ) 0s
ijr >  for some 0s > . Based on 

Constraint 1, ( ) ( )i jlevel l level l³ . Since classes consist of communicating literals, then 
( ) ( )k klevel c level c ¢> . But classes cannot communicate; therefore, it is not possible to have 
( ) ( )k klevel c level c ¢=  when ( ) 0s

kkc ¢ > . Therefore, ( ) ( )k klevel c level c ¢>  for ( ) 0s
kkc ¢ > , and hence kc  

need to be considered before kc ¢  to avoid backtracking. The following theorem shows that 
applying Constraint 3 will result in loop-free AHs.  
Theorem1. : Any AH developed using Constraint 3 is loop-free. 
Proof. 
Looping (backtracking) occurs if ,k kc c w¢$ Ì , where ( , )k kclassaccessible c c ¢  and 

( ) ( )k klevel c level c ¢> . Here it shows  that this never occurs, considering the three cases of 
AAECs, TAECs and MTAECs 

 Case I (AAECs): if kc is absorbing, then ( ) 0klevel c = . Also kc w¢$ Ì , 
where ( , )k kclassaccessible c c ¢ ; thus ( ) ( )kklevel c level c¢ > cannot occur. 

 Case II (MTAECs): if kc is a MTAEC, then ( )klevel c n= . Thus kc w¢$ Ì , where 
( ) ( )kklevel c level c¢ > . 

 Case III (TAECs): if kc is a TAEC, then it must be true that ,k kc w¢ ¢¢$ Ì , where 
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( ) ( ) ( )kk klevel c level c level c¢ ¢¢< < , and a reverse order can never occur. 
From these three cases, it can be concluded that ( ) ( )kklevel c level c¢ >  will never occur for 
all ( , )k kclassaccessible c c ¢ . Hence the AH is loop-free. 
This proof demonstrates that an AH developed by the methodology in hand will always 
produce loop-free AHs.  
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 Transient AEC (TAEC): an AEC capable of accessing other AECs besides itself. A 
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The resultant submatrices of  C  are as follows: 
(1) ( ) ( )m t m t- ´ -I  is the identity matrix, because an AAEC has only access to itself.  
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9. The Level Assignment Algorithm 
 

The Level Assignment Algorithm (LAA) generates AHs by assigning AECs to their 
appropriate level of abstraction. In LAA, the assignments are accomplished on the premises 
of the preceding developed constraints.  
 

 
Fig. 7. The level assignment algorithm 
 
 

k=k+1 

level(cBk B) =0 

Start  

Input :C (Ω not irreducible) 

Initialization 
level =0, 1k , assigned= {}, unassigned= 

{ mkck ,...,2,1:  } 

assigned=assigned + {cBk B} 
unassigned=unassigned - {cBk B} 

k=m

yes 

yes no

no 

level=level+1 

cBk  
Babsorbing? 

All cBk  

Stop 
Output: All classes 
assigned to levels 

 
For all 

k,i   unassigned 
jassigned 

is there  
0 and  0  kikj cc

,  

assigned=assigned + {cBk B} 
unassigned=unassigned - {cBk B} 

level(cBk B)=level 

no yes 

no 

yes 

10. Illustrative Example 
 

In this section, effectiveness of the developed methodology is demonstrated through the 
design of a layout for manufacturing plant that produces high voltage power cables. The 
plant produces a few variations of the high voltage cable shown in Fig. 8, based on customer 
specifications regarding conductor properties, insulation thickness, cable color coding, 
armoring metals, and so forth.  
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Fig. 8. Components of the high voltage cable 
 
As shown in Fig. 8, the high voltage power cable consists of three main aluminum cores, 
each of which has a diameter of 300 mm, and a neutral core of 185 mm diameter. The three 
main cores and the neutral core consist of 61 and 37 insulated stranded aluminum rods, 
respectively. The four cores are warped with polyethylene tape that is supported by a layer 
of insulation. Finally, the cable is armored with steel and wires for protection and is 
sheathed by an additional layer of insulated. The flow chart shown in Fig. 9, describes the 
flow of the cable across the different stations. 
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Fig. 9. Flowchart of the manufacturing processes for the high voltage cable 

 
10.1 Phase I: the literal space representation for the cable manufacturing company 
The high voltage cable facility consists of 74 machines and areas that are distributed within 
the cable manufacturing stations shown in Fig. 9 together with WIP areas, forklift parking, 
storages, warehouses, shop floor offices, lounges, etc. These areas are shown in Table 2. 

lBi B Code Name l Bi B Code Name 
0 PD1 Preliminary Drawing Station 38 SHS3 Sheathing Station 
1 PD2 ‘’ 39 SHS4 “ 
2 PD3 ‘’ 40 XL1 Cross-Linking Station 
3 PD4 ‘’ 41 XL2 “ 
4 ID1 Intermediary Drawing Station 42 XL3 “ 
5 ID2 “ 43 XL4 “ 
6 ID3 “ 44 CU1 Curing Machinery 
7 ID4 “ 45 CU2 “ 
8 ID5 “ 46 CU3 “ 
9 ID6 “ 47 CU4 “ 
10 ID7 “ 48 CO1 Cooling Station 
11 ID8 “ 49 CO2 “ 
12 DD1 Main Detailed Drawing Station 50 CO3 “ 
13 DD2 “ 51 CO4 “ 
14 DD3 “ 52 L1 Lay-up Station 
15 DD4 “ 53 L2 “ 
16 DD5 “ 54 A1 Armoring Station 
17 DD6 “ 55 A2 “ 
18 DD7 “ 56 PVC PVC Compound Unit 
19 DD8 “ 57 INS Inspection 
20 DD9 “ 58 QC Quality Control Unit 
21 DD10 “ 59 ST Storage 
22 DD11 “ 60 WH Warehouse 
23 DD12 “ 61 WIP1 Work-In-Process 
24 DD13 Neutral Detailed Drawing 

S i
62 WIP2 “ 

25 DD14 “ 63 WIP3 “ 
26 DD15 “ 64 WIP4 “ 
27 DD16 “ 65 FP1 Forklift Parking 
28 MCS1 Main Core Stranding 66 FP2 “ 
29 MCS2 “ 67 FP3 “ 
30 MCS3 “ 68 SC Scrap Center 
31 MCS4 “ 69 OFF Main Office 
32 MCS5 “ 70 MC CCV Maintenance 

C33 MCS6 “ 71 LOU1 Employee Lounge 
34 NCS1 Neutral Core Stranding 72 LOU2 “ 
35 NCS2 “ 73 DOK1 Docking Station 
36 SHS1 Sheathing Station 74 DOK2 “ 
37 SHS2 “     

Table 2. The machines and support areas for the high voltage cable facility 
 
There are 74 literals ( 74n = ) in the literal space W  for this problem. 

 Interactions among literals: The constraints of the problem define the interactions 
among the twelve literals listed above. One indicates causality based on 
accessibility definition between two literals, and zero otherwise. The causality links 
are depicted in the R  matrix provided in Table 3. 
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literals 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11 1 1 1 1 1 1 1 1
12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
14 1 1 1 1 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1 1
16 1 1 1 1
17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
18 1 1 1 1 1 1 1 1 1 1 1 1 1
19 1 1 1 1 1 1 1 1
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
22 1 1 1 1 1 1
23 1 1 1 1 1 1 1 1 1 1
24 1 1 1 1
25 1 1 1 1 1
26 1 1 1 1 1 1
27 1 1 1 1 1 1 1 1 1 1 1
28 1 1 1 1 1 1 1 1 1 1
29 1 1 1 1 1 1 1
30 1 1 1 1 1 1 1 1 1
31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32 1 1 1 1
33 1 1 1 1 1 1
34 1 1 1 1 1 1 1
35 1 1 1 1 1 1 1 1 1 1 1
36 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
37 1 1 1 1 1 1 1 1 1 1 1 1
38 1 1 1 1 1 1 1 1 1
39 1 1 1 1 1 1 1 1
40 1 1 1 1
41 1 1 1 1 1 1 1
42 1 1 1 1 1 1
43 1 1 1 1 1
44 1 1 1
45 1 1
46 1 1
47 1 1 1
48 1 1 1
49 1 1 1 1
50 1 1 1 1 1 1 1
51 1 1 1 1
52 1 1 1
53 1 1 1 1 1
54 1 1
55 1
56 1 1
57
58 1
59
60 1
61 1
62 1 1
63
64
65
66
67
68
69
70
71
72
73
74  

Table 3. The R matrix for the cable manufacturing facility  

 
10.2 Phase II: abstraction of the literal space of the cable manufacturing company 
Given the R  matrix for the cable manufacturing facility, the literal space is portioned into 
mutually exclusive AECs using ECFA. Each cluster of AECs constitutes literals that need to 
be considered simultaneously. AECs obtained from using ECFA are shown in Table 4. 
 
 
 
 
 
 
 
 
 
 
 
 

Classes Literals (lBBiBB)    Number of Literals 
(NBBkBB) 

Class 
Classification 

0 0, 1, 2, 3,  4 Transient 
1 4, 5, 6, 7, 8, 9, 10, 11 8 Transient 

2 
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 
23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 
61, 65, 34, 35, 62 

27 Transient 

3 
36, 37, 38, 39, 54, 55, 56, 40, 41, 42, 43, 
52, 53, 44, 45, 46, 47, 48, 49, 50, 51, 70, 
66, 63, 64,,   

25 Transient 

4 57, 58, 60, 67, 68, 72, 74  7 Absorbing 
5 59, 71, 73   3 Transient 

6 69 1 Maximal 
transient 

Table 4. The AECs for the cable manufacturing facility 
 
From Table 4, the abstracted literal space w  consists of seven AECs. This reduced the 
problem tremendously to a manageable size. 

 Aggregate interactions among AECs:  The aggregate interactions among AECs can be 
obtained using Eq.(9). Accordingly, the C  matrix is constructed and is transformed 
it to the canonical form C  which are provided below.  

The entries of C  and C  matrix are: 
 

1 1 0 0 0 0 0

0 1 1 0 0 0 0

0 0 1 1 0 0 0

0 0 0 1 1 0 0

0 0 0 0 1 0 0

1 0 0 1 0 1 0

0 0 0 1 1 1 1
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C  

 
10.3 Phase III: constructing the AH for the cable manufacturing case study 
In this phase, the interactions among the different AECs are utilized to recursively develop 
an AH to structure the cable manufacturing facility. As indicated in the methodology, AHs 
are designed to be loop-free. In terms of the problem in hand, obtaining partial solutions at a 
given abstraction level need not be altered as the process progresses hierarchically to more 
detailed levels.  
Each AEC is assigned to its appropriate abstraction level using LAA as shown in Figure 7. 
Table 5 illustrates the resultant abstraction hierarchy for the cable manufacturing facility. 
The levels of the hierarchy indicate the order in which each literal should be introduced to 
the problem gradually to facilitate loop-free problem execution. 
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literals 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11 1 1 1 1 1 1 1 1
12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
14 1 1 1 1 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1 1
16 1 1 1 1
17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
18 1 1 1 1 1 1 1 1 1 1 1 1 1
19 1 1 1 1 1 1 1 1
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
22 1 1 1 1 1 1
23 1 1 1 1 1 1 1 1 1 1
24 1 1 1 1
25 1 1 1 1 1
26 1 1 1 1 1 1
27 1 1 1 1 1 1 1 1 1 1 1
28 1 1 1 1 1 1 1 1 1 1
29 1 1 1 1 1 1 1
30 1 1 1 1 1 1 1 1 1
31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32 1 1 1 1
33 1 1 1 1 1 1
34 1 1 1 1 1 1 1
35 1 1 1 1 1 1 1 1 1 1 1
36 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
37 1 1 1 1 1 1 1 1 1 1 1 1
38 1 1 1 1 1 1 1 1 1
39 1 1 1 1 1 1 1 1
40 1 1 1 1
41 1 1 1 1 1 1 1
42 1 1 1 1 1 1
43 1 1 1 1 1
44 1 1 1
45 1 1
46 1 1
47 1 1 1
48 1 1 1
49 1 1 1 1
50 1 1 1 1 1 1 1
51 1 1 1 1
52 1 1 1
53 1 1 1 1 1
54 1 1
55 1
56 1 1
57
58 1
59
60 1
61 1
62 1 1
63
64
65
66
67
68
69
70
71
72
73
74  

Table 3. The R matrix for the cable manufacturing facility  

 
10.2 Phase II: abstraction of the literal space of the cable manufacturing company 
Given the R  matrix for the cable manufacturing facility, the literal space is portioned into 
mutually exclusive AECs using ECFA. Each cluster of AECs constitutes literals that need to 
be considered simultaneously. AECs obtained from using ECFA are shown in Table 4. 
 
 
 
 
 
 
 
 
 
 
 
 

Classes Literals (lBBiBB)    Number of Literals 
(NBBkBB) 

Class 
Classification 

0 0, 1, 2, 3,  4 Transient 
1 4, 5, 6, 7, 8, 9, 10, 11 8 Transient 

2 
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 
23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 
61, 65, 34, 35, 62 

27 Transient 

3 
36, 37, 38, 39, 54, 55, 56, 40, 41, 42, 43, 
52, 53, 44, 45, 46, 47, 48, 49, 50, 51, 70, 
66, 63, 64,,   

25 Transient 

4 57, 58, 60, 67, 68, 72, 74  7 Absorbing 
5 59, 71, 73   3 Transient 

6 69 1 Maximal 
transient 

Table 4. The AECs for the cable manufacturing facility 
 
From Table 4, the abstracted literal space w  consists of seven AECs. This reduced the 
problem tremendously to a manageable size. 

 Aggregate interactions among AECs:  The aggregate interactions among AECs can be 
obtained using Eq.(9). Accordingly, the C  matrix is constructed and is transformed 
it to the canonical form C  which are provided below.  

The entries of C  and C  matrix are: 
 

1 1 0 0 0 0 0

0 1 1 0 0 0 0

0 0 1 1 0 0 0

0 0 0 1 1 0 0

0 0 0 0 1 0 0

1 0 0 1 0 1 0

0 0 0 1 1 1 1

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷= ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷çè ø

C               

1 0 0 0 0 0 0
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0 0 1 1 0 0 0
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1 0 0 0 1 0 0

0 1 0 0 1 1 0

1 0 0 0 1 1 1
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C  

 
10.3 Phase III: constructing the AH for the cable manufacturing case study 
In this phase, the interactions among the different AECs are utilized to recursively develop 
an AH to structure the cable manufacturing facility. As indicated in the methodology, AHs 
are designed to be loop-free. In terms of the problem in hand, obtaining partial solutions at a 
given abstraction level need not be altered as the process progresses hierarchically to more 
detailed levels.  
Each AEC is assigned to its appropriate abstraction level using LAA as shown in Figure 7. 
Table 5 illustrates the resultant abstraction hierarchy for the cable manufacturing facility. 
The levels of the hierarchy indicate the order in which each literal should be introduced to 
the problem gradually to facilitate loop-free problem execution. 
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Level Classes Literals (lBiBB) Number of 
Literals (NBBkBB) 

6 6 69 1 
5 5 59, 71, 73   3 
4 0 0, 1, 2, 3,  4 
3 1 4, 5, 6, 7, 8, 9, 10, 11 8 

2 2 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 
26, 27, 28, 29, 30, 31, 32, 33, 61, 65, 34, 35, 62 27 

1 3 36, 37, 38, 39, 54, 55, 56, 40, 41, 42, 43, 52, 53, 44, 
45, 46, 47, 48, 49, 50, 51, 70, 66, 63, 64 25 

0 4 57, 58, 60, 67, 68, 72, 74  7 
Table 5. The levels of the Abstraction hierarchy for the high voltage cable facility 
 
Executing the abstraction hierarchy top-down and feeding results to a facility layout routine 
result in the layout provided in Fig 10.  
 

 
Fig 10. Facility layout for the High voltage cable manufacturing facility 

 
11. Conclusions 
 

This research establishes a rigid foundation and a general platform that produces consistent 
abstraction spaces and hierarchies applicable to various contexts, especially those involving 
planning and problem solving. The methodology presented adheres to the efficiency 
measures and specifications prescribed by the latest advances of AI-based abstraction 
theory. Yet, our hierarchical abstraction methodology exhibits additional practicality as it 
integrates the theory of abstraction with the convenient representation scheme of Design 
Structured Matrices. This expands the application of abstraction theories and enhances their 

15 (DD4)
16 sq. m.

3 (PD4)
8 sq. m.

MCS
16 sq. m.

28 (WIP1)
16 sq. m.

DD13
16 sq. m.

16(DD5)
16 sq. m.

DD14
16 sq. m.

12 (DD1)
16 sq. m.

21 (DD10)
16 sq. m.

13 (DD2)
16 sq. m.

DD15
16 sq. m.

17 (DD6)
16 sq. m.

18 (DD7)
16 sq. m.

19 (DD8)
16 sq. m.

25 (DD14)
8 sq. m.

DD16
16 sq. m.

20 (DD9)
16 sq. m.

22 (DD11)
16 sq. m.

14 (DD3)
16 sq. m.

DD17
16 sq. m.

26 (DD15)
8 sq. m.

 (DD23)
8 sq. m.

 (DD22)
8 sq. m.

27 (DD16)
8 sq. m.

23 (DD12)
16 sq. m.

MCS
16 sq. m.

MC
16 sq

NCS
16 sq. m.

WIP 2
8 sq. m.

FP1
4 sq. m.

 
XL3

36 sq. m.

Layout Iteration 2

XL2
36 sq. m.

XL1
36 sq. m.

XL4
36 sq. m.

XL5
52 sq. m.

XL6
52 sq. m. CU6

28 sq. m.

CU5
28 sq. m.

CO5
20 sq. m.

CO6
20 sq. m.

MS
24 sq. m.

CU4
52 sq. m.

CO4
20 sq. m.

L1
12

 s
q.

 m
.

CU3
52 sq. m.

CU2
52 sq. m.

CU1
52 sq. m.

CO3
20 sq. m.

CO1
20 sq. m.

LOU2
12 sq. m.

CO2
20 sq. m.

PVC
28 sq. m.

FP3
12 sq. m.

A1
20 sq. m.

FP2
12 sq. m.

A2
20 sq. m.

WIP4
16 sq. m.

SH2
16 sq. m.

WIP3
20 sq. m.

SH1
16 sq. m.

QC
32 sq. m.

SH3
16 sq. m.

SH4

INS
52 sq. m

INS

SC
44 sq. m

WH
204 sq. m

DOK2
116 sq. m

feasibility to be used in practice. Within the presented methodology, we have also 
developed several effective methods to efficiently structure and analyze systems to be 
hierarchically decomposed. These methods were integrated from graph, relation and matrix 
theories. In addition we have utilized Markov Chains classes’ classification methods to 
identify special behavior in system components and to detect in advance whether or not a 
system representation is better using hierarchies. The strength of the methodology relies on 
its ability to structure problems in abstraction hierarchies that result in no backtracking. 
However, the efficiency of the methodology depends on the context to which it is applied. 
That is, little gain is expected to be realized when applying the methodology to domains 
that undergo significant interaction due to the irreducibility problem. The steps of the 
developed methodology are illustrated in stratifying the design aspects of high voltage cable 
company into multiple levels of abstraction. This advantageously contributed in introducing 
the design details of the problem gradually as needed earlier in conceptual stage of planning 
of the facility. Future research is directed towards quantifying binary relations of literals, 
developing measures of efficiency and means of eliminating irreducability and inclusion of 
initial and goal states to the literal space. 
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