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1. Introduction  
 

In plasma focus generators the magnetic energy is stored behind the moving current sheath 
(Mather,1971). A portion of this energy is converted into plasma energy during the rapid 
collapse of the current sheath towards the axis beyond the end of the central electrode. 
Electrical breakdown generates some initial plasma configuration through which the 
discharge current can flow and at very low pressure a discharge can develop within the 
whole inter-electrode volume. The current sheath formed at the end of the breakdown phase 
is accelerated by Lorentz force towards the open end of the inner electrode and then the 
current sheath sweeps around the end of the anode electrode and finally implodes due to 
the inward J×B force. When the current sheath reaches the end of the central electrode, it 
reverses over itself and collapses radially inward, heating the pinching plasma enclosed in it 
(Mather,1965). The radial compression of CS is open at one end. Hence a gas dynamic shock 
is propagated ahead of the CS into the undisturbed filling gas (Soto,2005). The snowplow 
model is used for axial acceleration of CS to obtain axial trajectory, CS speed and current 
profile. As the CS is assumed to be infinitesimally thin, no information of density is 
contained in the physics of the equation of motion, although an estimate of density may be 
obtained by invoking shock wave theory (Lee et al,1988). For  a  given  density  and  
temperature,  plasma  equilibrium  models  can  be  used  to calculate  the  plasma  states  
and  emission  spectra  with  the  knowledge  of  the  rates  of transition and related 
parameters. The collisional radiative  model was developed to fill the gap of several orders 
of magnitude in electron density where neither the LTE model nor the corona equilibrium is 
valid. This is a modification of the corona model which takes into account collisional 
transitions as well as radiative decay from higher bound levels, and three body as well as 
radiative recombination. The main difficulty with this model is its complication, need of 
computer time, etc. In the calculations the corona model has been applied as an 
approximation for simulating the argon plasma in the plasma focus. This could give 
sufficiently accurate simulation results (Bates et al,1962 & Yanagidaira,1999). A scheme of a 
plasma focus system and also the configuration of the 2D cylindrical geometry shock wave 
at the radial phase of plasma layer are shown in Figure 1. We have developed a new model 

5

www.intechopen.com



 New, Advanced Technologies94

 

to predict accurately the CS trajectory before the dense plasma pinch formation driven by 
magnetic force. The path of CS and shock wave are correlated together and if we know the 
path of the shock front at the radial compression of CS, we can simulate the trajectory of 
imploding CS. this results can be used for the experimental design of plasma focus and also 
for stabilizing the hydrodynamic instabilities that affect the implosion of current sheath and 
the final pinch uniformity. As we will show, the results are in a good agreement with the 
simulation results of shock wave and CS trajectories which is obtained by the three phase 
theory of plasma focus performance (Mathuthu et al,1997).  
 

 

Fig. 1. (a) - conceptual drawing of plasma focus, (b)- configuration of the 2D cylindrical 
geometry shock wave 

 
2. Analytical model 
 

In the plasma focus model a radially implosive plasma slug is formed above the anode in the 
radial compression of CS (Lindemuth,1982). As it is simplified in Figure 2, plasma slug is 
formed and compresses radially inward until the shock front meet at the center axis. This slug 
is driven by the radial inward magnetic piston and plasma column continue compress to a 
narrow column region and results in a hot and dense plasma. Due to plasma focus geometry 
and plasma layer dynamic, the motion of the plasma slug can be described by the cylindrical 
geometry 2D shock wave equations. Conceptual design of the device performed precisely so 
that the plasma layer moves isentropic between two electrodes. Therefore we can consider an 
ideal cylindrical magnetic piston of dense plasma produced by electrical discharge between 
the electrodes of a plasma focus system. At the end of the axial rundown phase, the plasma 
will form a column at the axis and finally collapse and the period of the radial phase is 
approximate 50 ~ 200 ns, depending on the plasma focus machine characteristics. Because of 
such short living plasma we can suppose that the radius of this magnetic piston decreases so 
rapidly that a strong shock is driven in front of the wall toward the axis of the cylinder.  

 

    

     
 

Fig. 2 .a) radial inward shock phase b) reflected shock phase of plasma focus, and c) 
formation of shock wave driven by CS inward motion  
 
Due to high isentropic behavior of plasma slug we suppose that two particles that are 
located at different radii in the cylindrical CS, their respective radii will always the same 
such that the particle initially closer to the axis will always be closer to the axis. This 
immediately leads to a law for conservation of mass and a method for labeling each particle. 
In Figure 3 the path of current sheath CS (t), the path of shock wave S (t), and the path of 
any particle P( ξ ,t) are plotted.  
 

 
Fig. 3. the path of current sheath CS (t), the path of shock wave S (t), and the path of any 
particle P( ,t) 
 
ξ  corresponds to the mass between the CS and considered particle and t′ refers to the time 

when the shock passes over the particle. Thus t′ may be regarded as a function of   and 

(c) 
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according to figures 1, and 2, we define  22
0 )(- tSa    in which 0ρ and aare 

undisturbed gas density and radius of the central electrode respectively (Chernyi,1956 , 

Freeman,1956). The momentum equation is seen to be 
2
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t r

 

 
   

where P  is the 

pressure acting on the particle to accelerate it. The process is assumed to be entirely 
isentropic except fot a jump in entropy as the shock crosses the particle’s pass. Therefore the 
ratio 

γρ
P is a constant for each particle as it travels from the shock toward the axis of 

cylinder. This constant is given by the conditions immediately after the shock. γ  is the ratio 
of specific heats(for example 667.1=γ  for Ar as filling gas). The pressure and density of a 
particle immediately after the shock ( iP  and iρ  ) can be found by using the shock relations 
in conjunction with the perfect gas law as )()-1()( 2

0 tStPi    and ε
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combined into one relationship. At any later time, ζ may be found by taking the integral 
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where sζ  is the value of ζ   at the shock at any time t  . From the equation of momentum 
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 . Let us putting this information back into 

equation of ),(2 tζP  and nondimensionalize the quantities appearing in the equation as 
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x s . 0t  is chosen so that τ is in sμ  . Due to Schlieren images and 

visible-radiation pictures taken with a high-speed camera before and after the maximum 
compression of plasma layer most interesting cases may be covered by assuming a parabolic 
shock trajectory as 2--1 sx in which α

 

is nondimensional velocity of the shock 
and β

 

is the shock’s constant acceleration or deceleration toward the axis depending 
upon β  is positive or negative (Sadowski & Sholz, 2008). Substituting this information into 
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equation implies that a particle Z  is, at a time  , at a position away from the shock by a 
distance equal to   multiplied by an integral, the integrand of which consists of a 
numerator representing the isentropic condition and a denominator which is a constant 
fraction of the pressure.   varies from 0 for 1=γ  to 25.0 for 667.1=γ  . the piston trajectory 
is ),0( tx , that is the piston is always at the particle 0=Z  .Since the right hand side of above 
equation involves a second derivative of the desired solution, a method of iteration must be 
used. Due to the difficulty in taking derivatives numerically we should search for an 
analytic solution that may be placed back into the equation. From this analytic solution a 
second approximation may be found numerically and compared to the first solution. As a 
first approximation, it may be assumed that the pressure doesn’t change much between the 

shock wave and CS. In effect we assume 
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  . This relation 

is good when two conditions are met. First we must not to be too close to the axis. Otherwise 
x  will be small. Secondly the second derivative of x  with respect to τ should be small and 
the denominator of the integrand of the large integral may approach zero. These conditions 
are met at least in the beginning stage of piston’s propagation. With this assumption, we 

conclude that 
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integrates to a first approximation for x . The equation of CS path for the first approximation 
becomes Zxxx ssfirst  -)-1( 222  . In order to find the second approximation, we must 

substitute the second derivative of ),( τZx first with respect to τ into the subintegral of 
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(Drake, 2005 & 

Lister, 1960). 

 
3. Simulation results and discussion 
 

We invoked a program to perform a numerical integration of nondimensional equation 

obtained for ),(2 τZx to simulate path of CS respect to a parabolic strong shock wave 
trajectory [7]. The program was run for 999.0=A  and 001.0=B  and was also run for 

1=A and 0=B . The general philosophy of the program is first to determine what time 
steps to use, and then when the time steps are known, to calculate all quantities that are 
dependent only upon time for the first τΔ . Then at the time under consideration the 
quantities that depend on Z  are calculated. Specifically the value of the integrand for 

sZZ =  is first calculated. Then the values of Z  for which we want the particle positions 
spelled out are determined. The program does this by taking sZ ′ rounding it off to the next 
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lowest 05.0  and then using in steps of 05.0  , the steps for which the two integrations are 
performed. The subintegral is found for the interval from sZ to the next lower Z . With this 
value of the subintegral, the total integral may be found giving x for the rounded off Z and 
the time τΔ . Using the next lower value of Z , the next portion of the subintegral is added to 
the value obtained above. Similarly the next portion of entire integral is added on to the part 
already found. This process is carried on until we reach the value 0=Z which is the piston. 
At this time we proceed to the next time and repeat the entire process. 
Figure 4 shows a constant velocity shock ( 0=β ) with the CS path computed for 667.1=γ  
and 1.1=γ .  
 

 
Fig. 4. CS trajectory for constant velocity shock 
 
In Figure 5, CS trajectory for accelerating shock and in Figure 6, CS trajectory for 
decelerating shock ( 1.1,667.1= andγ ) simulated. 
 

 
Fig. 5. CS trajectory for accelerating velocity shock 

 

In the pinch phase of focused plasma much of the energy available is absorbed in the 
ionization process (Shan et al,2000). Here the real value of  when argon is used as working 
gas may be expected would be closer to 1.1 than to 667.1 . As it shown in Figure 4, for 

667.1=γ it is seen that the first and second approximations for the CS trajectory are very 
close together until the CS reaches a radial position 75.0 . At this point the second 
approximation diverges from the first approximation and ultimately turns back toward its 
initial position. Physically a decrease in the denominator corresponds to a decrease in 
pressure at the CS. It is logical the pressure decrease from the shock to the CS at a given time 
because in this region of the flow, there is quasi-steady supersonic flow into a converging 
channel which implies a decrease in velocity and a corresponding adverse pressure gradient 
[12]. Since the conditions behind the shock are fixed, the pressure at the CS must be steadily 
decreasing as the gap between the shock and CS widens. As we see in Figure 5, for 

1.1=γ there is no difference large enough to be seen between the first and second 
approximations until the second approximation reaches the zero pressure limit. This occurs 
at 27.0=),0( τx that is much smaller than the final radius of the CS for the constant shock. 
This fact implies that the CS pushing an accelerating shock has control over the shock for a 
longer time than the CS pushing a constant velocity shock. For 667.1=γ , the accelerating 
shock has a piston path given by the second approximation that is closer to the center than 
the first approximation. That is, in order to accelerate the flow, the pressure at the piston 
must be greater than the pressure at the shock. For the first approximation, this pressure 
difference is neglected. In the second approximation it is included. This effect is also present 
for the 1.1=γ case; however, it is so small that it cannot be seen on the scale of Figure 5. 
Figure 6 shows the case of a decelerating shock. There is little new on this graph except that 
the piston turns back even sooner than it does for the constant velocity shock.  
 

 

Fig. 6. CS trajectory for decelerating velocity shock 
 
To compare the results with the three phase theory of plasma focus performance We solved 
the axial and radial phases’ current sheath equations coupled with equivalent plasma focus 
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To compare the results with the three phase theory of plasma focus performance We solved 
the axial and radial phases’ current sheath equations coupled with equivalent plasma focus 
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circuit equations (Habibi et al,2008). In Figure 7, shock wave and CS trajectories obtained by 
the three phase theory have been compared with the simulation result of the analytical 
model. As we see, there is a good agreement between two models especially when the CS 
moved toward the axis of central electrode and similarity of curves obtained by these 
models can illustrate validity of presented analytical model. 
 

 

Fig. 7. trajectory of shock wave and CS based upon proposed analytical model and the three 
phase theory 

 
4. Conclusion 
 

In this paper we presented an analytical model to describe the CS path based upon the 
shock wave trajectory before dense pinch formation in a plasma focus system. When the 
results from the analytical method are compared to the results obtained by the three phase 
theory of plasma focus, it is seen that the trajectory of CS and shock wave were almost the 
same for accelerating velocity of shock wave. The results of first and second approximations 
for the straight shock wave don’t have physical relevance. When this procedure is extended 
to the accelerating and decelerating shock trajectories, it would seem to imply that the first 
and second approximation are very close together and also an accelerating shock  is 
controlled more by its piston than is a decelerating shock wave. Because of complexity of 
pinched plasma behavior, this approach can be applied to investigate the dynamic of 
accelerating plasma layer. 
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circuit equations (Habibi et al,2008). In Figure 7, shock wave and CS trajectories obtained by 
the three phase theory have been compared with the simulation result of the analytical 
model. As we see, there is a good agreement between two models especially when the CS 
moved toward the axis of central electrode and similarity of curves obtained by these 
models can illustrate validity of presented analytical model. 
 

 

Fig. 7. trajectory of shock wave and CS based upon proposed analytical model and the three 
phase theory 

 
4. Conclusion 
 

In this paper we presented an analytical model to describe the CS path based upon the 
shock wave trajectory before dense pinch formation in a plasma focus system. When the 
results from the analytical method are compared to the results obtained by the three phase 
theory of plasma focus, it is seen that the trajectory of CS and shock wave were almost the 
same for accelerating velocity of shock wave. The results of first and second approximations 
for the straight shock wave don’t have physical relevance. When this procedure is extended 
to the accelerating and decelerating shock trajectories, it would seem to imply that the first 
and second approximation are very close together and also an accelerating shock  is 
controlled more by its piston than is a decelerating shock wave. Because of complexity of 
pinched plasma behavior, this approach can be applied to investigate the dynamic of 
accelerating plasma layer. 
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