
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

Abstraction Hierarchies for Conceptual Engineering Design 47

Abstraction Hierarchies for Conceptual Engineering Design

Esra Aleisa

X

Abstraction Hierarchies for
Conceptual Engineering Design

Esra Aleisa, Ph.D.

Kuwait University
Kuwait

Abstract
Research in Artificial Intelligence has been a forerunner in developing the most detailed and
formalized theories that characterize and create consistent abstraction hierarchies for
planning and problem solving. However, the representational methods to exploit these
theories are complicated, which limit their application into many disciplines, specifically
engineering. The objective of this chapter is threefold: to simplify the representation of
current AI-based planning, to identify the properties that ensure effective development of
abstraction hierarchies, and accordingly, to develop a methodology for effective and
consistent generation of abstraction hierarchies. The proposed methodology achieves these
objectives by integrating the well-established AI hierarchical abstraction theories with
Steward’s practical Design Structure Matrices (DSM). The developed methodology consists
of three phases. In the first phase, the literal space and its interactions are formally defined
and their interactions are represented as a DSM. The second phase involves clustering
literals to abstract classes according to the manner by which they communicate. Finally, in
the third phase, the abstract literals are stratified into a loop-free abstraction hierarchy. The
approach expands the capabilities of AI-based planning and problem solving abstraction
hierarchies and improves their functionality by enabling integration and compatibility with
practical DSM planning tools. The effectiveness of the developed methodology is
demonstrated by applying it to the conceptual design on a high voltage cable manufactring
facility.
Keywords: Abstraction; Design Structured Matrix; Hierarchy; Planning; State-Space Representation

1. Introduction

Abstraction Hierarchies (AHs) are used commonly to represent various large-scale and
complex problems (Lam 1996; Holte & Choueiry 2003; Sebastia, Onaindia et al. 2006). Their
values have been realized across a wide spectrum of applications mainly to reduce the
complexity of problems and to improve solution efficiency (Holte & Choueiry 2003; Aleisa
2005). AHs are also used to speed up the development time, save resources, and provide
aggregate intelligent output (Goldin & Klahr 1981; Aleisa 2008). In addition, AH produces
designs that are easier to interpret validate and update compared to not using hierarchies.
Moreover, AHs help explore design alternatives and produce intelligent decisions at an

3

www.intechopen.com

 New, Advanced Technologies48

early stage of the design or plan (Sacerdoti 1974; Taylor & Henderson 1994; Reddy 1996) .
Furthermore, AHs assist in focusing on important aspects of the design problem(Hoover &
Rinderle 1994; Sarjoughian, Zeigler et al. 1998; Zeigler, Praehofer et al. 2000). For
computational efficiency, AHs have also allows parallel execution of models (Kiran,
Cetinkaya et al. 2001), facilitates the utilization of the off-shelf models legacy (McGraw &
MacDonald), and enhances model reusability and rapid prototyping (Zeigler 1987; Lin, Yeh
et al. 1996; Pidd 1996; Praehofer 1996; Chen & Ghosh 1997; Pidd & Castro 1998; Aleisa & Lin
2008). However, despite AHs’ significant benefits, there is a lack of formal methodologies
for hierarchical abstraction generation suitable for engineering design. In fact, hierarchical
abstraction in general has been described as a “black art” (Knoblock 1994). In this research,
we aim to provide a formal hierarchical abstraction methodology to represent and plan
engineering design problems at multiple levels of abstraction. Such that partial design
solutions obtained at some abstraction level is preserved while the design is augmented at
more detailed levels. The objectives of the methodology are three fold:

(1) to develop a representation for engineering design that supports hierarchical
abstraction,

(2) to specify the clustering criteria according to which the abstraction process is
defined, and

(3) to develop a layering method, by which clusters of abstracted design parameters
should be stratified in a hierarchy, without inducing any backtracking in the design
process.

In other words, this research proposes a representation, extracts properties that characterize
efficient abstraction methods, and proposes a methodology that utilizes an AI-based
analysis of efficient systems but overcomes their complications. The methodology consists of
three phases. In Phase I, a literal space representation is proposed to represent planning
problems in a DSM-based format. In Phase II, the interactions within the literal space
framework are utilized to cluster literals into abstract classes. Finally, in Phase III the
abstract classes are stratified to construct loop-free abstraction hierarchies.
The reminder of this chapter is structured as follows: first we provide a brief literature
review of some of the most persistent abstraction systems and the reason why they are
cumbersome when applied to engineering designs. This necessitates the need for this
research. Next we dedicate a separate section to explain each of the three developmental
phases of our hierarchical abstraction methodology. Then we provide some analysis on the
methodology and theoretically proof that it is loop-free. Finally, we demonstrate the
effectiveness of the methodology on the design process of a local high voltage cable
manufacturing facility.

2. Background

As indicated earlier, AHs have been used to investigate and explore different alternatives
earlier in the plan. Moreover, AHs have assisted analysts in focusing on vital aspects of a
problem (Hoover & Rinderle 1994; Sarjoughian, Zeigler et al. 1998), leaving inferior details
to be determined later. Despite AHs’ benefits, the process of developing hierarchical models
is more of an art form (Knoblock 1994). The most detailed analysis of abstraction was
conducted by research in Artificial Intelligence, specifically, in the fields of planning and
problem solving (Giunchiglia & Walsh 1992; Armano, Cherchi et al. 2003). ABSTRIPS

(Sacerdoti 1974; Giunchiglia 1999), one of the earliest abstractions, uses a state-space
representation based on a STRIPS (Stanford University Research Institute Planning System)
framework. The successors of ABSTRIPS are many, including PRODIGY/EBL (Minton
1988), ABTWEAK (Yang 1990), PABLO (Christensen 1991), ALPINE(Knoblock 1994),
HIGHPOINT (Bacchus & Yang 1992) and more (see (Friske & Ribeiro 2006; Marie, Priyang et
al. 2008)). A comparison of the most persistent abstraction research is provided in Table 1.

3. The Effectiveness of Abstraction Methods and Applications

Hierarchical models are a result of an iterative application of some abstraction methods.
That is, an ordered sequence of abstraction spaces constitutes the skeleton of an abstraction
hierarchy (Knoblock 1994; Giunchiglia 1999). Therefore, since abstraction processes are the
building blocks of an AH, the efficiency of the abstraction process directly influences that of
the AH. For this reason, the properties of effective abstraction need to be thoroughly
investigated, which is the topic of the next section.

Author(s) Measure of
detail Abstraction Approach Autom-

atic?
Assumptions/ Notes/

Contributions
Hobbs ’85
Subramanian
‘89

Piece of data Reasoning arguments -
Suggested abstraction by
proposing arguments without
developing an algorithm

Knoblock ‘90
Ellman ‘93 Piece of data Relevance reasoning -

Showed computational savings
gained by using abstractions both
empirically and theoretically when
applying relevance reasoning
approaches
No backtracking is assumed

Knoblock ‘94 Domain
dependent

tractable algorithm
that drops irrelevant
literals from original
 problem

Yes
Domain independent, only input is
problem formulation, satisfies
monotonicity property

Giunchiglia &
Walsh ‘92

Elements of the
system or the
language

Mapping between
systems, set theory
 and reasoning

-
Established the foundation for
abstraction theory and classified
various types of abstractions

Bacchus & Yang
’92 Piece of data

Constantly removing
details to simplify the
 search space

Yes

Discussed the Downward refinement
property (DRP) and showed how
hierarchical problem solving
techniques that lack this property has
no advantage over nonhierarchical
methods

Holte et al.’96 Piece of data

Used caching
 techniques to avoid expanding
the same searches in successive
 searches

Yes An admissible A* search technique

Lu & Tcheng ‘91

Number of
decision
variable in the
model

Combined inductive learning
approaches with optimization
techniques to evaluate
decisions made at different
levels of abstraction

Yes

Proposed AIMS (Adaptive and
integrative modeling system)
methodology that automatically
abstracts detailed systems using
machine learning approaches

Pooley ‘91 Atomic
processes

Abstract using
graphical
technique
configuration
 diagrams

No
Atomic processes from the activity
diagram are coupled to form
configuration diagrams

www.intechopen.com

Abstraction Hierarchies for Conceptual Engineering Design 49

early stage of the design or plan (Sacerdoti 1974; Taylor & Henderson 1994; Reddy 1996) .
Furthermore, AHs assist in focusing on important aspects of the design problem(Hoover &
Rinderle 1994; Sarjoughian, Zeigler et al. 1998; Zeigler, Praehofer et al. 2000). For
computational efficiency, AHs have also allows parallel execution of models (Kiran,
Cetinkaya et al. 2001), facilitates the utilization of the off-shelf models legacy (McGraw &
MacDonald), and enhances model reusability and rapid prototyping (Zeigler 1987; Lin, Yeh
et al. 1996; Pidd 1996; Praehofer 1996; Chen & Ghosh 1997; Pidd & Castro 1998; Aleisa & Lin
2008). However, despite AHs’ significant benefits, there is a lack of formal methodologies
for hierarchical abstraction generation suitable for engineering design. In fact, hierarchical
abstraction in general has been described as a “black art” (Knoblock 1994). In this research,
we aim to provide a formal hierarchical abstraction methodology to represent and plan
engineering design problems at multiple levels of abstraction. Such that partial design
solutions obtained at some abstraction level is preserved while the design is augmented at
more detailed levels. The objectives of the methodology are three fold:

(1) to develop a representation for engineering design that supports hierarchical
abstraction,

(2) to specify the clustering criteria according to which the abstraction process is
defined, and

(3) to develop a layering method, by which clusters of abstracted design parameters
should be stratified in a hierarchy, without inducing any backtracking in the design
process.

In other words, this research proposes a representation, extracts properties that characterize
efficient abstraction methods, and proposes a methodology that utilizes an AI-based
analysis of efficient systems but overcomes their complications. The methodology consists of
three phases. In Phase I, a literal space representation is proposed to represent planning
problems in a DSM-based format. In Phase II, the interactions within the literal space
framework are utilized to cluster literals into abstract classes. Finally, in Phase III the
abstract classes are stratified to construct loop-free abstraction hierarchies.
The reminder of this chapter is structured as follows: first we provide a brief literature
review of some of the most persistent abstraction systems and the reason why they are
cumbersome when applied to engineering designs. This necessitates the need for this
research. Next we dedicate a separate section to explain each of the three developmental
phases of our hierarchical abstraction methodology. Then we provide some analysis on the
methodology and theoretically proof that it is loop-free. Finally, we demonstrate the
effectiveness of the methodology on the design process of a local high voltage cable
manufacturing facility.

2. Background

As indicated earlier, AHs have been used to investigate and explore different alternatives
earlier in the plan. Moreover, AHs have assisted analysts in focusing on vital aspects of a
problem (Hoover & Rinderle 1994; Sarjoughian, Zeigler et al. 1998), leaving inferior details
to be determined later. Despite AHs’ benefits, the process of developing hierarchical models
is more of an art form (Knoblock 1994). The most detailed analysis of abstraction was
conducted by research in Artificial Intelligence, specifically, in the fields of planning and
problem solving (Giunchiglia & Walsh 1992; Armano, Cherchi et al. 2003). ABSTRIPS

(Sacerdoti 1974; Giunchiglia 1999), one of the earliest abstractions, uses a state-space
representation based on a STRIPS (Stanford University Research Institute Planning System)
framework. The successors of ABSTRIPS are many, including PRODIGY/EBL (Minton
1988), ABTWEAK (Yang 1990), PABLO (Christensen 1991), ALPINE(Knoblock 1994),
HIGHPOINT (Bacchus & Yang 1992) and more (see (Friske & Ribeiro 2006; Marie, Priyang et
al. 2008)). A comparison of the most persistent abstraction research is provided in Table 1.

3. The Effectiveness of Abstraction Methods and Applications

Hierarchical models are a result of an iterative application of some abstraction methods.
That is, an ordered sequence of abstraction spaces constitutes the skeleton of an abstraction
hierarchy (Knoblock 1994; Giunchiglia 1999). Therefore, since abstraction processes are the
building blocks of an AH, the efficiency of the abstraction process directly influences that of
the AH. For this reason, the properties of effective abstraction need to be thoroughly
investigated, which is the topic of the next section.

Author(s) Measure of
detail Abstraction Approach Autom-

atic?
Assumptions/ Notes/

Contributions
Hobbs ’85
Subramanian
‘89

Piece of data Reasoning arguments -
Suggested abstraction by
proposing arguments without
developing an algorithm

Knoblock ‘90
Ellman ‘93 Piece of data Relevance reasoning -

Showed computational savings
gained by using abstractions both
empirically and theoretically when
applying relevance reasoning
approaches
No backtracking is assumed

Knoblock ‘94 Domain
dependent

tractable algorithm
that drops irrelevant
literals from original
 problem

Yes
Domain independent, only input is
problem formulation, satisfies
monotonicity property

Giunchiglia &
Walsh ‘92

Elements of the
system or the
language

Mapping between
systems, set theory
 and reasoning

-
Established the foundation for
abstraction theory and classified
various types of abstractions

Bacchus & Yang
’92 Piece of data

Constantly removing
details to simplify the
 search space

Yes

Discussed the Downward refinement
property (DRP) and showed how
hierarchical problem solving
techniques that lack this property has
no advantage over nonhierarchical
methods

Holte et al.’96 Piece of data

Used caching
 techniques to avoid expanding
the same searches in successive
 searches

Yes An admissible A* search technique

Lu & Tcheng ‘91

Number of
decision
variable in the
model

Combined inductive learning
approaches with optimization
techniques to evaluate
decisions made at different
levels of abstraction

Yes

Proposed AIMS (Adaptive and
integrative modeling system)
methodology that automatically
abstracts detailed systems using
machine learning approaches

Pooley ‘91 Atomic
processes

Abstract using
graphical
technique
configuration
 diagrams

No
Atomic processes from the activity
diagram are coupled to form
configuration diagrams

www.intechopen.com

 New, Advanced Technologies50

Yager ‘94 Piece of data Neural Networks Yes

Can Handle nonnumeric data,
developed a function that
transforms a group of data into a
single data point

Hoover &
Rinderle ‘94

System
parameters/
variables

Relevance reasoning, concept of
focusing abstractions and
Gröbner bases

Yes

Based on Gröbner bases, assumed
focusing abstractions change the
scope not accuracy, limited to
polynomial equation formulations

Kramer &
Unger’92

Number of
operators in
each level

Subsuming Abstraction Yes

The process is type oriented
operator abstracting process that
aims on diminishing the number of
operators in the detailed level

Taylor &
Henderson ‘94

Features and
forms of a
mechanical
design

Generalization/ specialization
and aggregation/
decomposition

No

Showed the relationships between
forms and features in a mechanical
design and showed how abstraction
could aid the design process

Bisantz &
Vicente ‘94

Components
and detailed
functions of a
system

Aggregation/
decomposition
and a physical/
functional
abstraction
approaches

No

Presented how to abstract a system
using two orthogonal dimensions
simultaneously, the part/whole and
the physical functional dimension

Reddy ‘96
Details of
system design
specifications

Form empirical models from
training examples using
multiple learning algorithms

Yes

Multiple learning approaches
includes: statistical regression,
neural networks, inductive learning
algorithms

Fox & Long ‘95 Details of a plan Subsumption abstractions -
Discussed how DRP would indicate
if a hierarchical decomposition is
worthwhile

Sisti & Farr ‘98
Depends on the
model to be
abstracted

Abstracted
Models
 using
boundary,
 behavior and
 form abstractions

No

Objective was to improve accuracy
at aggregate level, compared the
terms accuracy, complexity and
level of detail and showed how to
create model hierarchies that can
be interconnected and reused

Table 1. A comparison of the most persistent research in abstraction

4. The Seven Desirable Properties of Abstraction Methods

This section extracts properties that would render an abstraction method to be effective.
These include the following characteristics:
(1) Formal. Abstraction methodologies are by large case-dependent, with little to be

generalized. Thus, there is a need to develop abstraction methods using well-structured
languages and consistent terminology, and to support them with a sound theoretical
basis.

(2) Complete. A complete abstraction hierarchy is one that achieves all the steps and
preconditions required (Russell & Norvig 1995). On the other hand, an incomplete
abstraction hierarchy is described as a theory-decreasing (TD) abstraction (Giunchiglia
& Walsh 1992). TD abstractions exhibit deficiency by losing information while
abstracting, therefore lacking integrity and affecting the quality of obtained abstract
solutions.

(3) Computable. Despite the indispensable need for expertise to articulate effective
abstractions, abstraction methods must consist of quantifiable and computable
techniques to enable automation(Friske & Ribeiro 2006) and generalization(Pels 2006).

(4) Produce simpler models. When applied to a problem, an abstraction method should
produce simpler models that are easier to understand, handle, and solve compared to
the original problem representation (Zeigler 1976; Lu & Tcheng 1991; Manfaat, Duffy et
al. 1998; Kemke & Walker 2006).

(5) Tractable. Abstraction methods should not involve computational
complexities(Gimenez & Jonsson 2008). If so, then the purpose of abstraction is defeated
and abstraction will be futile.

(6) Reduce cost. For abstraction to be effective, the cost of creating an abstract model,
solving the problem with the abstract model and mapping the solution back to the
original representation should be inexpensive, compared to solving the problem
directly using its original (or detailed) representation (Bacchus & Yang 1992; Levy 1994;
Debbie 2003; Zucker 2003)

(7) Produce consistent and cumulative refinement. This is achieved when backtracking is
avoided during the exploitation of an abstraction hierarchy. Eliminating backtracking
means that there is no need to resolve any established elements from higher abstract
levels in the abstraction hierarchy. As this property is particularly important for
achieving efficient designs, it is further elaborated in the next section.

4.1 Consistent and cumulative refinement (ccr) properties
This chapter uses the term consistent and cumulative refinement (CCR) properties to refer to
properties that preserve intermediate solutions or results obtained at abstract levels. The
essence of the CCR properties is that already established aspects at higher abstraction levels
need not be altered as more details are introduced at lower abstraction levels(Zucker 2003).
Among the most formalized CCR properties is the Ordered Monotonicity Property (OMP)
of Knoblock (Knoblock 1990; Knoblock 1994). According to Knoblock (Knoblock 1994), OMP
guarantees that the structure of an abstract solution is not changed by the process of refining
it. For this property to hold, the abstraction hierarchy needs to partition a problem, such that
the parts of the problem already solved in an abstract space are maintained while the
remaining parts of the problem are solved. OMP has the advantage of being
computationally tractable, while it is also able to capture a large class of abstraction
problems. However, OMP is a heuristic, and thus does not guarantee a reduction of the
search space.

Another CCR property is the Downward Refinement Property (DRP) (Bacchus & Yang 1992;
Helmert 2006). A planning domain is said to possess DRP if all abstract plans can be
consistently refined without backtracking across abstraction levels (Fox & Long 1995).
Bacchus and Yang (Bacchus & Yang 1992) emphasized that when DRP holds, backtracking
needs never occur across various levels of the abstraction hierarchy, indicating a hierarchical
decomposition is worthwhile(Zucker 2003). However, being a heuristic, DRP encounters
difficulties similar to those of OMP.

www.intechopen.com

Abstraction Hierarchies for Conceptual Engineering Design 51

Yager ‘94 Piece of data Neural Networks Yes

Can Handle nonnumeric data,
developed a function that
transforms a group of data into a
single data point

Hoover &
Rinderle ‘94

System
parameters/
variables

Relevance reasoning, concept of
focusing abstractions and
Gröbner bases

Yes

Based on Gröbner bases, assumed
focusing abstractions change the
scope not accuracy, limited to
polynomial equation formulations

Kramer &
Unger’92

Number of
operators in
each level

Subsuming Abstraction Yes

The process is type oriented
operator abstracting process that
aims on diminishing the number of
operators in the detailed level

Taylor &
Henderson ‘94

Features and
forms of a
mechanical
design

Generalization/ specialization
and aggregation/
decomposition

No

Showed the relationships between
forms and features in a mechanical
design and showed how abstraction
could aid the design process

Bisantz &
Vicente ‘94

Components
and detailed
functions of a
system

Aggregation/
decomposition
and a physical/
functional
abstraction
approaches

No

Presented how to abstract a system
using two orthogonal dimensions
simultaneously, the part/whole and
the physical functional dimension

Reddy ‘96
Details of
system design
specifications

Form empirical models from
training examples using
multiple learning algorithms

Yes

Multiple learning approaches
includes: statistical regression,
neural networks, inductive learning
algorithms

Fox & Long ‘95 Details of a plan Subsumption abstractions -
Discussed how DRP would indicate
if a hierarchical decomposition is
worthwhile

Sisti & Farr ‘98
Depends on the
model to be
abstracted

Abstracted
Models
 using
boundary,
 behavior and
 form abstractions

No

Objective was to improve accuracy
at aggregate level, compared the
terms accuracy, complexity and
level of detail and showed how to
create model hierarchies that can
be interconnected and reused

Table 1. A comparison of the most persistent research in abstraction

4. The Seven Desirable Properties of Abstraction Methods

This section extracts properties that would render an abstraction method to be effective.
These include the following characteristics:
(1) Formal. Abstraction methodologies are by large case-dependent, with little to be

generalized. Thus, there is a need to develop abstraction methods using well-structured
languages and consistent terminology, and to support them with a sound theoretical
basis.

(2) Complete. A complete abstraction hierarchy is one that achieves all the steps and
preconditions required (Russell & Norvig 1995). On the other hand, an incomplete
abstraction hierarchy is described as a theory-decreasing (TD) abstraction (Giunchiglia
& Walsh 1992). TD abstractions exhibit deficiency by losing information while
abstracting, therefore lacking integrity and affecting the quality of obtained abstract
solutions.

(3) Computable. Despite the indispensable need for expertise to articulate effective
abstractions, abstraction methods must consist of quantifiable and computable
techniques to enable automation(Friske & Ribeiro 2006) and generalization(Pels 2006).

(4) Produce simpler models. When applied to a problem, an abstraction method should
produce simpler models that are easier to understand, handle, and solve compared to
the original problem representation (Zeigler 1976; Lu & Tcheng 1991; Manfaat, Duffy et
al. 1998; Kemke & Walker 2006).

(5) Tractable. Abstraction methods should not involve computational
complexities(Gimenez & Jonsson 2008). If so, then the purpose of abstraction is defeated
and abstraction will be futile.

(6) Reduce cost. For abstraction to be effective, the cost of creating an abstract model,
solving the problem with the abstract model and mapping the solution back to the
original representation should be inexpensive, compared to solving the problem
directly using its original (or detailed) representation (Bacchus & Yang 1992; Levy 1994;
Debbie 2003; Zucker 2003)

(7) Produce consistent and cumulative refinement. This is achieved when backtracking is
avoided during the exploitation of an abstraction hierarchy. Eliminating backtracking
means that there is no need to resolve any established elements from higher abstract
levels in the abstraction hierarchy. As this property is particularly important for
achieving efficient designs, it is further elaborated in the next section.

4.1 Consistent and cumulative refinement (ccr) properties
This chapter uses the term consistent and cumulative refinement (CCR) properties to refer to
properties that preserve intermediate solutions or results obtained at abstract levels. The
essence of the CCR properties is that already established aspects at higher abstraction levels
need not be altered as more details are introduced at lower abstraction levels(Zucker 2003).
Among the most formalized CCR properties is the Ordered Monotonicity Property (OMP)
of Knoblock (Knoblock 1990; Knoblock 1994). According to Knoblock (Knoblock 1994), OMP
guarantees that the structure of an abstract solution is not changed by the process of refining
it. For this property to hold, the abstraction hierarchy needs to partition a problem, such that
the parts of the problem already solved in an abstract space are maintained while the
remaining parts of the problem are solved. OMP has the advantage of being
computationally tractable, while it is also able to capture a large class of abstraction
problems. However, OMP is a heuristic, and thus does not guarantee a reduction of the
search space.

Another CCR property is the Downward Refinement Property (DRP) (Bacchus & Yang 1992;
Helmert 2006). A planning domain is said to possess DRP if all abstract plans can be
consistently refined without backtracking across abstraction levels (Fox & Long 1995).
Bacchus and Yang (Bacchus & Yang 1992) emphasized that when DRP holds, backtracking
needs never occur across various levels of the abstraction hierarchy, indicating a hierarchical
decomposition is worthwhile(Zucker 2003). However, being a heuristic, DRP encounters
difficulties similar to those of OMP.

www.intechopen.com

 New, Advanced Technologies52

5. Integrating the Design Structured Matrix to AI Hierarchical Abstraction

Formulated by Steward (Steward 1981), the Design Structure Matrix (DSM) a.k.a.
dependency structure matrix, is a project modeling tool to plan, represent and analyze the
flow of information among different tasks of complex design projects (McCord 1993;
Browning 2001). DSM is a square binary matrix with rows and columns, where is the
number of design tasks under consideration (Warfield 1973). If task i is dependent on task
j , then the entry of the respective column j and row i is unity or marked with an
X (Browning 1999; Yassine, Falkenburg et al. 1999). Off-diagonal marks represent coupling
between tasks, marks in the upper triangle in DSM represent feedforward coupling, and
marks in the lower triangle represent feedback coupling (Rogers 1996). The DSM tasks are
rearranged in order to eliminate feedback marks. Then, the DSM is partitioned into blocks of
tasks that simultaneously depend on one another. Three different relationships can be
identified from a partitioned DSM: sequential, parallel and coupled tasks. A task can be
performed sequentially if its row contains a mark just below the diagonal; a task is parallel if
there are no marks linking it with other tasks; coupled tasks are ones that hinder a
partitioned DSM to be lower triangular (Yassine, Falkenburg et al. 1999). Finally, feedback
marks are removed from the DSM in a processes called tearing (Steward 1981) to initiate
sequencing within blocks (Eppinger, Whitney et al. 1994).
This research intends to utilize the DSM representational advantage to simplify AI-based
abstraction hierarchies.

6. Hierarchical Abstraction Methodology for Structuring Literal Spaces

The presented hierarchical abstraction methodology consists of three phases: representation,
abstraction and layering. The representation phase were literal spaces are formulated into a
transposed DSM. In the second phase, the abstraction phase, the problem literals are
clustered into mutually-exclusive abstract equivalence classes (AECs). Finally, in the third
phase, the layering phase, the different AECs are stratified into multiple levels of a hierarchy
using a level assignment algorithm (LAA). The three phases of the methodology are
illustrated in Fig. 1and are discussed in greater detail in the following sections.

Fig. 1. Hierarchical Abstraction Methodology

6.1 Phase I: The literal space representation
Let li denote a positive or a negative literal i , where a literal is defined as an atomic expression
or the negation of an atomic expression (Luger 2002). The literal space Ω is a set that consists of
all literals under consideration. Similarly, O denotes the set of operators, (1,2,...,k p=), such
that 1 2{ , ,..., }pO o o o= . Analogous to the STRIPS framework, for each operator , let kp be the set
that contains all the preconditions. A precondition set kp is the set of some literals il Î W that
need to be achieved prior to the application of an operator. Similarly, we define ke to be the set of
effects of operator ko , where an effect is the set of some achieved literals il Î W that resulted from
applying an operator. For that we write each operator a as an ordered tuple of (,)o p e . It is
possible for kp or to be empty, indicating that a specific operator k does not require
preconditions nor result in any effects respectively. As an example, describes an operator ko with
no preconditions and literal il of effects, which is typical for initialization operators.

Primary Data: BF and R matrices

Irreducible? Cannot obtain
multilevel model

yes

no

Identify department classes

Transform into canonical Form: C

Identify aggregate
interaction and construct C

matrix

Update
(if possible)

Multilevel model LAA

To list sand
From lists
Routines

k k

kk ij
i c j c

c a

 II.
 A

bs
tr

ac
tio

n
III

. L
ay

er
in

g

A matrix

I.
R

ep
re

se
nt

at
io

n

www.intechopen.com

Abstraction Hierarchies for Conceptual Engineering Design 53

5. Integrating the Design Structured Matrix to AI Hierarchical Abstraction

Formulated by Steward (Steward 1981), the Design Structure Matrix (DSM) a.k.a.
dependency structure matrix, is a project modeling tool to plan, represent and analyze the
flow of information among different tasks of complex design projects (McCord 1993;
Browning 2001). DSM is a square binary matrix with rows and columns, where is the
number of design tasks under consideration (Warfield 1973). If task i is dependent on task
j , then the entry of the respective column j and row i is unity or marked with an
X (Browning 1999; Yassine, Falkenburg et al. 1999). Off-diagonal marks represent coupling
between tasks, marks in the upper triangle in DSM represent feedforward coupling, and
marks in the lower triangle represent feedback coupling (Rogers 1996). The DSM tasks are
rearranged in order to eliminate feedback marks. Then, the DSM is partitioned into blocks of
tasks that simultaneously depend on one another. Three different relationships can be
identified from a partitioned DSM: sequential, parallel and coupled tasks. A task can be
performed sequentially if its row contains a mark just below the diagonal; a task is parallel if
there are no marks linking it with other tasks; coupled tasks are ones that hinder a
partitioned DSM to be lower triangular (Yassine, Falkenburg et al. 1999). Finally, feedback
marks are removed from the DSM in a processes called tearing (Steward 1981) to initiate
sequencing within blocks (Eppinger, Whitney et al. 1994).
This research intends to utilize the DSM representational advantage to simplify AI-based
abstraction hierarchies.

6. Hierarchical Abstraction Methodology for Structuring Literal Spaces

The presented hierarchical abstraction methodology consists of three phases: representation,
abstraction and layering. The representation phase were literal spaces are formulated into a
transposed DSM. In the second phase, the abstraction phase, the problem literals are
clustered into mutually-exclusive abstract equivalence classes (AECs). Finally, in the third
phase, the layering phase, the different AECs are stratified into multiple levels of a hierarchy
using a level assignment algorithm (LAA). The three phases of the methodology are
illustrated in Fig. 1and are discussed in greater detail in the following sections.

Fig. 1. Hierarchical Abstraction Methodology

6.1 Phase I: The literal space representation
Let li denote a positive or a negative literal i , where a literal is defined as an atomic expression
or the negation of an atomic expression (Luger 2002). The literal space Ω is a set that consists of
all literals under consideration. Similarly, O denotes the set of operators, (1,2,...,k p=), such
that 1 2{ , ,..., }pO o o o= . Analogous to the STRIPS framework, for each operator , let kp be the set
that contains all the preconditions. A precondition set kp is the set of some literals il Î W that
need to be achieved prior to the application of an operator. Similarly, we define ke to be the set of
effects of operator ko , where an effect is the set of some achieved literals il Î W that resulted from
applying an operator. For that we write each operator a as an ordered tuple of (,)o p e . It is
possible for kp or to be empty, indicating that a specific operator k does not require
preconditions nor result in any effects respectively. As an example, describes an operator ko with
no preconditions and literal il of effects, which is typical for initialization operators.

Primary Data: BF and R matrices

Irreducible? Cannot obtain
multilevel model

yes

no

Identify department classes

Transform into canonical Form: C

Identify aggregate
interaction and construct C

matrix

Update
(if possible)

Multilevel model LAA

To list sand
From lists
Routines

k k

kk ij
i c j c

c a

 II.
 A

bs
tr

ac
tio

n
III

. L
ay

er
in

g

A matrix

I.
R

ep
re

se
nt

at
io

n

www.intechopen.com

 New, Advanced Technologies54

6.1.1 Formalizing Interactions among literals and operators
The representation of operators in terms of their preconditions and effects indicates a causal
relationship between them. This is the result of having some operators ,k ko o O¢ Î (k k ¢¹)
where; hence ko contains among its effects some literal l Î W that is part of the
preconditions of ko ¢ that are required for it to be applied. If the above holds, then we say
that ko establishes some literals for ko ¢ . Establishment is formally defined below.

 Establishment definition: Let operators ,k ko o O¢ Î where k k ¢¹ , and literal l Î W .
Let ke be the set of effects of , and kp ¢ be the set of preconditions of ko ¢ . We say that

ko establishes literal l for ko ¢ ((, ,{ })k kestablishes o o l¢) if and only if

l$ Î W , such that (1)

 kl eÎ , and (2)

Establishment has been requisitely used in the literature of planning and problem solving within
the field of Artificial Intelligence (AI). However, establishment definitions usually impose an
additional restriction on the precedence between two operators with respect to a plan.
Nevertheless, this restriction is not necessary in this context since it is not intended to produce the
shortest possible sequence of operators that transform the initial state to the goal state.
When operators’ precedence constraints are not imposed within the establishment
definition, establishments can be interpreted as causal links common in engineering
applications. In engineering practices, it is customary to represent causality in a matrix
representation (Warfield 1973). In this research, we define two types of causal links that
result among operators and literals respectively. These causal links are discussed in the
following sections.
Operator causality definition: Let ,k ko o O¢ Î and l Î W ; the operator causality link kka ¢ is
defined as follows:

 1 if (, ,{ }) for some
 0 otherwise

k k
kk

establishes o o l l
a ¢

¢

ìïï= íïïî
 (1)

The above definition indicates that if (, ,{ })k kestablishes o o l¢ holds for some operators ,k ko o O¢ Î
and some l Î W , then according to the establishment definition l must be a precondition and an
effect in ko and ko ¢ respectively (i.e. , kl e ¢Î). If this is the case, then the operator causal link kka ¢

is greater than zero. Fig. 2 shows a digraph of the operator causality definition.

Fig. 2. Digraph of operator causality

l

kp

l

ke

1kka

 Causality within Operators
Operator causality defined earlier identifies the relationships among the different operators.
Literal causality however, describes the relationship among literals within operators.
Literal causality definition: Let literals ,i jl l Î W and let ,k kp e be respectively the
preconditions and effects of operator ko OÎ ; the literal causality link is defined as follows:

 {1 if ; , and
0 otherwise

k i k j k
ij

o O l p l e
r

$ Î Î Î
= (2)

Therefore, the causality link ijr is nonnegative when literals il and jl belong to the set of
preconditions and effects respectively of any arbitrary operator in O . Fig 3 illustrates literal
causality among three operators, while Fig. 4 shows the corresponding operator causality
and establishment of the former Figure.

Fig. 3. Literal causality among the literals of three related hypothetical operators

3l

6l

1l

2l

4l
5l

7l

1p

2p

1e

2 3,e p

3e
8l

www.intechopen.com

Abstraction Hierarchies for Conceptual Engineering Design 55

6.1.1 Formalizing Interactions among literals and operators
The representation of operators in terms of their preconditions and effects indicates a causal
relationship between them. This is the result of having some operators ,k ko o O¢ Î (k k ¢¹)
where; hence ko contains among its effects some literal l Î W that is part of the
preconditions of ko ¢ that are required for it to be applied. If the above holds, then we say
that ko establishes some literals for ko ¢ . Establishment is formally defined below.

 Establishment definition: Let operators ,k ko o O¢ Î where k k ¢¹ , and literal l Î W .
Let ke be the set of effects of , and kp ¢ be the set of preconditions of ko ¢ . We say that

ko establishes literal l for ko ¢ ((, ,{ })k kestablishes o o l¢) if and only if

l$ Î W , such that (1)

 kl eÎ , and (2)

Establishment has been requisitely used in the literature of planning and problem solving within
the field of Artificial Intelligence (AI). However, establishment definitions usually impose an
additional restriction on the precedence between two operators with respect to a plan.
Nevertheless, this restriction is not necessary in this context since it is not intended to produce the
shortest possible sequence of operators that transform the initial state to the goal state.
When operators’ precedence constraints are not imposed within the establishment
definition, establishments can be interpreted as causal links common in engineering
applications. In engineering practices, it is customary to represent causality in a matrix
representation (Warfield 1973). In this research, we define two types of causal links that
result among operators and literals respectively. These causal links are discussed in the
following sections.
Operator causality definition: Let ,k ko o O¢ Î and l Î W ; the operator causality link kka ¢ is
defined as follows:

 1 if (, ,{ }) for some
 0 otherwise

k k
kk

establishes o o l l
a ¢

¢

ìïï= íïïî
 (1)

The above definition indicates that if (, ,{ })k kestablishes o o l¢ holds for some operators ,k ko o O¢ Î
and some l Î W , then according to the establishment definition l must be a precondition and an
effect in ko and ko ¢ respectively (i.e. , kl e ¢Î). If this is the case, then the operator causal link kka ¢

is greater than zero. Fig. 2 shows a digraph of the operator causality definition.

Fig. 2. Digraph of operator causality

l

kp

l

ke

1kka

 Causality within Operators
Operator causality defined earlier identifies the relationships among the different operators.
Literal causality however, describes the relationship among literals within operators.
Literal causality definition: Let literals ,i jl l Î W and let ,k kp e be respectively the
preconditions and effects of operator ko OÎ ; the literal causality link is defined as follows:

 {1 if ; , and
0 otherwise

k i k j k
ij

o O l p l e
r

$ Î Î Î
= (2)

Therefore, the causality link ijr is nonnegative when literals il and jl belong to the set of
preconditions and effects respectively of any arbitrary operator in O . Fig 3 illustrates literal
causality among three operators, while Fig. 4 shows the corresponding operator causality
and establishment of the former Figure.

Fig. 3. Literal causality among the literals of three related hypothetical operators

3l

6l

1l

2l

4l
5l

7l

1p

2p

1e

2 3,e p

3e
8l

www.intechopen.com

 New, Advanced Technologies56

Fig. 4. Establishment resulting from the example given in Fig. 3

Let []ijr=R define a literal causality matrix of size n n´ whose entries follow Eq (2). In
graph theory (Deo 1974), R corresponds to a node-to-node incidence matrix. Moreover, the
transposed form of the R matrix (i.e. TR) has an equivalent structure to that of a
DSM(Aleisa & Lin 2009). This allows us to exploit the well-established methods of DSM to
structure literal spaces, while still remaining consistent with the previous literature on state-
space literature, the theory of ordered relations (Dartmouth College Writing Group. &
Cogan 1958) and Markov Chains by considering the transposed form.

6.2 Accessibility and communication among literals
In this research, we use (S)R to indicate that the matrix R is multiplied s times by
 itself. Based on matrix theory, we can interpret () 0S

ijr ³ as the ability to reach literal j from
i , passing through s literals or alternatively through the application of s operators. Note
that we shall refer to (1)

ijr by ijr for simplicity. Based on the interpretation of () 0S
ijr ³ , we

define literal accessibility and communication.
Accessibility: We say that jl is accessible from il ((,)i jaccessible l l), if and only if () 0s

ijr >
through a number of operators, 1,2,...s = .
 If there is no operator ko applied on il , then the value of il is assumed to remain
unaffected. Hence, it is legitimate to assume that every literal is accessible at least by itself,
therefore:

 0ijr ³ , i j" = (3)

Therefore, accessibility has two relational properties:
(1) Reflexive, based on Eq.(3).
(2) Transitive, since:

(,) (,)

(,),

, ,

i j j k

i k

i j k

accessible p p accessible p p

accessible p p

p p p

Ç

" Î W

, (4)

Communication: Let ,i jl l Î W , il and jl communicate ((,)i jcommunicate l l) if and only if the
following holds:

3o1o 2o

O

1 2 2(, ,{ })establishes o o l 2 3 6 7(, ,{ , })establishes o o l l

 (,) (,)i j j iaccessible l l accessible l lÇ (5)

Alternatively, communication between two literals ,i jl l Î W implies that the following hold:

 () 0s
ijr > , () 0s

jir > for some 1,2,...s = (6)

Let []ijr=R define a literal causality matrix of size n n´ . The transposed form of the R
matrix (i.e.) has an equivalent structure to that of a DSM. This allows us to exploit the well-
established methods of DSM to structure literal spaces.

7. Phase II: Abstraction of the Literal Space

This phase creates an abstract literal space of Ω, denoted by w by clustering the literals
under consideration into mutually-exclusive partitions.
Eq. (6) shows that communication is a reflexive, symmetric and transitive relation. A
relation that exhibits these properties is an equivalence relation (Kemeny & Snell 1960).
Equivalence relations have the ability to partition the universe Ω upon which it is defined to
disjointed partitions (Dartmouth College Writing Group. & Cogan 1958). Each of these
partitions defines a unique cluster of communicating literals, which is referred to as abstract
equivalence classes.

7.1 Abstract equivalence classes
An abstract equivalence classes (AEC), denoted by kc (1,2,...,k m=), is a set of literals by
which all members of this set communicate with one another. k corresponds to the number
of kc wÍ . If the abstract literal space w consists of a single AEC (i.e. 1k =), is called
irreducible to be consistent with the terminology used in Markov Chains (Kao 1997).
Therefore, irreducibility implies that the literals of the original literal space Ω all
communicate with one another. Because AECs are developed based on an equivalence
relation (i.e. communication), then the following must hold:

 k
k

c
"

= Æ , k
k

c
"

= W , k" (7)

7.2 The formation of AECS
The equivalence class formation algorithm (ECFA) is used to abstract the literal space Ω
into w . In ECFA, iT B denotes the to-list of jl , such that each iT contains all the literals that

jl can access through one or more operators. Similarly a from-list iF is defined to contain all
the literals from which jl is accessible through one or more operators. ic is a set of
communicating literals that contains il . The codes for constructing a To lists and a From

lists are provided in Fig. 5 and Fig. 6 respectively. Detailed steps of these routines are
provided in (Gaver & Thompson 1973).

www.intechopen.com

Abstraction Hierarchies for Conceptual Engineering Design 57

Fig. 4. Establishment resulting from the example given in Fig. 3

Let []ijr=R define a literal causality matrix of size n n´ whose entries follow Eq (2). In
graph theory (Deo 1974), R corresponds to a node-to-node incidence matrix. Moreover, the
transposed form of the R matrix (i.e. TR) has an equivalent structure to that of a
DSM(Aleisa & Lin 2009). This allows us to exploit the well-established methods of DSM to
structure literal spaces, while still remaining consistent with the previous literature on state-
space literature, the theory of ordered relations (Dartmouth College Writing Group. &
Cogan 1958) and Markov Chains by considering the transposed form.

6.2 Accessibility and communication among literals
In this research, we use (S)R to indicate that the matrix R is multiplied s times by
 itself. Based on matrix theory, we can interpret () 0S

ijr ³ as the ability to reach literal j from
i , passing through s literals or alternatively through the application of s operators. Note
that we shall refer to (1)

ijr by ijr for simplicity. Based on the interpretation of () 0S
ijr ³ , we

define literal accessibility and communication.
Accessibility: We say that jl is accessible from il ((,)i jaccessible l l), if and only if () 0s

ijr >
through a number of operators, 1,2,...s = .
 If there is no operator ko applied on il , then the value of il is assumed to remain
unaffected. Hence, it is legitimate to assume that every literal is accessible at least by itself,
therefore:

 0ijr ³ , i j" = (3)

Therefore, accessibility has two relational properties:
(1) Reflexive, based on Eq.(3).
(2) Transitive, since:

(,) (,)

(,),

, ,

i j j k

i k

i j k

accessible p p accessible p p

accessible p p

p p p

Ç

" Î W

, (4)

Communication: Let ,i jl l Î W , il and jl communicate ((,)i jcommunicate l l) if and only if the
following holds:

3o1o 2o

O

1 2 2(, ,{ })establishes o o l 2 3 6 7(, ,{ , })establishes o o l l

 (,) (,)i j j iaccessible l l accessible l lÇ (5)

Alternatively, communication between two literals ,i jl l Î W implies that the following hold:

 () 0s
ijr > , () 0s

jir > for some 1,2,...s = (6)

Let []ijr=R define a literal causality matrix of size n n´ . The transposed form of the R
matrix (i.e.) has an equivalent structure to that of a DSM. This allows us to exploit the well-
established methods of DSM to structure literal spaces.

7. Phase II: Abstraction of the Literal Space

This phase creates an abstract literal space of Ω, denoted by w by clustering the literals
under consideration into mutually-exclusive partitions.
Eq. (6) shows that communication is a reflexive, symmetric and transitive relation. A
relation that exhibits these properties is an equivalence relation (Kemeny & Snell 1960).
Equivalence relations have the ability to partition the universe Ω upon which it is defined to
disjointed partitions (Dartmouth College Writing Group. & Cogan 1958). Each of these
partitions defines a unique cluster of communicating literals, which is referred to as abstract
equivalence classes.

7.1 Abstract equivalence classes
An abstract equivalence classes (AEC), denoted by kc (1,2,...,k m=), is a set of literals by
which all members of this set communicate with one another. k corresponds to the number
of kc wÍ . If the abstract literal space w consists of a single AEC (i.e. 1k =), is called
irreducible to be consistent with the terminology used in Markov Chains (Kao 1997).
Therefore, irreducibility implies that the literals of the original literal space Ω all
communicate with one another. Because AECs are developed based on an equivalence
relation (i.e. communication), then the following must hold:

 k
k

c
"

= Æ , k
k

c
"

= W , k" (7)

7.2 The formation of AECS
The equivalence class formation algorithm (ECFA) is used to abstract the literal space Ω
into w . In ECFA, iT B denotes the to-list of jl , such that each iT contains all the literals that

jl can access through one or more operators. Similarly a from-list iF is defined to contain all
the literals from which jl is accessible through one or more operators. ic is a set of
communicating literals that contains il . The codes for constructing a To lists and a From

lists are provided in Fig. 5 and Fig. 6 respectively. Detailed steps of these routines are
provided in (Gaver & Thompson 1973).

www.intechopen.com

 New, Advanced Technologies58

Start

Initializations
{ }iT i , for each il (1, 2, .., ,i n)

1i ; stop true

no

1j ; 1k

0T jik
r ?

1j j { }i iT T j ; stop fales

{ } ij T ?

ik T ?

1k k ; 1j

nj ?

1 ii

stop true ?

Stop with to-lists

no

no

ni ?

no

no

no

no

yes

yes

yes

yes

yes

yes

Iterating within iT

Iterating among iT s

Adding literals to iT if not
already there

Fig. 5. Routine for constructing to-lists

Constructing equivalence classes of literals: Having obtained the to-list and from-list for each
il , AECs can be obtained by intersecting the two sets iT and iF :

 i i ic T F= Ç , i" (8)

Initializations
 1i ; {},iF i

i n ?

To-lists

1k

ik T

1k k { }
ik ikT TF F i

0stop

{ } Tik
i F ?

no

no

1i i Stop with from-lists

yes

no

yes

Adding parameters to
ikTF if not already there yes

Iterating among iT s

Fig. 6. Routine for constructing From-lists

7.3 The aggregate interaction matrix
The classification of literals into AECs leads to the discussion on aggregate interaction or
flow that results among them. Let []kkc ¢=C denote the AECs interaction matrix for
aggregate flow. Each entry kkc ¢ of C is defined by the Boolean sum of the following equation:

k k

kk ij
i c j c

c r
¢

¢

Î Î

=åå (9)

C is a square matrix of sizem m´ , where m is the number of AECs in w . Each kkc ¢
represents the summation of corresponding rows and columns of theR matrix. Here, ()sC
denotes the C matrix multiplied s times by itself. As in the entries of the R matrix, in C ,
if () 0s

kkc ¢ > for some 1,2,...s = , then there is an interaction between the two AECs k and k ¢
passing through s aggregate interactions. Hence AEC k ¢ is accessible from AEC k . This
leads to the definition of AEC accessibility.

7.4 Classification of AECS:
Another important characterization of AECs is whether an AEC is absorbing or
transient, or maximal transient:

 Absorbing AEC (AAEC): an AEC that does not access any other AEC but itself.
Therefore, an AAEC kc ÍW is one where:

 0kkc ¢ = , k k ¢" ¹ (10)

www.intechopen.com

Abstraction Hierarchies for Conceptual Engineering Design 59

Start

Initializations
{ }iT i , for each il (1, 2, .., ,i n)

1i ; stop true

no

1j ; 1k

0T jik
r ?

1j j { }i iT T j ; stop fales

{ } ij T ?

ik T ?

1k k ; 1j

nj ?

1 ii

stop true ?

Stop with to-lists

no

no

ni ?

no

no

no

no

yes

yes

yes

yes

yes

yes

Iterating within iT

Iterating among iT s

Adding literals to iT if not
already there

Fig. 5. Routine for constructing to-lists

Constructing equivalence classes of literals: Having obtained the to-list and from-list for each
il , AECs can be obtained by intersecting the two sets iT and iF :

 i i ic T F= Ç , i" (8)

Initializations
 1i ; {},iF i

i n ?

To-lists

1k

ik T

1k k { }
ik ikT TF F i

0stop

{ } Tik
i F ?

no

no

1i i Stop with from-lists

yes

no

yes

Adding parameters to
ikTF if not already there yes

Iterating among iT s

Fig. 6. Routine for constructing From-lists

7.3 The aggregate interaction matrix
The classification of literals into AECs leads to the discussion on aggregate interaction or
flow that results among them. Let []kkc ¢=C denote the AECs interaction matrix for
aggregate flow. Each entry kkc ¢ of C is defined by the Boolean sum of the following equation:

k k

kk ij
i c j c

c r
¢

¢

Î Î

=åå (9)

C is a square matrix of sizem m´ , where m is the number of AECs in w . Each kkc ¢
represents the summation of corresponding rows and columns of theR matrix. Here, ()sC
denotes the C matrix multiplied s times by itself. As in the entries of the R matrix, in C ,
if () 0s

kkc ¢ > for some 1,2,...s = , then there is an interaction between the two AECs k and k ¢
passing through s aggregate interactions. Hence AEC k ¢ is accessible from AEC k . This
leads to the definition of AEC accessibility.

7.4 Classification of AECS:
Another important characterization of AECs is whether an AEC is absorbing or
transient, or maximal transient:

 Absorbing AEC (AAEC): an AEC that does not access any other AEC but itself.
Therefore, an AAEC kc ÍW is one where:

 0kkc ¢ = , k k ¢" ¹ (10)

www.intechopen.com

 New, Advanced Technologies60

 Transient AEC (TAEC): an AEC capable of accessing other AECs besides itself. A
TAEC satisfies the following:

 0kkc ¢$ > , k k ¢¹ (11)

 Maximal transient AEC (MTAEC): Is TAEC not accessed by any other TAEC beside
itself, such that is must satisfy Eq.(9) together with:

 0k kc ¢¢ ¢$ > , k k¢¢ ¢¹ (12)

7.5 Canonical form of the C matrix
To prepare the C matrix for the layering phase, Its rows and columns are rearranged, such
that the first m t- ones contain the AAECs, while the remaining t ones contain the TAECs.
When this segregation is applied to the C matrix, then it is said to be in canonical form,
denoted byC . A general structure of a C matrix is given below:

 m t t

m t

t

-

æ ö÷ç ÷ç ÷ç ÷ç ÷- ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷= ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷çè ø

I 0

C

T Q

The resultant submatrices of C are as follows:
(1) () ()m t m t- ´ -I is the identity matrix, because an AAEC has only access to itself.
(2) () ()m t t- ´0 consists entirely of zeros, since AAECs cannot access TAECs.
(3) () ()t m t´ -T represent accessibility from TAECs to each AAEC.
(4) () ()t t´Q depicts accessibility among TAECs.

8. Phase III: Constructing the Hierarchy

The construction of an AH is conducted in a recursive and bottom-up manner, where it
starts from the lowest level of detail (level zero) and subsequently building higher levels
based on the abstract class accessibility relationships that exist among different AECs. The
layering process is designed to eliminate backtracking in the plan.
Level zero is designated to include the details that can be postponed until the end when
solving the problem hierarchically. However, leveln , the highest level of abstraction, includes
the details that need to be considered in the beginning. Therefore, the algorithm builds the
hierarchy in a bottom-up fashion, but expects it to be executed in a top-down fashion.

8.1 Constraints for Loop-Free Level Assignments
The assignment of literals to levels is based on the following constraints to guarantee loop
free AHs.

 Constraint 1(Literal Level Assignment Constraint): Let ()ilevel l denote the level of the
design literal il in an AH. For all ,i jl l Î W , if () 0s

ijr > for some 0s > , then
() ()i jlevel l level l³ to avoid backtracking.

The above constraint indicates that if il accesses jl , then il should at least be at the same or a
higher level than. This confirms findings from previous literature on abstraction hierarchies
for planning and problem solving, particularly, Knoblock’s (Knoblock 1994) restriction to
automatically generate loop-free AHs for planning and problem solving.

 Constraint 2 (Communicating Literals Level Assignment Constraint): Let
()ilevel l denote the level of design literal il in the AH. For all ,i jl l Î W ,

if (,)i jcommunicate l l , then () ()i jlevel l level l= .

If (,)i jcommunicate l l , then by definition there exists 1() 0s
ijr > and 2() 0s

jir > for some

1 2, 0s s > . Hence, by Constraint 1, () ()i jlevel l level l³ and () ()i jlevel l level l£ , which implies
() ()i jlevel l level l= .
 Constraint 3 (AECs Level Assignment Constraint): Let ()klevel c denote the level of

AEC k in an AH. For all ,k kc c ¢ ÌW where k k ¢¹ , if 0kkc ¢ > , then
() ()k klevel c level c ¢> to avoid backtracking.

Constraint 3 is a direct result of applying Constraints 1 and 2. Based on the definition of
accessibility, if () 0s

kkc ¢ > then, and i k j kl c l c ¢¢$ Î $ Î such that () 0s
ijr > for some 0s > . Based on

Constraint 1, () ()i jlevel l level l³ . Since classes consist of communicating literals, then
() ()k klevel c level c ¢> . But classes cannot communicate; therefore, it is not possible to have
() ()k klevel c level c ¢= when () 0s

kkc ¢ > . Therefore, () ()k klevel c level c ¢> for () 0s
kkc ¢ > , and hence kc

need to be considered before kc ¢ to avoid backtracking. The following theorem shows that
applying Constraint 3 will result in loop-free AHs.
Theorem1. : Any AH developed using Constraint 3 is loop-free.
Proof.
Looping (backtracking) occurs if ,k kc c w¢$ Ì , where (,)k kclassaccessible c c ¢ and

() ()k klevel c level c ¢> . Here it shows that this never occurs, considering the three cases of
AAECs, TAECs and MTAECs

 Case I (AAECs): if kc is absorbing, then () 0klevel c = . Also kc w¢$ Ì ,
where (,)k kclassaccessible c c ¢ ; thus () ()kklevel c level c¢ > cannot occur.

 Case II (MTAECs): if kc is a MTAEC, then ()klevel c n= . Thus kc w¢$ Ì , where
() ()kklevel c level c¢ > .

 Case III (TAECs): if kc is a TAEC, then it must be true that ,k kc w¢ ¢¢$ Ì , where
(,)kkclassaccessible c c¢ and (,)k kclassaccessible c c ¢¢ . Thus, according to Constraint 3,

() () ()kk klevel c level c level c¢ ¢¢< < , and a reverse order can never occur.
From these three cases, it can be concluded that () ()kklevel c level c¢ > will never occur for
all (,)k kclassaccessible c c ¢ . Hence the AH is loop-free.
This proof demonstrates that an AH developed by the methodology in hand will always
produce loop-free AHs.

www.intechopen.com

Abstraction Hierarchies for Conceptual Engineering Design 61

 Transient AEC (TAEC): an AEC capable of accessing other AECs besides itself. A
TAEC satisfies the following:

 0kkc ¢$ > , k k ¢¹ (11)

 Maximal transient AEC (MTAEC): Is TAEC not accessed by any other TAEC beside
itself, such that is must satisfy Eq.(9) together with:

 0k kc ¢¢ ¢$ > , k k¢¢ ¢¹ (12)

7.5 Canonical form of the C matrix
To prepare the C matrix for the layering phase, Its rows and columns are rearranged, such
that the first m t- ones contain the AAECs, while the remaining t ones contain the TAECs.
When this segregation is applied to the C matrix, then it is said to be in canonical form,
denoted byC . A general structure of a C matrix is given below:

 m t t

m t

t

-

æ ö÷ç ÷ç ÷ç ÷ç ÷- ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷= ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷çè ø

I 0

C

T Q

The resultant submatrices of C are as follows:
(1) () ()m t m t- ´ -I is the identity matrix, because an AAEC has only access to itself.
(2) () ()m t t- ´0 consists entirely of zeros, since AAECs cannot access TAECs.
(3) () ()t m t´ -T represent accessibility from TAECs to each AAEC.
(4) () ()t t´Q depicts accessibility among TAECs.

8. Phase III: Constructing the Hierarchy

The construction of an AH is conducted in a recursive and bottom-up manner, where it
starts from the lowest level of detail (level zero) and subsequently building higher levels
based on the abstract class accessibility relationships that exist among different AECs. The
layering process is designed to eliminate backtracking in the plan.
Level zero is designated to include the details that can be postponed until the end when
solving the problem hierarchically. However, leveln , the highest level of abstraction, includes
the details that need to be considered in the beginning. Therefore, the algorithm builds the
hierarchy in a bottom-up fashion, but expects it to be executed in a top-down fashion.

8.1 Constraints for Loop-Free Level Assignments
The assignment of literals to levels is based on the following constraints to guarantee loop
free AHs.

 Constraint 1(Literal Level Assignment Constraint): Let ()ilevel l denote the level of the
design literal il in an AH. For all ,i jl l Î W , if () 0s

ijr > for some 0s > , then
() ()i jlevel l level l³ to avoid backtracking.

The above constraint indicates that if il accesses jl , then il should at least be at the same or a
higher level than. This confirms findings from previous literature on abstraction hierarchies
for planning and problem solving, particularly, Knoblock’s (Knoblock 1994) restriction to
automatically generate loop-free AHs for planning and problem solving.

 Constraint 2 (Communicating Literals Level Assignment Constraint): Let
()ilevel l denote the level of design literal il in the AH. For all ,i jl l Î W ,

if (,)i jcommunicate l l , then () ()i jlevel l level l= .

If (,)i jcommunicate l l , then by definition there exists 1() 0s
ijr > and 2() 0s

jir > for some

1 2, 0s s > . Hence, by Constraint 1, () ()i jlevel l level l³ and () ()i jlevel l level l£ , which implies
() ()i jlevel l level l= .
 Constraint 3 (AECs Level Assignment Constraint): Let ()klevel c denote the level of

AEC k in an AH. For all ,k kc c ¢ ÌW where k k ¢¹ , if 0kkc ¢ > , then
() ()k klevel c level c ¢> to avoid backtracking.

Constraint 3 is a direct result of applying Constraints 1 and 2. Based on the definition of
accessibility, if () 0s

kkc ¢ > then, and i k j kl c l c ¢¢$ Î $ Î such that () 0s
ijr > for some 0s > . Based on

Constraint 1, () ()i jlevel l level l³ . Since classes consist of communicating literals, then
() ()k klevel c level c ¢> . But classes cannot communicate; therefore, it is not possible to have
() ()k klevel c level c ¢= when () 0s

kkc ¢ > . Therefore, () ()k klevel c level c ¢> for () 0s
kkc ¢ > , and hence kc

need to be considered before kc ¢ to avoid backtracking. The following theorem shows that
applying Constraint 3 will result in loop-free AHs.
Theorem1. : Any AH developed using Constraint 3 is loop-free.
Proof.
Looping (backtracking) occurs if ,k kc c w¢$ Ì , where (,)k kclassaccessible c c ¢ and

() ()k klevel c level c ¢> . Here it shows that this never occurs, considering the three cases of
AAECs, TAECs and MTAECs

 Case I (AAECs): if kc is absorbing, then () 0klevel c = . Also kc w¢$ Ì ,
where (,)k kclassaccessible c c ¢ ; thus () ()kklevel c level c¢ > cannot occur.

 Case II (MTAECs): if kc is a MTAEC, then ()klevel c n= . Thus kc w¢$ Ì , where
() ()kklevel c level c¢ > .

 Case III (TAECs): if kc is a TAEC, then it must be true that ,k kc w¢ ¢¢$ Ì , where
(,)kkclassaccessible c c¢ and (,)k kclassaccessible c c ¢¢ . Thus, according to Constraint 3,

() () ()kk klevel c level c level c¢ ¢¢< < , and a reverse order can never occur.
From these three cases, it can be concluded that () ()kklevel c level c¢ > will never occur for
all (,)k kclassaccessible c c ¢ . Hence the AH is loop-free.
This proof demonstrates that an AH developed by the methodology in hand will always
produce loop-free AHs.

www.intechopen.com

 New, Advanced Technologies62

9. The Level Assignment Algorithm

The Level Assignment Algorithm (LAA) generates AHs by assigning AECs to their
appropriate level of abstraction. In LAA, the assignments are accomplished on the premises
of the preceding developed constraints.

Fig. 7. The level assignment algorithm

k=k+1

level(cBk B) =0

Start

Input :C (Ω not irreducible)

Initialization
level =0, 1k , assigned= {}, unassigned=

{ mkck ,...,2,1: }

assigned=assigned + {cBk B}
unassigned=unassigned - {cBk B}

k=m

yes

yes no

no

level=level+1

cBk
Babsorbing?

All cBk

Stop
Output: All classes
assigned to levels

For all

k,i unassigned
jassigned

is there
0 and 0 kikj cc

,

assigned=assigned + {cBk B}
unassigned=unassigned - {cBk B}

level(cBk B)=level

no yes

no

yes

10. Illustrative Example

In this section, effectiveness of the developed methodology is demonstrated through the
design of a layout for manufacturing plant that produces high voltage power cables. The
plant produces a few variations of the high voltage cable shown in Fig. 8, based on customer
specifications regarding conductor properties, insulation thickness, cable color coding,
armoring metals, and so forth.

Armor Main cores

Neutral
core

Insulation

Polyethylene
Tape

Fig. 8. Components of the high voltage cable

As shown in Fig. 8, the high voltage power cable consists of three main aluminum cores,
each of which has a diameter of 300 mm, and a neutral core of 185 mm diameter. The three
main cores and the neutral core consist of 61 and 37 insulated stranded aluminum rods,
respectively. The four cores are warped with polyethylene tape that is supported by a layer
of insulation. Finally, the cable is armored with steel and wires for protection and is
sheathed by an additional layer of insulated. The flow chart shown in Fig. 9, describes the
flow of the cable across the different stations.

www.intechopen.com

Abstraction Hierarchies for Conceptual Engineering Design 63

9. The Level Assignment Algorithm

The Level Assignment Algorithm (LAA) generates AHs by assigning AECs to their
appropriate level of abstraction. In LAA, the assignments are accomplished on the premises
of the preceding developed constraints.

Fig. 7. The level assignment algorithm

k=k+1

level(cBk B) =0

Start

Input :C (Ω not irreducible)

Initialization
level =0, 1k , assigned= {}, unassigned=

{ mkck ,...,2,1: }

assigned=assigned + {cBk B}
unassigned=unassigned - {cBk B}

k=m

yes

yes no

no

level=level+1

cBk
Babsorbing?

All cBk

Stop
Output: All classes
assigned to levels

For all

k,i unassigned
jassigned

is there
0 and 0 kikj cc

,

assigned=assigned + {cBk B}
unassigned=unassigned - {cBk B}

level(cBk B)=level

no yes

no

yes

10. Illustrative Example

In this section, effectiveness of the developed methodology is demonstrated through the
design of a layout for manufacturing plant that produces high voltage power cables. The
plant produces a few variations of the high voltage cable shown in Fig. 8, based on customer
specifications regarding conductor properties, insulation thickness, cable color coding,
armoring metals, and so forth.

Armor Main cores

Neutral
core

Insulation

Polyethylene
Tape

Fig. 8. Components of the high voltage cable

As shown in Fig. 8, the high voltage power cable consists of three main aluminum cores,
each of which has a diameter of 300 mm, and a neutral core of 185 mm diameter. The three
main cores and the neutral core consist of 61 and 37 insulated stranded aluminum rods,
respectively. The four cores are warped with polyethylene tape that is supported by a layer
of insulation. Finally, the cable is armored with steel and wires for protection and is
sheathed by an additional layer of insulated. The flow chart shown in Fig. 9, describes the
flow of the cable across the different stations.

www.intechopen.com

 New, Advanced Technologies64

Defective?

C
C

V
Li

ne

Storage

PVC Compound
Unit

Drawing Station
(core)

Drawing Station
(neutral)

Stranding Station
(neutral)

Stranding Station
(core)

Cross Linking

Curing

Cooling

Laying Up
Station

Armoring
Station

Outer Sheathing

In
sp

ec
tio

n

Scrap

Warehouse Shipping

no

yes

Inner Sheathing

Fig. 9. Flowchart of the manufacturing processes for the high voltage cable

10.1 Phase I: the literal space representation for the cable manufacturing company
The high voltage cable facility consists of 74 machines and areas that are distributed within
the cable manufacturing stations shown in Fig. 9 together with WIP areas, forklift parking,
storages, warehouses, shop floor offices, lounges, etc. These areas are shown in Table 2.

lBi B Code Name l Bi B Code Name
0 PD1 Preliminary Drawing Station 38 SHS3 Sheathing Station
1 PD2 ‘’ 39 SHS4 “
2 PD3 ‘’ 40 XL1 Cross-Linking Station
3 PD4 ‘’ 41 XL2 “
4 ID1 Intermediary Drawing Station 42 XL3 “
5 ID2 “ 43 XL4 “
6 ID3 “ 44 CU1 Curing Machinery
7 ID4 “ 45 CU2 “
8 ID5 “ 46 CU3 “
9 ID6 “ 47 CU4 “
10 ID7 “ 48 CO1 Cooling Station
11 ID8 “ 49 CO2 “
12 DD1 Main Detailed Drawing Station 50 CO3 “
13 DD2 “ 51 CO4 “
14 DD3 “ 52 L1 Lay-up Station
15 DD4 “ 53 L2 “
16 DD5 “ 54 A1 Armoring Station
17 DD6 “ 55 A2 “
18 DD7 “ 56 PVC PVC Compound Unit
19 DD8 “ 57 INS Inspection
20 DD9 “ 58 QC Quality Control Unit
21 DD10 “ 59 ST Storage
22 DD11 “ 60 WH Warehouse
23 DD12 “ 61 WIP1 Work-In-Process
24 DD13 Neutral Detailed Drawing

S i
62 WIP2 “

25 DD14 “ 63 WIP3 “
26 DD15 “ 64 WIP4 “
27 DD16 “ 65 FP1 Forklift Parking
28 MCS1 Main Core Stranding 66 FP2 “
29 MCS2 “ 67 FP3 “
30 MCS3 “ 68 SC Scrap Center
31 MCS4 “ 69 OFF Main Office
32 MCS5 “ 70 MC CCV Maintenance

C33 MCS6 “ 71 LOU1 Employee Lounge
34 NCS1 Neutral Core Stranding 72 LOU2 “
35 NCS2 “ 73 DOK1 Docking Station
36 SHS1 Sheathing Station 74 DOK2 “
37 SHS2 “

Table 2. The machines and support areas for the high voltage cable facility

There are 74 literals (74n =) in the literal space W for this problem.

 Interactions among literals: The constraints of the problem define the interactions
among the twelve literals listed above. One indicates causality based on
accessibility definition between two literals, and zero otherwise. The causality links
are depicted in the R matrix provided in Table 3.

www.intechopen.com

Abstraction Hierarchies for Conceptual Engineering Design 65

Defective?

C
C

V
Li

ne

Storage

PVC Compound
Unit

Drawing Station
(core)

Drawing Station
(neutral)

Stranding Station
(neutral)

Stranding Station
(core)

Cross Linking

Curing

Cooling

Laying Up
Station

Armoring
Station

Outer Sheathing

In
sp

ec
tio

n

Scrap

Warehouse Shipping

no

yes

Inner Sheathing

Fig. 9. Flowchart of the manufacturing processes for the high voltage cable

10.1 Phase I: the literal space representation for the cable manufacturing company
The high voltage cable facility consists of 74 machines and areas that are distributed within
the cable manufacturing stations shown in Fig. 9 together with WIP areas, forklift parking,
storages, warehouses, shop floor offices, lounges, etc. These areas are shown in Table 2.

lBi B Code Name l Bi B Code Name
0 PD1 Preliminary Drawing Station 38 SHS3 Sheathing Station
1 PD2 ‘’ 39 SHS4 “
2 PD3 ‘’ 40 XL1 Cross-Linking Station
3 PD4 ‘’ 41 XL2 “
4 ID1 Intermediary Drawing Station 42 XL3 “
5 ID2 “ 43 XL4 “
6 ID3 “ 44 CU1 Curing Machinery
7 ID4 “ 45 CU2 “
8 ID5 “ 46 CU3 “
9 ID6 “ 47 CU4 “
10 ID7 “ 48 CO1 Cooling Station
11 ID8 “ 49 CO2 “
12 DD1 Main Detailed Drawing Station 50 CO3 “
13 DD2 “ 51 CO4 “
14 DD3 “ 52 L1 Lay-up Station
15 DD4 “ 53 L2 “
16 DD5 “ 54 A1 Armoring Station
17 DD6 “ 55 A2 “
18 DD7 “ 56 PVC PVC Compound Unit
19 DD8 “ 57 INS Inspection
20 DD9 “ 58 QC Quality Control Unit
21 DD10 “ 59 ST Storage
22 DD11 “ 60 WH Warehouse
23 DD12 “ 61 WIP1 Work-In-Process
24 DD13 Neutral Detailed Drawing

S i
62 WIP2 “

25 DD14 “ 63 WIP3 “
26 DD15 “ 64 WIP4 “
27 DD16 “ 65 FP1 Forklift Parking
28 MCS1 Main Core Stranding 66 FP2 “
29 MCS2 “ 67 FP3 “
30 MCS3 “ 68 SC Scrap Center
31 MCS4 “ 69 OFF Main Office
32 MCS5 “ 70 MC CCV Maintenance

C33 MCS6 “ 71 LOU1 Employee Lounge
34 NCS1 Neutral Core Stranding 72 LOU2 “
35 NCS2 “ 73 DOK1 Docking Station
36 SHS1 Sheathing Station 74 DOK2 “
37 SHS2 “

Table 2. The machines and support areas for the high voltage cable facility

There are 74 literals (74n =) in the literal space W for this problem.

 Interactions among literals: The constraints of the problem define the interactions
among the twelve literals listed above. One indicates causality based on
accessibility definition between two literals, and zero otherwise. The causality links
are depicted in the R matrix provided in Table 3.

www.intechopen.com

 New, Advanced Technologies66

literals 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1
3 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 1
7 1 1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1
9 1
10 1
11 1 1 1 1 1 1 1 1
12 1
13 1
14 1 1 1 1 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1 1
16 1 1 1 1
17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
18 1 1 1 1 1 1 1 1 1 1 1 1 1
19 1 1 1 1 1 1 1 1
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
22 1 1 1 1 1 1
23 1 1 1 1 1 1 1 1 1 1
24 1 1 1 1
25 1 1 1 1 1
26 1 1 1 1 1 1
27 1 1 1 1 1 1 1 1 1 1 1
28 1 1 1 1 1 1 1 1 1 1
29 1 1 1 1 1 1 1
30 1 1 1 1 1 1 1 1 1
31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32 1 1 1 1
33 1 1 1 1 1 1
34 1 1 1 1 1 1 1
35 1 1 1 1 1 1 1 1 1 1 1
36 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
37 1 1 1 1 1 1 1 1 1 1 1 1
38 1 1 1 1 1 1 1 1 1
39 1 1 1 1 1 1 1 1
40 1 1 1 1
41 1 1 1 1 1 1 1
42 1 1 1 1 1 1
43 1 1 1 1 1
44 1 1 1
45 1 1
46 1 1
47 1 1 1
48 1 1 1
49 1 1 1 1
50 1 1 1 1 1 1 1
51 1 1 1 1
52 1 1 1
53 1 1 1 1 1
54 1 1
55 1
56 1 1
57
58 1
59
60 1
61 1
62 1 1
63
64
65
66
67
68
69
70
71
72
73
74

Table 3. The R matrix for the cable manufacturing facility

10.2 Phase II: abstraction of the literal space of the cable manufacturing company
Given the R matrix for the cable manufacturing facility, the literal space is portioned into
mutually exclusive AECs using ECFA. Each cluster of AECs constitutes literals that need to
be considered simultaneously. AECs obtained from using ECFA are shown in Table 4.

Classes Literals (lBBiBB) Number of Literals
(NBBkBB)

Class
Classification

0 0, 1, 2, 3, 4 Transient
1 4, 5, 6, 7, 8, 9, 10, 11 8 Transient

2
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
61, 65, 34, 35, 62

27 Transient

3
36, 37, 38, 39, 54, 55, 56, 40, 41, 42, 43,
52, 53, 44, 45, 46, 47, 48, 49, 50, 51, 70,
66, 63, 64,,

25 Transient

4 57, 58, 60, 67, 68, 72, 74 7 Absorbing
5 59, 71, 73 3 Transient

6 69 1 Maximal
transient

Table 4. The AECs for the cable manufacturing facility

From Table 4, the abstracted literal space w consists of seven AECs. This reduced the
problem tremendously to a manageable size.

 Aggregate interactions among AECs: The aggregate interactions among AECs can be
obtained using Eq.(9). Accordingly, the C matrix is constructed and is transformed
it to the canonical form C which are provided below.

The entries of C and C matrix are:

1 1 0 0 0 0 0

0 1 1 0 0 0 0

0 0 1 1 0 0 0

0 0 0 1 1 0 0

0 0 0 0 1 0 0

1 0 0 1 0 1 0

0 0 0 1 1 1 1

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷= ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷çè ø

C

1 0 0 0 0 0 0

0 1 1 0 0 0 0

0 0 1 1 0 0 0

0 0 0 1 1 0 0

1 0 0 0 1 0 0

0 1 0 0 1 1 0

1 0 0 0 1 1 1

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷= ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷çè ø

C

10.3 Phase III: constructing the AH for the cable manufacturing case study
In this phase, the interactions among the different AECs are utilized to recursively develop
an AH to structure the cable manufacturing facility. As indicated in the methodology, AHs
are designed to be loop-free. In terms of the problem in hand, obtaining partial solutions at a
given abstraction level need not be altered as the process progresses hierarchically to more
detailed levels.
Each AEC is assigned to its appropriate abstraction level using LAA as shown in Figure 7.
Table 5 illustrates the resultant abstraction hierarchy for the cable manufacturing facility.
The levels of the hierarchy indicate the order in which each literal should be introduced to
the problem gradually to facilitate loop-free problem execution.

www.intechopen.com

Abstraction Hierarchies for Conceptual Engineering Design 67

literals 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1
3 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 1
7 1 1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1
9 1
10 1
11 1 1 1 1 1 1 1 1
12 1
13 1
14 1 1 1 1 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1 1
16 1 1 1 1
17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
18 1 1 1 1 1 1 1 1 1 1 1 1 1
19 1 1 1 1 1 1 1 1
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
22 1 1 1 1 1 1
23 1 1 1 1 1 1 1 1 1 1
24 1 1 1 1
25 1 1 1 1 1
26 1 1 1 1 1 1
27 1 1 1 1 1 1 1 1 1 1 1
28 1 1 1 1 1 1 1 1 1 1
29 1 1 1 1 1 1 1
30 1 1 1 1 1 1 1 1 1
31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32 1 1 1 1
33 1 1 1 1 1 1
34 1 1 1 1 1 1 1
35 1 1 1 1 1 1 1 1 1 1 1
36 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
37 1 1 1 1 1 1 1 1 1 1 1 1
38 1 1 1 1 1 1 1 1 1
39 1 1 1 1 1 1 1 1
40 1 1 1 1
41 1 1 1 1 1 1 1
42 1 1 1 1 1 1
43 1 1 1 1 1
44 1 1 1
45 1 1
46 1 1
47 1 1 1
48 1 1 1
49 1 1 1 1
50 1 1 1 1 1 1 1
51 1 1 1 1
52 1 1 1
53 1 1 1 1 1
54 1 1
55 1
56 1 1
57
58 1
59
60 1
61 1
62 1 1
63
64
65
66
67
68
69
70
71
72
73
74

Table 3. The R matrix for the cable manufacturing facility

10.2 Phase II: abstraction of the literal space of the cable manufacturing company
Given the R matrix for the cable manufacturing facility, the literal space is portioned into
mutually exclusive AECs using ECFA. Each cluster of AECs constitutes literals that need to
be considered simultaneously. AECs obtained from using ECFA are shown in Table 4.

Classes Literals (lBBiBB) Number of Literals
(NBBkBB)

Class
Classification

0 0, 1, 2, 3, 4 Transient
1 4, 5, 6, 7, 8, 9, 10, 11 8 Transient

2
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
61, 65, 34, 35, 62

27 Transient

3
36, 37, 38, 39, 54, 55, 56, 40, 41, 42, 43,
52, 53, 44, 45, 46, 47, 48, 49, 50, 51, 70,
66, 63, 64,,

25 Transient

4 57, 58, 60, 67, 68, 72, 74 7 Absorbing
5 59, 71, 73 3 Transient

6 69 1 Maximal
transient

Table 4. The AECs for the cable manufacturing facility

From Table 4, the abstracted literal space w consists of seven AECs. This reduced the
problem tremendously to a manageable size.

 Aggregate interactions among AECs: The aggregate interactions among AECs can be
obtained using Eq.(9). Accordingly, the C matrix is constructed and is transformed
it to the canonical form C which are provided below.

The entries of C and C matrix are:

1 1 0 0 0 0 0

0 1 1 0 0 0 0

0 0 1 1 0 0 0

0 0 0 1 1 0 0

0 0 0 0 1 0 0

1 0 0 1 0 1 0

0 0 0 1 1 1 1

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷= ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷çè ø

C

1 0 0 0 0 0 0

0 1 1 0 0 0 0

0 0 1 1 0 0 0

0 0 0 1 1 0 0

1 0 0 0 1 0 0

0 1 0 0 1 1 0

1 0 0 0 1 1 1

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷= ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷çè ø

C

10.3 Phase III: constructing the AH for the cable manufacturing case study
In this phase, the interactions among the different AECs are utilized to recursively develop
an AH to structure the cable manufacturing facility. As indicated in the methodology, AHs
are designed to be loop-free. In terms of the problem in hand, obtaining partial solutions at a
given abstraction level need not be altered as the process progresses hierarchically to more
detailed levels.
Each AEC is assigned to its appropriate abstraction level using LAA as shown in Figure 7.
Table 5 illustrates the resultant abstraction hierarchy for the cable manufacturing facility.
The levels of the hierarchy indicate the order in which each literal should be introduced to
the problem gradually to facilitate loop-free problem execution.

www.intechopen.com

 New, Advanced Technologies68

Level Classes Literals (lBiBB) Number of
Literals (NBBkBB)

6 6 69 1
5 5 59, 71, 73 3
4 0 0, 1, 2, 3, 4
3 1 4, 5, 6, 7, 8, 9, 10, 11 8

2 2 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 33, 61, 65, 34, 35, 62 27

1 3 36, 37, 38, 39, 54, 55, 56, 40, 41, 42, 43, 52, 53, 44,
45, 46, 47, 48, 49, 50, 51, 70, 66, 63, 64 25

0 4 57, 58, 60, 67, 68, 72, 74 7
Table 5. The levels of the Abstraction hierarchy for the high voltage cable facility

Executing the abstraction hierarchy top-down and feeding results to a facility layout routine
result in the layout provided in Fig 10.

Fig 10. Facility layout for the High voltage cable manufacturing facility

11. Conclusions

This research establishes a rigid foundation and a general platform that produces consistent
abstraction spaces and hierarchies applicable to various contexts, especially those involving
planning and problem solving. The methodology presented adheres to the efficiency
measures and specifications prescribed by the latest advances of AI-based abstraction
theory. Yet, our hierarchical abstraction methodology exhibits additional practicality as it
integrates the theory of abstraction with the convenient representation scheme of Design
Structured Matrices. This expands the application of abstraction theories and enhances their

15 (DD4)
16 sq. m.

3 (PD4)
8 sq. m.

MCS
16 sq. m.

28 (WIP1)
16 sq. m.

DD13
16 sq. m.

16(DD5)
16 sq. m.

DD14
16 sq. m.

12 (DD1)
16 sq. m.

21 (DD10)
16 sq. m.

13 (DD2)
16 sq. m.

DD15
16 sq. m.

17 (DD6)
16 sq. m.

18 (DD7)
16 sq. m.

19 (DD8)
16 sq. m.

25 (DD14)
8 sq. m.

DD16
16 sq. m.

20 (DD9)
16 sq. m.

22 (DD11)
16 sq. m.

14 (DD3)
16 sq. m.

DD17
16 sq. m.

26 (DD15)
8 sq. m.

 (DD23)
8 sq. m.

 (DD22)
8 sq. m.

27 (DD16)
8 sq. m.

23 (DD12)
16 sq. m.

MCS
16 sq. m.

MC
16 sq

NCS
16 sq. m.

WIP 2
8 sq. m.

FP1
4 sq. m.

XL3

36 sq. m.

Layout Iteration 2

XL2
36 sq. m.

XL1
36 sq. m.

XL4
36 sq. m.

XL5
52 sq. m.

XL6
52 sq. m. CU6

28 sq. m.

CU5
28 sq. m.

CO5
20 sq. m.

CO6
20 sq. m.

MS
24 sq. m.

CU4
52 sq. m.

CO4
20 sq. m.

L1
12

 s
q.

 m
.

CU3
52 sq. m.

CU2
52 sq. m.

CU1
52 sq. m.

CO3
20 sq. m.

CO1
20 sq. m.

LOU2
12 sq. m.

CO2
20 sq. m.

PVC
28 sq. m.

FP3
12 sq. m.

A1
20 sq. m.

FP2
12 sq. m.

A2
20 sq. m.

WIP4
16 sq. m.

SH2
16 sq. m.

WIP3
20 sq. m.

SH1
16 sq. m.

QC
32 sq. m.

SH3
16 sq. m.

SH4

INS
52 sq. m

INS

SC
44 sq. m

WH
204 sq. m

DOK2
116 sq. m

feasibility to be used in practice. Within the presented methodology, we have also
developed several effective methods to efficiently structure and analyze systems to be
hierarchically decomposed. These methods were integrated from graph, relation and matrix
theories. In addition we have utilized Markov Chains classes’ classification methods to
identify special behavior in system components and to detect in advance whether or not a
system representation is better using hierarchies. The strength of the methodology relies on
its ability to structure problems in abstraction hierarchies that result in no backtracking.
However, the efficiency of the methodology depends on the context to which it is applied.
That is, little gain is expected to be realized when applying the methodology to domains
that undergo significant interaction due to the irreducibility problem. The steps of the
developed methodology are illustrated in stratifying the design aspects of high voltage cable
company into multiple levels of abstraction. This advantageously contributed in introducing
the design details of the problem gradually as needed earlier in conceptual stage of planning
of the facility. Future research is directed towards quantifying binary relations of literals,
developing measures of efficiency and means of eliminating irreducability and inclusion of
initial and goal states to the literal space.

12. References

Aleisa, E. (2005). Multilevel Integration of Simulation and Facilities Planning for Large-Scale
Systems. Department of Industrial Engineering. Buffalo, NY, The State University of
New York at Buffalo. Vol., No.

Aleisa, E. (2008). An Overview Of Multilevel And Hierarchical Methods For Discrete-Event
Simulation Of Complex Systems. Industrial Simulation Conference (ISC08), Lyon,
France.

Aleisa, E. & L. Lin (2008). Abstraction Hierarchies for Engineering Design. International
Journal of Electrical, Computer, and Systems Engineering 2(1): 20-32.

Aleisa, E. & L. Lin (2009). A Design Structure Matrix Approach For Generating Planning
Abstraction Hierarchies. Kuwait Journal of Science and Engineering (KJSE): To appear.

Armano, G.;G. Cherchi & E. Vargiu (2003). Planning by abstraction using HW[].
Ai(Asterisk)Ia 2003: Advances in Artificial Intelligence, Proceedings. 2829: 349-361.

Bacchus, F. & Q. Yang (1992). Expected value of hierarchical problem-solving. AAAI-92.
Browning, T. R. (1999). The Design Structure Matrix. Technology Management Handbook. R. C.

Dorf. Boca Raton, FL, Chapman & Hall/CRCnetBASE,: 103-111.
Browning, T. R. (2001). Applying the design structure matrix to system decomposition and

integration problems: A review and new directions. IEEE Transactions on
Engineering Management 48(3 August): 292-306.

Chen, L.-R. & S. Ghosh (1997). Modeling and simulation of a hierarchical, distributed,
dynamic inventory management scheme. Simulation 68(6 Jun): 340-362.

Christensen, J. (1991). Automatic Abstraction in Planning. Department of Computer Science.
Stanford, Ca, Stanford University. Vol., No.: 153.

Dartmouth College Writing Group. & E. J. Cogan (1958). Modern mathematical methods and
models; a book of experimental text materials. Ann Arbor, MI.

Debbie, R. (2003). Knowledge-Based System Explanation: The Ripple-Down Rules
Alternative. Knowledge and Information Systems 5(1): 2.

www.intechopen.com

Abstraction Hierarchies for Conceptual Engineering Design 69

Level Classes Literals (lBiBB) Number of
Literals (NBBkBB)

6 6 69 1
5 5 59, 71, 73 3
4 0 0, 1, 2, 3, 4
3 1 4, 5, 6, 7, 8, 9, 10, 11 8

2 2 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 33, 61, 65, 34, 35, 62 27

1 3 36, 37, 38, 39, 54, 55, 56, 40, 41, 42, 43, 52, 53, 44,
45, 46, 47, 48, 49, 50, 51, 70, 66, 63, 64 25

0 4 57, 58, 60, 67, 68, 72, 74 7
Table 5. The levels of the Abstraction hierarchy for the high voltage cable facility

Executing the abstraction hierarchy top-down and feeding results to a facility layout routine
result in the layout provided in Fig 10.

Fig 10. Facility layout for the High voltage cable manufacturing facility

11. Conclusions

This research establishes a rigid foundation and a general platform that produces consistent
abstraction spaces and hierarchies applicable to various contexts, especially those involving
planning and problem solving. The methodology presented adheres to the efficiency
measures and specifications prescribed by the latest advances of AI-based abstraction
theory. Yet, our hierarchical abstraction methodology exhibits additional practicality as it
integrates the theory of abstraction with the convenient representation scheme of Design
Structured Matrices. This expands the application of abstraction theories and enhances their

15 (DD4)
16 sq. m.

3 (PD4)
8 sq. m.

MCS
16 sq. m.

28 (WIP1)
16 sq. m.

DD13
16 sq. m.

16(DD5)
16 sq. m.

DD14
16 sq. m.

12 (DD1)
16 sq. m.

21 (DD10)
16 sq. m.

13 (DD2)
16 sq. m.

DD15
16 sq. m.

17 (DD6)
16 sq. m.

18 (DD7)
16 sq. m.

19 (DD8)
16 sq. m.

25 (DD14)
8 sq. m.

DD16
16 sq. m.

20 (DD9)
16 sq. m.

22 (DD11)
16 sq. m.

14 (DD3)
16 sq. m.

DD17
16 sq. m.

26 (DD15)
8 sq. m.

 (DD23)
8 sq. m.

 (DD22)
8 sq. m.

27 (DD16)
8 sq. m.

23 (DD12)
16 sq. m.

MCS
16 sq. m.

MC
16 sq

NCS
16 sq. m.

WIP 2
8 sq. m.

FP1
4 sq. m.

XL3

36 sq. m.

Layout Iteration 2

XL2
36 sq. m.

XL1
36 sq. m.

XL4
36 sq. m.

XL5
52 sq. m.

XL6
52 sq. m. CU6

28 sq. m.

CU5
28 sq. m.

CO5
20 sq. m.

CO6
20 sq. m.

MS
24 sq. m.

CU4
52 sq. m.

CO4
20 sq. m.

L1
12

 s
q.

 m
.

CU3
52 sq. m.

CU2
52 sq. m.

CU1
52 sq. m.

CO3
20 sq. m.

CO1
20 sq. m.

LOU2
12 sq. m.

CO2
20 sq. m.

PVC
28 sq. m.

FP3
12 sq. m.

A1
20 sq. m.

FP2
12 sq. m.

A2
20 sq. m.

WIP4
16 sq. m.

SH2
16 sq. m.

WIP3
20 sq. m.

SH1
16 sq. m.

QC
32 sq. m.

SH3
16 sq. m.

SH4

INS
52 sq. m

INS

SC
44 sq. m

WH
204 sq. m

DOK2
116 sq. m

feasibility to be used in practice. Within the presented methodology, we have also
developed several effective methods to efficiently structure and analyze systems to be
hierarchically decomposed. These methods were integrated from graph, relation and matrix
theories. In addition we have utilized Markov Chains classes’ classification methods to
identify special behavior in system components and to detect in advance whether or not a
system representation is better using hierarchies. The strength of the methodology relies on
its ability to structure problems in abstraction hierarchies that result in no backtracking.
However, the efficiency of the methodology depends on the context to which it is applied.
That is, little gain is expected to be realized when applying the methodology to domains
that undergo significant interaction due to the irreducibility problem. The steps of the
developed methodology are illustrated in stratifying the design aspects of high voltage cable
company into multiple levels of abstraction. This advantageously contributed in introducing
the design details of the problem gradually as needed earlier in conceptual stage of planning
of the facility. Future research is directed towards quantifying binary relations of literals,
developing measures of efficiency and means of eliminating irreducability and inclusion of
initial and goal states to the literal space.

12. References

Aleisa, E. (2005). Multilevel Integration of Simulation and Facilities Planning for Large-Scale
Systems. Department of Industrial Engineering. Buffalo, NY, The State University of
New York at Buffalo. Vol., No.

Aleisa, E. (2008). An Overview Of Multilevel And Hierarchical Methods For Discrete-Event
Simulation Of Complex Systems. Industrial Simulation Conference (ISC08), Lyon,
France.

Aleisa, E. & L. Lin (2008). Abstraction Hierarchies for Engineering Design. International
Journal of Electrical, Computer, and Systems Engineering 2(1): 20-32.

Aleisa, E. & L. Lin (2009). A Design Structure Matrix Approach For Generating Planning
Abstraction Hierarchies. Kuwait Journal of Science and Engineering (KJSE): To appear.

Armano, G.;G. Cherchi & E. Vargiu (2003). Planning by abstraction using HW[].
Ai(Asterisk)Ia 2003: Advances in Artificial Intelligence, Proceedings. 2829: 349-361.

Bacchus, F. & Q. Yang (1992). Expected value of hierarchical problem-solving. AAAI-92.
Browning, T. R. (1999). The Design Structure Matrix. Technology Management Handbook. R. C.

Dorf. Boca Raton, FL, Chapman & Hall/CRCnetBASE,: 103-111.
Browning, T. R. (2001). Applying the design structure matrix to system decomposition and

integration problems: A review and new directions. IEEE Transactions on
Engineering Management 48(3 August): 292-306.

Chen, L.-R. & S. Ghosh (1997). Modeling and simulation of a hierarchical, distributed,
dynamic inventory management scheme. Simulation 68(6 Jun): 340-362.

Christensen, J. (1991). Automatic Abstraction in Planning. Department of Computer Science.
Stanford, Ca, Stanford University. Vol., No.: 153.

Dartmouth College Writing Group. & E. J. Cogan (1958). Modern mathematical methods and
models; a book of experimental text materials. Ann Arbor, MI.

Debbie, R. (2003). Knowledge-Based System Explanation: The Ripple-Down Rules
Alternative. Knowledge and Information Systems 5(1): 2.

www.intechopen.com

 New, Advanced Technologies70

Deo, N. (1974). Graph theory with applications to engineering and computer science. Englewood
Cliffs, N.J., Prentice-Hall.

Eppinger, S. D.;D. E. Whitney;R. P. Smith & D. A. Gebala (1994). A Model-Based Method for
Organizing Tasks in Product Development. Research in Engineering Design-Theory
Applications and Concurrent Engineering 6(1): 1-13.

Fox, M. & D. Long (1995). Hierarchical planning using abstraction. IEE Control Theory and
Applications.

Friske, L. M. & C. H. C. Ribeiro (2006). Planning under uncertainty with abstraction
hierarchies. Intelligent Data Engineering and Automated Learning - Ideal 2006,
Proceedings. 4224: 1057-1066.

Gaver, D. P. & G. L. Thompson (1973). Programming and probability models in operations
research. Monterey, Ca, Brooks/Cole Pub. Co.

Gimenez, O. & A. Jonsson (2008). The complexity of planning problems with simple causal
graphs. Journal of Artificial Intelligence Research 31: 319-351.

Giunchiglia, F. (1999). Using Abstrips abstractions - Where do we stand? Artificial Intelligence
Review 13(3): 201-213.

Giunchiglia, F. & T. Walsh (1992). A Theory of Abstraction. Artificial Intelligence 57(2-3): 323-
389.

Goldin, S. E. & P. Klahr (1981). Learning and Abstraction in Simulation. International Joint
Conference on Artificial Intelligence, American Assoc for Artificial Intelligence.

Helmert, M. (2006). The Fast Downward planning system. Journal of Artificial Intelligence
Research 26: 191-246.

Holte, R. C. & B. Y. Choueiry (2003). Abstraction and reformulation in artificial intelligence.
Philosophical Transactions of the Royal Society of London Series B-Biological Sciences
358(1435): 1197-1204.

Hoover, S. P. & J. R. Rinderle (1994). Abstractions, design views and focusing. 6th International
Conference on Design Theory and Methodology American Society of Mechanical Engineers,
Design Engineering Division (Publication) DE, ASME, New York, NY.

Kao, E. P. C. (1997). An introduction to stochastic processes. Belmont, Calif., USA, Duxbury
Press.

Kemeny, J. G. & J. L. Snell (1960). Finite markov chains. Princeton, N.J., Van Nostrand.
Kemke, C. & E. Walker (2006). Planning with action abstraction and Plan Decomposition

Hierarchies. 2006 Ieee/Wic/Acm International Conference on Intelligent Agent
Technology, Proceedings: 447-451.

Kiran, A. S.;T. Cetinkaya & J. Cabrera (2001). Hierarchical modeling of a shipyard integrated
with an external scheduling application. Winter Simulation Conference Proceedings 2:
877-881 (IEEE cat n 01CH37304).

Knoblock, C. (1990). Learning Abstraction Hierarchies for Problem Solving. AAAI-90, Boston,
MA.

Knoblock, C. (1994). Automatically generating abstractions for planning. Artificial Intelligence
68(2 Aug): 243-302.

Knoblock, C. A. (1994). Automatically generating abstractions for planning. Artificial
Intelligence 68(2 Aug): 243-302.

Lam, K. P. (1996). Hierarchical Method for Large Scale Two-Dimensional Layout. DET-96,
American Society of Mechanical Engineers.

Levy, A. Y. (1994). Creating abstractions using relevance reasoning. AAAI-94, Menlo Park, CA.

Lin, J. T.;K. C. Yeh & L. C. Sheu (1996). A context-based object-oriented application
framework for discrete event simulation. Computers & Industrial Engineering 30(4):
579-597.

Lu, S. C. Y. & D. K. Tcheng (1991). Building layered models to support engineering decision
making. A machine learning approach. Journal of Engineering for Industry 113(1): 1-9.

Luger, G. F. (2002). Artificial intelligence : structures and strategies for complex problem solving.
Harlow, England ; New York, Pearson Education.

Manfaat, D.;A. H. Duffy & B. S. Lee (1998). SPIDA: Abstracting and generalizing layout
design cases. Artificial Intelligence for Engineering Design, Analysis & Manufacturing:
Aiedam 12(2 Apr): 141-159.

Marie, d.;R. Priyang & G. Lise (2008). Learning structured Bayesian networks: combining
abstraction hierarchies and tree-structured conditional probability tables.
Computational Intelligence 24(1): 1.

McCord, K. R. a. E., Steven D. (1993). Managing the Integration Problem in Concurrent
Engineering, M.I.T. Sloan School of Management, Cambridge. Vol., No.

McGraw, R. M. & R. A. MacDonald (2000). Abstract modeling for engineering and
engagement level simulations. Winter Simulation Conference Proceedings 1: 326-334.

Minton, S. (1988). Learning Effective Search Control Knowledge: An Explanation-Based
Approach, Carnegie-Mellon University. Vol., No.: 231.

Pels, H. J. (2006). Classification hierarchies for product data modelling. Production Planning
& Control 17(4): 367.

Pidd, M. (1996). Five simple principles of modelling. Winter Simulation Conference Proceedings,
Publ by IEEE, IEEE Service Center, Piscataway, NJ, USA.

Pidd, M. & R. B. Castro (1998). Hierarchical modular modelling in discrete simulation. Winter
Simulation Conference, IEEE, Piscataway, NJ.

Praehofer, H. (1996). An Environment for DEVS-based multi-formalism modeling and simulation
in C++. Proceedings of AI, Simulation and Planning in High-Autonomy Systems, Tucson,
AZ.

Reddy, S. Y. (1996). Learning abstract models for system design. Ai Edam-Artificial
Intelligence for Engineering Design Analysis and Manufacturing 10(2): 167-169.

Rogers, J. L. (1996). DeMAID/GA - An Enhanced Design Manager's Aid for Intelligent
Decomposition. 6th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization, Seattle, WA.

Russell, S. J. & P. Norvig (1995). Artificial intelligence : a modern approach. Englewood Cliffs,
N.J., Prentice Hall.

Sacerdoti, E. (1974). Planning in a Hierarchy of Abstraction Spaces. Artificial Intelligence 5(2):
115-135.

Sarjoughian, H. S.;B. P. Zeigler & F. E. Cellier (1998). Evaluating model abstractions: A
quantitative approach. Proceedings of SPIE Enabling Technology for Simulation Science
II, Orlando, FL, United States.

Sebastia, L.;E. Onaindia & E. Marzal (2006). Decomposition of planning problems. Ai
Communications 19(1): 49-81.

Steward, D. V. (1981). The Design Structure-System - a Method for Managing the Design of
Complex-Systems. Ieee Transactions on Engineering Management 28(3): 71-74.

www.intechopen.com

Abstraction Hierarchies for Conceptual Engineering Design 71

Deo, N. (1974). Graph theory with applications to engineering and computer science. Englewood
Cliffs, N.J., Prentice-Hall.

Eppinger, S. D.;D. E. Whitney;R. P. Smith & D. A. Gebala (1994). A Model-Based Method for
Organizing Tasks in Product Development. Research in Engineering Design-Theory
Applications and Concurrent Engineering 6(1): 1-13.

Fox, M. & D. Long (1995). Hierarchical planning using abstraction. IEE Control Theory and
Applications.

Friske, L. M. & C. H. C. Ribeiro (2006). Planning under uncertainty with abstraction
hierarchies. Intelligent Data Engineering and Automated Learning - Ideal 2006,
Proceedings. 4224: 1057-1066.

Gaver, D. P. & G. L. Thompson (1973). Programming and probability models in operations
research. Monterey, Ca, Brooks/Cole Pub. Co.

Gimenez, O. & A. Jonsson (2008). The complexity of planning problems with simple causal
graphs. Journal of Artificial Intelligence Research 31: 319-351.

Giunchiglia, F. (1999). Using Abstrips abstractions - Where do we stand? Artificial Intelligence
Review 13(3): 201-213.

Giunchiglia, F. & T. Walsh (1992). A Theory of Abstraction. Artificial Intelligence 57(2-3): 323-
389.

Goldin, S. E. & P. Klahr (1981). Learning and Abstraction in Simulation. International Joint
Conference on Artificial Intelligence, American Assoc for Artificial Intelligence.

Helmert, M. (2006). The Fast Downward planning system. Journal of Artificial Intelligence
Research 26: 191-246.

Holte, R. C. & B. Y. Choueiry (2003). Abstraction and reformulation in artificial intelligence.
Philosophical Transactions of the Royal Society of London Series B-Biological Sciences
358(1435): 1197-1204.

Hoover, S. P. & J. R. Rinderle (1994). Abstractions, design views and focusing. 6th International
Conference on Design Theory and Methodology American Society of Mechanical Engineers,
Design Engineering Division (Publication) DE, ASME, New York, NY.

Kao, E. P. C. (1997). An introduction to stochastic processes. Belmont, Calif., USA, Duxbury
Press.

Kemeny, J. G. & J. L. Snell (1960). Finite markov chains. Princeton, N.J., Van Nostrand.
Kemke, C. & E. Walker (2006). Planning with action abstraction and Plan Decomposition

Hierarchies. 2006 Ieee/Wic/Acm International Conference on Intelligent Agent
Technology, Proceedings: 447-451.

Kiran, A. S.;T. Cetinkaya & J. Cabrera (2001). Hierarchical modeling of a shipyard integrated
with an external scheduling application. Winter Simulation Conference Proceedings 2:
877-881 (IEEE cat n 01CH37304).

Knoblock, C. (1990). Learning Abstraction Hierarchies for Problem Solving. AAAI-90, Boston,
MA.

Knoblock, C. (1994). Automatically generating abstractions for planning. Artificial Intelligence
68(2 Aug): 243-302.

Knoblock, C. A. (1994). Automatically generating abstractions for planning. Artificial
Intelligence 68(2 Aug): 243-302.

Lam, K. P. (1996). Hierarchical Method for Large Scale Two-Dimensional Layout. DET-96,
American Society of Mechanical Engineers.

Levy, A. Y. (1994). Creating abstractions using relevance reasoning. AAAI-94, Menlo Park, CA.

Lin, J. T.;K. C. Yeh & L. C. Sheu (1996). A context-based object-oriented application
framework for discrete event simulation. Computers & Industrial Engineering 30(4):
579-597.

Lu, S. C. Y. & D. K. Tcheng (1991). Building layered models to support engineering decision
making. A machine learning approach. Journal of Engineering for Industry 113(1): 1-9.

Luger, G. F. (2002). Artificial intelligence : structures and strategies for complex problem solving.
Harlow, England ; New York, Pearson Education.

Manfaat, D.;A. H. Duffy & B. S. Lee (1998). SPIDA: Abstracting and generalizing layout
design cases. Artificial Intelligence for Engineering Design, Analysis & Manufacturing:
Aiedam 12(2 Apr): 141-159.

Marie, d.;R. Priyang & G. Lise (2008). Learning structured Bayesian networks: combining
abstraction hierarchies and tree-structured conditional probability tables.
Computational Intelligence 24(1): 1.

McCord, K. R. a. E., Steven D. (1993). Managing the Integration Problem in Concurrent
Engineering, M.I.T. Sloan School of Management, Cambridge. Vol., No.

McGraw, R. M. & R. A. MacDonald (2000). Abstract modeling for engineering and
engagement level simulations. Winter Simulation Conference Proceedings 1: 326-334.

Minton, S. (1988). Learning Effective Search Control Knowledge: An Explanation-Based
Approach, Carnegie-Mellon University. Vol., No.: 231.

Pels, H. J. (2006). Classification hierarchies for product data modelling. Production Planning
& Control 17(4): 367.

Pidd, M. (1996). Five simple principles of modelling. Winter Simulation Conference Proceedings,
Publ by IEEE, IEEE Service Center, Piscataway, NJ, USA.

Pidd, M. & R. B. Castro (1998). Hierarchical modular modelling in discrete simulation. Winter
Simulation Conference, IEEE, Piscataway, NJ.

Praehofer, H. (1996). An Environment for DEVS-based multi-formalism modeling and simulation
in C++. Proceedings of AI, Simulation and Planning in High-Autonomy Systems, Tucson,
AZ.

Reddy, S. Y. (1996). Learning abstract models for system design. Ai Edam-Artificial
Intelligence for Engineering Design Analysis and Manufacturing 10(2): 167-169.

Rogers, J. L. (1996). DeMAID/GA - An Enhanced Design Manager's Aid for Intelligent
Decomposition. 6th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization, Seattle, WA.

Russell, S. J. & P. Norvig (1995). Artificial intelligence : a modern approach. Englewood Cliffs,
N.J., Prentice Hall.

Sacerdoti, E. (1974). Planning in a Hierarchy of Abstraction Spaces. Artificial Intelligence 5(2):
115-135.

Sarjoughian, H. S.;B. P. Zeigler & F. E. Cellier (1998). Evaluating model abstractions: A
quantitative approach. Proceedings of SPIE Enabling Technology for Simulation Science
II, Orlando, FL, United States.

Sebastia, L.;E. Onaindia & E. Marzal (2006). Decomposition of planning problems. Ai
Communications 19(1): 49-81.

Steward, D. V. (1981). The Design Structure-System - a Method for Managing the Design of
Complex-Systems. Ieee Transactions on Engineering Management 28(3): 71-74.

www.intechopen.com

 New, Advanced Technologies72

Taylor, L. E. & M. R. Henderson (1994). Roles of features and abstraction in mechanical design.
6th International Conference on Design Theory and Methodology American Society of
Mechanical Engineers, Design Engineering Division (Publication) DE, New York, NY,
ASME.

Warfield, J. N. (1973). Binary Matrices in System Modeling. Ieee Transactions on Systems Man
and Cybernetics SMC3(5): 441-449.

Yang, Q., Tenenberg, J (1990). Abtweak: Abstracting a Nonlinear, Least Commitment Planner.
AAAI-90, Boston, MA.

Yassine, A.;D. Falkenburg & K. Chelst (1999). Engineering design management: an
information structure approach. International Journal of Production Research 37(13):
2957-2975.

Zeigler, B. P. (1976). Theory of modelling and simulation. New York, Wiley.
Zeigler, B. P. (1987). Hierarchical, Modular Discrete-Event Modelling in an Object-Oriented

Envirionment. Simulation 49(5): 219-230.
Zeigler, B. P.;H. Praehofer & T. G. Kim (2000). Theory of modeling and simulation : integrating

discrete event and continuous complex dynamic systems. San Diego, Academic Press.
Zucker, J. D. (2003). A grounded theory of abstraction in artificial intelligence. Philosophical

Transactions of the Royal Society of London Series B-Biological Sciences 358(1435): 1293-
1309.

www.intechopen.com

New Advanced Technologies

Edited by Aleksandar Lazinica

ISBN 978-953-307-067-4

Hard cover, 350 pages

Publisher InTech

Published online 01, March, 2010

Published in print edition March, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book collects original and innovative research studies concerning advanced technologies in a very wide

range of applications. The book is compiled of 22 chapters written by researchers from different areas and

different parts of the world. The book will therefore have an international readership of a wide spectrum.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Esra Aleisa Ph.D. (2010). Abstraction Hierarchies for Conceptual Engineering Design, New Advanced

Technologies, Aleksandar Lazinica (Ed.), ISBN: 978-953-307-067-4, InTech, Available from:

http://www.intechopen.com/books/new-advanced-technologies/abstraction-hierarchies-for-conceptual-

engineering-design

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

