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1. Introduction     
 

Microwave and RF filters play an important role in various electronic systems, including 
cellular radio, satellite communications and radar. Filters are used in these systems in order 
to discriminate between wanted and unwanted signal frequencies. High performance filters 
are desirable for good signal reception and therefore for a better system performance. The 
demands for high performance filters are mainly due to the stringent frequency spectrum 
requirements following the emerging of new applications for modern communication 
systems. High performance filters are filters with low insertion loss, high frequency 
selectivity, phase linearity and potentially no harmonic response. Following the 
advancement of modern technologies, design considerations have been extended to achieve 
compact size and light-weight, making the filter design a more challenging task. Although 
enormous amount of literature on various filter theories is available, new filters are 
continually developed and reported in major journal and conference publications, to suit 
severe design specifications.  
In general, microwave filters are divided into two broad classes, they are distributed type 
and lumped-element type. At microwave frequencies the use of distributed circuit elements 
in implementing passive microwave devices is widespread. They differ from lumped 
circuits as one or more dimensions are a significant fraction of the operating wavelength. 
Design formulae are available in many texts. Distributed filters can take the form of planar 
structures or waveguide cavity and they are preferable for high Q filter design. However, 
the latter has the advantage of low or no spurious harmonic responses.    
In this chapter, we will give a new design perspective for a potentially high performance 
filter namely a dual-mode microstrip ring resonator with composite-right/left-handed 
(CRLH) line, for suppression of first harmonic. In section 2, we will first describe the 
terminologies of Left-Handed (LH) and Right-Handed (RH) transmission lines and show 
how their wave propagation properties are different using their transmission line models. In 
Section 3, we will give an overview of ring resonator’s research, how ring resonator can be 
used in a single mode or a dual-mode resonator design.  
In section 4, we will discuss the principle of operation of a composite-right/left-handed line 
ring resonator, and explain how harmonic supprssion can be achieved. 
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In sections 5, we will present the implementation of CRLH ring resonator. We will give the 
formulation use in the design and show how the left-handed line is incorporated into a ring 
resonator. 
In section 6, we will take the circuit-modeling approach to analyse the CRLH ring resonator 
in greater details. This serves as initial design guidelines to quickly determine the filter 
layout dimensions, given a filter specification. The final design can then be simulated using 
commercial electromagnetic simulator. Some measurement results will be presented. 
In section 7 and 8, we express other design considerations for the CRLH ring resonator and 
give suggestions for future developments.    

 
2. Left and Right Hand Transmission Lines 
 

The term left-handed transmission line is relatively new although such lines have long been 
known. The term comes from a speculative paper (Veselago, 1968), which considered the 
electromagnetic properties of a material with negative permittivity and permeability. 
Among other interesting properties, such a material will have a negative refractive index. 
However, it was many years later that experimentalists (Shelby et al, 2001) demonstrated 
such a material. These materials were called left-handed metamaterials.  
Consider a uniform plane wave in a right-handed rectangular Cartesian coordinate system. 
The direction of the Poynting vector is always given by the direction of motion of a right-
handed cork screw as it is rotated from the electric field vector to the magnetic field vector. 

Assuming the fields to vary as ( )r •k-tωje


, where ω is the angular frequency (radians/s), t is 
time, k


 is the wave vector, r


 is the position vector, and 1-=j . Maxwell’s curl equations 

can be written in the SI units as 
 

Hωμ=E×k


 

E-


ωε=H×k  

(1) 
 

(2) 
where E


 and H


represent the electric and magnetic field vectors and ε and μ  are the 

permittivity and permeability of the medium considered to be isotropic. 
These equations show that the wave vector, k


 is perpendicular to the electric and magnetic 

field vectors. If both ε and μ  are positive, the direction of k


 is given by the direction of 

H×E


, i.e., the Poynting vector. The direction of the wave vector is therefore given by the 
direction of motion of a right-handed cork screw as it is rotated from the electric field vector 
to the magnetic field vector. Hence, such a medium is called right-handed. Most materials 
occurring in nature are right-handed. On the other hand, if both ε and μ  are negative the 

direction of k


 is given by the direction of - H×E


, i.e., opposite to the direction of the 
Poynting vector. The direction of the wave vector is therefore given by the direction of 
motion of a left-handed cork screw as it is rotated from the electric field vector to the 
magnetic field vector. Hence, such a medium is called left-handed. The Poynting vector is 
associated with the direction of energy flow, while the wave vector represents the direction 
of motion of the wave fronts. The former therefore represents the direction of group velocity 
while the latter represents the direction of phase velocity. Hence the phase and group 

 

velocities are in the same direction in a right-handed material and in opposite directions in a 
left-handed material. Waves with opposite directions of phase and group velocities have 
been known for a long time and have been used in backward wave oscillators.  These waves 
travel in periodic structures and are called slow waves (Beck, 1958) because their phase 
velocities are less than the phase velocity of light in the medium in which these periodic 
structures are embedded.  
It is a common practice in electrical engineering to model wave propagation by transmission 
line theory which can represent both slow and fast waves. Thus it is expected that a left-
handed material can be represented by a transmission line. Fig.1 shows the transmission line 
model represented by a distributed series impedance, Z  Ohms/m and a distributed shunt 
admittance, Y  Siemens/m.  

 
Fig. 1. Transmission line model for an infinitesimal length zΔ  
 
For a lossless transmission line the characteristic impedance, 0Z and the phase constant, β  
are given by 

YZ=0Z  

ZY=βj  

(3) 
 

(4) 
Consider now the common transmission line of Fig.2(a), in which the series impedance is an 
inductance, L Henrys/m and the shunt admittance is a capacitance, C Farads/m .   

      (a)          (b)  
Fig. 2. (a) Model of right-handed line, (b) Model of left-handed line  
 
Noting that Lωj=Z and Cωj=Y , 

CL=0Z  (5) 
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In sections 5, we will present the implementation of CRLH ring resonator. We will give the 
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in greater details. This serves as initial design guidelines to quickly determine the filter 
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velocities are in the same direction in a right-handed material and in opposite directions in a 
left-handed material. Waves with opposite directions of phase and group velocities have 
been known for a long time and have been used in backward wave oscillators.  These waves 
travel in periodic structures and are called slow waves (Beck, 1958) because their phase 
velocities are less than the phase velocity of light in the medium in which these periodic 
structures are embedded.  
It is a common practice in electrical engineering to model wave propagation by transmission 
line theory which can represent both slow and fast waves. Thus it is expected that a left-
handed material can be represented by a transmission line. Fig.1 shows the transmission line 
model represented by a distributed series impedance, Z  Ohms/m and a distributed shunt 
admittance, Y  Siemens/m.  

 
Fig. 1. Transmission line model for an infinitesimal length zΔ  
 
For a lossless transmission line the characteristic impedance, 0Z and the phase constant, β  
are given by 

YZ=0Z  

ZY=βj  

(3) 
 

(4) 
Consider now the common transmission line of Fig.2(a), in which the series impedance is an 
inductance, L Henrys/m and the shunt admittance is a capacitance, C Farads/m .   
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LCω=β   
(6) 

The phase velocity is LC/1=β/ω  and the group velocity is LC/1=βd/ωd . Both have 
the same sign and hence are in the same direction. Thus this type of line can represent a 
right-handed material and is called a right-handed line. 
Now consider the transmission line of Fig.2(b), in which the series impedance is a 
capacitance, C Farads/m and the shunt admittance is an inductance, L Henrys/m . Noting 
that Cωj/1=Z and Lωj/1=Y , 

CL=0Z  

]LCω/[1=β  

(7) 
 

(8) 

The phase velocity is LC2ω=β/ω  and the group velocity is LCdd 2/   .  
They are of opposite signs and are therefore in the opposite directions. Hence this type of 
line can represent a left-handed material and is called a left-handed line. 
Two points are to be noted. Firstly, the phase velocity is low at low frequencies when the 
wave can be regarded as a slow wave. At very high frequencies both phase and group 
velocities can be arbitrarily large which just indicates that the model cannot be right at high 
frequencies. The second and most important point for this chapter is that the phase of a 
right-handed line, proportional to β increases with frequency (in this case linearly). On the 
other hand, the phase of a left-handed line decreases with frequency (in this case inversely). 
Although the exact form of variation of β  with frequency may not be the same as in the 
transmission lines considered, the nature of the phase variation is always correct, because 

βd/ωd is positive for the right-handed line and negative for the left-handed line. 
One must now be careful about the word composite in the context of this chapter. For the 
transmission line, the series impedance may be a series combination of an inductance and 
capacitance and the shunt admittance can be a parallel combination of an inductance and 
capacitance. This has the characteristic of a band pass filter. For a certain range of 
frequencies, the phase has the characteristic of a right-handed line, i.e., it increases with 
frequency. For another range of frequencies, the phase has the characteristic of a left-handed 
line, i.e., it decreases with frequency. Such lines showing both types of behaviour have been 
termed composite-right/left-handed lines (Lai et al, 2004). The composite- right/left-handed 
line considered in this chapter is a combination of a right-handed line and a left-handed line.   

 
3. Ring Resonators – Single and Dual mode 
 

The microstrip ring resonator was first introduced for measuring dispersion in microstrip 
lines (Wolff & Knoppik, 1971). However, because of its compact nature, and simplicity of 
operation, it has been widely used as a resonator in bandpass RF filters. Ring resonators of 
various shapes – rectangular, square, circular, meander – as well as different types of 
coupling have been reported. Fig.3 shows a circular microstrip ring resonator. 
 

 

 
Fig. 3. A single mode microstrip ring resonator with simple microstrip line feeds  
 
The basic principle of operation is that at the resonant frequency, a standing wave exists in 
the ring. For this to happen, the total phase shift around the ring must be an integer multiple 
of π2 . If the mean length of the resonator is  , the condition is  
 

πN2=β  (9) 
where N is an integer and β is the phase constant. 
The resonant frequencies are obtained from (9) as 
 

/pNv=f  (10) 

where, LC/1=pv  is the phase velocity of the microstrip line. 

For a band pass filter of order n and a symmetric response about the centre frequency, one 
requires n such resonators each resonant at the centre frequency. The desired frequency 
response is obtained by the choice of coupling between the resonators. These resonators are 
called single mode ring resonators, because there is a single resonance at the fundamental 
frequency. One can on the other hand have two closely spaced resonances near the 
fundamental. Such ring resonators are called dual mode and were first reported by Wolff 
(Wolff, 1972). A single dual mode resonator with two close resonant frequencies, 1f and 

2f is equivalent to two coupled single mode resonators of resonance frequency 0f and a 
coupling coefficient  
 

021 )/fff(k   (11) 

 

2f1f=0f  (12) 

 
 
If one uses dual mode ring resonators, a bandpass filter of order n will require n/2 dual 
mode resonators as compared to n single mode resonators. This results in a far more 
compact filter. 
A dual mode resonator can be obtained from a single mode resonator design by various 
ways, such as by having unequal length arms between the feeds, a perturbation in the form 
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LCω=β   
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The phase velocity is LC/1=β/ω  and the group velocity is LC/1=βd/ωd . Both have 
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(7) 
 

(8) 

The phase velocity is LC2ω=β/ω  and the group velocity is LCdd 2/   .  
They are of opposite signs and are therefore in the opposite directions. Hence this type of 
line can represent a left-handed material and is called a left-handed line. 
Two points are to be noted. Firstly, the phase velocity is low at low frequencies when the 
wave can be regarded as a slow wave. At very high frequencies both phase and group 
velocities can be arbitrarily large which just indicates that the model cannot be right at high 
frequencies. The second and most important point for this chapter is that the phase of a 
right-handed line, proportional to β increases with frequency (in this case linearly). On the 
other hand, the phase of a left-handed line decreases with frequency (in this case inversely). 
Although the exact form of variation of β  with frequency may not be the same as in the 
transmission lines considered, the nature of the phase variation is always correct, because 

βd/ωd is positive for the right-handed line and negative for the left-handed line. 
One must now be careful about the word composite in the context of this chapter. For the 
transmission line, the series impedance may be a series combination of an inductance and 
capacitance and the shunt admittance can be a parallel combination of an inductance and 
capacitance. This has the characteristic of a band pass filter. For a certain range of 
frequencies, the phase has the characteristic of a right-handed line, i.e., it increases with 
frequency. For another range of frequencies, the phase has the characteristic of a left-handed 
line, i.e., it decreases with frequency. Such lines showing both types of behaviour have been 
termed composite-right/left-handed lines (Lai et al, 2004). The composite- right/left-handed 
line considered in this chapter is a combination of a right-handed line and a left-handed line.   

 
3. Ring Resonators – Single and Dual mode 
 

The microstrip ring resonator was first introduced for measuring dispersion in microstrip 
lines (Wolff & Knoppik, 1971). However, because of its compact nature, and simplicity of 
operation, it has been widely used as a resonator in bandpass RF filters. Ring resonators of 
various shapes – rectangular, square, circular, meander – as well as different types of 
coupling have been reported. Fig.3 shows a circular microstrip ring resonator. 
 

 

 
Fig. 3. A single mode microstrip ring resonator with simple microstrip line feeds  
 
The basic principle of operation is that at the resonant frequency, a standing wave exists in 
the ring. For this to happen, the total phase shift around the ring must be an integer multiple 
of π2 . If the mean length of the resonator is  , the condition is  
 

πN2=β  (9) 
where N is an integer and β is the phase constant. 
The resonant frequencies are obtained from (9) as 
 

/pNv=f  (10) 

where, LC/1=pv  is the phase velocity of the microstrip line. 

For a band pass filter of order n and a symmetric response about the centre frequency, one 
requires n such resonators each resonant at the centre frequency. The desired frequency 
response is obtained by the choice of coupling between the resonators. These resonators are 
called single mode ring resonators, because there is a single resonance at the fundamental 
frequency. One can on the other hand have two closely spaced resonances near the 
fundamental. Such ring resonators are called dual mode and were first reported by Wolff 
(Wolff, 1972). A single dual mode resonator with two close resonant frequencies, 1f and 

2f is equivalent to two coupled single mode resonators of resonance frequency 0f and a 
coupling coefficient  
 

021 )/fff(k   (11) 

 

2f1f=0f  (12) 

 
 
If one uses dual mode ring resonators, a bandpass filter of order n will require n/2 dual 
mode resonators as compared to n single mode resonators. This results in a far more 
compact filter. 
A dual mode resonator can be obtained from a single mode resonator design by various 
ways, such as by having unequal length arms between the feeds, a perturbation in the form 
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of a notch or patch in one of the arms or by unequal characteristic impedance of the two 
arms. These are shown in Fig.4. 

 

            
                 (a)                             (b)                                  (c)                                  (d)      
Fig. 4. Dual mode microstrip line ring resonators: (a) unequal length arms, (b) patch in one 
arm, (c) notch in one arm, and (d) different characteristic impedances of the arms. 
 
From filter design (Chebyshev, Elliptic etc.) one knows the centre frequency, 0f  as well as 
the various coupling coefficients. On can then consider replacing a pair of single mode 
resonator by first calculating 1f and 2f using (11) and (12) and the known values of 0f and 
the coupling coefficient, k. The mean length of the single mode ring resonator is already 
known from (10) for the given 0f . Thus one needs to determine the perturbation etc. to 
obtain the dual mode resonant frequencies 1f and 2f . Very often the design is obtained by 
trial and error simulation. However, circuit methods can often provide a good initial design 
which can then be refined by simulation. Cicuit methods have been extensively discussed by 
Chang and Hsieh (Chang & Hsieh, 2004).  

 
4. Harmonic Suppression in Bandpass Filters and the Use of Right/Left- 
handed lines   
 

Unfortunately, many bandpass filters have passbands at the harmonics. This is easy to see in 
the context of ring resonator filters. Equation (10) shows that the ring resonates at the 
harmonics. Thus if the coupling between the resonators is constant with frequency, the filter 
will also have passbands at the harmonics. In practice, the couplings are not constant, but 
whatever they are, it is expected that the filter will have poor return loss at the harmonics. 
This is also true of bandpass filters employing dual mode ring resonators. In some 
applications low attenuation at the harmonics is undesirable. 
Several papers report the reduction of harmonic response of ring resonators. One technique 
(Carroll & Chang, 1994, Karacaoglu et al, 1996, Chang & Hsieh, 2004) is to incorporate a low 
pass filter in the ring. This filter is built from stepped impedance lines. In Carroll and 
Chang’s resonator, the first harmonic (N=2) was suppressed but with additional loss at the 
fundamental. In the resonator of Karacaoglu et al, the suppression is 9 dB at the first 
harmonic and about 6 dB at the second harmonic. 
A left-handed line can be incorporated as part of the ring to suppress the first harmonic. As 
the resonator consists of a right-handed line and a left-handed line, it has been called a 
composite-right/left-handed line ring resonator (Allen et al, 2006). The principle of 
operation is completely different from the low pass filter technique and is illustrated in 
Fig.5. 

 

 
Fig. 5. Phase shifts in the ring resonator. Dashed line: Right-handed line. Dotted line: Left-
handed line. Solid line: Total phase shift in the ring  
 
At the resonant frequency, 0f  the phase shift of the right -handed line is Rφ and the phase 

shift of the left-handed line is Lφ and π2=Lφ+Rφ  as required by ring resonance at the 

fundamental. According to (6) and (8), the phase shifts vary with frequency as Rφ
0f
f

 for 

the right-handed line and as Lφ
f
0f for the left-handed line. The variation of the phase shifts 

as well as their sum with the normalized frequency 0f/f  are shown in Fig.5. It is seen that 
the sum of the phase shifts (solid line) is not π4 at the first harmonic (N=2) as required by 
ring resonance. This is because the phase of the left-handed line decreases with frequency. 
Hence the first harmonic is suppressed. However the ring resonance condition can be 
satisfied at higher frequencies, because the phase shift of the right-handed line increases 
linearly with frequency while the phase shift of the left-handed line reduces slowly as it is 
inversely proportional to frequency. However for the suppression of the first harmonic, the 
precise form of the phase variation of the left-handed line is not important. 

 
5. Implementation of Composite-Right/Left-handed ring resonator   
 

5.1 Left-handed line as an iterative network 
Unfortunately, transmission lines with series capacitance are not available. Slow wave 
structures can be used as left-handed lines only within a range of frequencies. It appears that 
left-handed metamaterials made with slow wave structures have little to do with filters (Lai 
et al, 2004). In any case, ring resonators incorporating slow wave structures have not been 
reported – this may be the subject of future research. Thus a practical way to implement the 
left-handed line considered here is to use iterative networks made up of lumped series 
capacitances and lumped shunt inductances. The theory of such networks using the image 
impedance method is well known (Matthaei et al, 1980). We will consider symmetric 

www.intechopen.com



Dual Mode Microstrip Ring Resonator with Composite-Right/Left-handed Line 389

 

of a notch or patch in one of the arms or by unequal characteristic impedance of the two 
arms. These are shown in Fig.4. 

 

            
                 (a)                             (b)                                  (c)                                  (d)      
Fig. 4. Dual mode microstrip line ring resonators: (a) unequal length arms, (b) patch in one 
arm, (c) notch in one arm, and (d) different characteristic impedances of the arms. 
 
From filter design (Chebyshev, Elliptic etc.) one knows the centre frequency, 0f  as well as 
the various coupling coefficients. On can then consider replacing a pair of single mode 
resonator by first calculating 1f and 2f using (11) and (12) and the known values of 0f and 
the coupling coefficient, k. The mean length of the single mode ring resonator is already 
known from (10) for the given 0f . Thus one needs to determine the perturbation etc. to 
obtain the dual mode resonant frequencies 1f and 2f . Very often the design is obtained by 
trial and error simulation. However, circuit methods can often provide a good initial design 
which can then be refined by simulation. Cicuit methods have been extensively discussed by 
Chang and Hsieh (Chang & Hsieh, 2004).  

 
4. Harmonic Suppression in Bandpass Filters and the Use of Right/Left- 
handed lines   
 

Unfortunately, many bandpass filters have passbands at the harmonics. This is easy to see in 
the context of ring resonator filters. Equation (10) shows that the ring resonates at the 
harmonics. Thus if the coupling between the resonators is constant with frequency, the filter 
will also have passbands at the harmonics. In practice, the couplings are not constant, but 
whatever they are, it is expected that the filter will have poor return loss at the harmonics. 
This is also true of bandpass filters employing dual mode ring resonators. In some 
applications low attenuation at the harmonics is undesirable. 
Several papers report the reduction of harmonic response of ring resonators. One technique 
(Carroll & Chang, 1994, Karacaoglu et al, 1996, Chang & Hsieh, 2004) is to incorporate a low 
pass filter in the ring. This filter is built from stepped impedance lines. In Carroll and 
Chang’s resonator, the first harmonic (N=2) was suppressed but with additional loss at the 
fundamental. In the resonator of Karacaoglu et al, the suppression is 9 dB at the first 
harmonic and about 6 dB at the second harmonic. 
A left-handed line can be incorporated as part of the ring to suppress the first harmonic. As 
the resonator consists of a right-handed line and a left-handed line, it has been called a 
composite-right/left-handed line ring resonator (Allen et al, 2006). The principle of 
operation is completely different from the low pass filter technique and is illustrated in 
Fig.5. 

 

 
Fig. 5. Phase shifts in the ring resonator. Dashed line: Right-handed line. Dotted line: Left-
handed line. Solid line: Total phase shift in the ring  
 
At the resonant frequency, 0f  the phase shift of the right -handed line is Rφ and the phase 

shift of the left-handed line is Lφ and π2=Lφ+Rφ  as required by ring resonance at the 

fundamental. According to (6) and (8), the phase shifts vary with frequency as Rφ
0f
f

 for 

the right-handed line and as Lφ
f
0f for the left-handed line. The variation of the phase shifts 

as well as their sum with the normalized frequency 0f/f  are shown in Fig.5. It is seen that 
the sum of the phase shifts (solid line) is not π4 at the first harmonic (N=2) as required by 
ring resonance. This is because the phase of the left-handed line decreases with frequency. 
Hence the first harmonic is suppressed. However the ring resonance condition can be 
satisfied at higher frequencies, because the phase shift of the right-handed line increases 
linearly with frequency while the phase shift of the left-handed line reduces slowly as it is 
inversely proportional to frequency. However for the suppression of the first harmonic, the 
precise form of the phase variation of the left-handed line is not important. 

 
5. Implementation of Composite-Right/Left-handed ring resonator   
 

5.1 Left-handed line as an iterative network 
Unfortunately, transmission lines with series capacitance are not available. Slow wave 
structures can be used as left-handed lines only within a range of frequencies. It appears that 
left-handed metamaterials made with slow wave structures have little to do with filters (Lai 
et al, 2004). In any case, ring resonators incorporating slow wave structures have not been 
reported – this may be the subject of future research. Thus a practical way to implement the 
left-handed line considered here is to use iterative networks made up of lumped series 
capacitances and lumped shunt inductances. The theory of such networks using the image 
impedance method is well known (Matthaei et al, 1980). We will consider symmetric 
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networks for which the two image impedances are equal and are called characteristic 
impedance. Two types of networks using π  and T sections are shown in Fig.6. 

 

 
(a) - section  

 
(b) T – section  

Fig. 6. Left-handed lines represented by iterative networks : (a) π - section, (b) T - section 
Boxes represent the unit cell of the infinite iterative network 
 
The unit cell (enclosed in the boxes of Fig.6) is a high pass filter. Propagation through a cell 
is given by  
 

)Γ-exp(1V=2V  
βj+α=Γ  

and in the passband, ( )2/LC2ω-1=βcos  

(13) 
 
 

(14) 
 
For N cells, the phase shift is βN . The cut-off occurs at 1-=βcos . The cut-off frequency 
obtained from (14) is 
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From (14) , it can be shown that 
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The variation of β against the normalized frequency cf/f is shown in Fig.7. The phase shift 
decreases with frequency which is the characteristic of a left-handed line.  
The characteristic impedances, π0Z and T0Z are given by  
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The characteristic impedances are imaginary below cut-off and vary widely in the passband. 

 
Fig. 7. Variation of the phase, β  of a unit cell with frequency 

 
5.2 Incorporating the left-handed line in a ring resonator 
The first design is reported by Allen et al (Allen et al, 2006). The schematic diagram of the 
resonator is shown in Fig.8.  

 
Fig. 8. Ring resonator of Allen et al (From Su & Haldar, 2007, © 2007 IEEE)   
 
The upper part of the resonator is formed by a right-handed (microstrip) line quarter wave 
long at the centre frequency and of characteristic impedance 50 Ω . For this characteristic 
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impedance, the width of the microstrip line is W = 1.2 mm for the microstrip substrate of 
dielectric constant 10.2 and thickness 50 mil. The lower part of the ring is formed by a 
combination of the microstrip line and the left-handed line. The microstrip line has a total 
length of 12.3 mm. The left-handed line is formed by two T section unit cells (see Fig.6) with 
C = 7 pF, L = 8.7 nH. The gap between the input and output lines and the ring resonator is 
0.2 mm. The design frequency is 0.88 GHz. The dual mode is said to occur due to the 
unequal values of the characteristic impedance of the T-section and the 50 Ω characteristic 
impedance of the microstrip line. 
cf is calculated to be 0.456 GHz. The total phase shift of the lower part of the ring, (the 

composite-right/left-handed line) is given by  

 f/cf
1sin2Nc/3103.12effεfπ2φ -    

(19) 
where effε is the effective dielectric constant of the microstrip line. 

Table 1 shows the phase shift calculated for the upper and lower parts of the resonator and 
the total phase shift in the ring at the fundamental and  harmonics. None of the total phase 
shifts are integer multiples of π2 . Clearly, (19) can not be employed for resonator design.  

Frequency Phase shift in 
upper arm  
(radians) 

Phase shift in lower arm  
eqn. (5)  
(radians) 

Total phase shift around the 
ring  
(radians) 

f (= 0.88GHz) π5.0  π864.0  π364.1  

2f π  π675.0  π675.1  

3f π5.1  π733.0  π233.2  

Table 1. Phase shifts along the ring (From Su & Haldar, 2007, © 2007 IEEE)   
 
Fig.9 shows the simulated variation of  the magnitude of 21S with frequency. There is a 
peak occuring close to the cut-off frequency. 

 

Fig. 9. Variation of the magnitude of 21S with frequency for the resonator of Fig.8 (From Su 
& Haldar, 2007, © 2007 IEEE)   

 

It has been verified by simulation (Su & Haldar, 2007) that an increase in the mismatch of 
the characteristic impedance of the lines increases the frequency difference of the dual mode 
and appears to increase the insertion loss between the fundamental and the second 
harmonic (N=3). 
Fig. 10 shows a variation of the resonator. A lower resonant frequency was used to get 
higher value capacitors to reduce the lower cut-off frequency. The value of the inductor was 
unchanged. To reduce the number of discrete components, the inductors were replaced by 
short circuited lines. The length of the line,   is given by 

βtan0Z=L0ω  (20) 
where 0ω is the resonant frequency, 0Z and β  are the characteristic impedance and 
propagation constant of the microstrip line implementing the inductor. A large value of 0Z  
is preferred to keep the line length short to avoid resonance of the line till about the third 
harmonic.  
Fig.11 shows the simulated variation of the magnitude of 21S with frequency. It is 
interesting to note that harmonics upto the second harmonic (N=3) have been suppressed. 
The composite ring resonator can suppress several harmonics if the phase shift in the ring at 
the fundamental is produced mainly by the left-handed line. 

 
Fig. 10. Redesigned resonator at lower frequency (From Su et al, 2008, © 2008 IEEE)   

 
Fig. 11. Variation of the magnitude of 21S with frequency for the resonator of Fig.10 (From 
Su et al, 2008, © 2008 IEEE)     
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6. Filter design using circuit modelling and simulation of composite-right/left-
handed line ring resonators 
 

Table 1 in section 5.2 shows that although the principle of operation is valid, the infinitely 
extended iterative T- sections theory cannot model the resonator operation well. The size of 
the resonator limits the number of T and π sections.  Many of the reported designs appear 
to have been carried out by simulation and multi-resonator filters are rarely reported. 
Circuit models (Chang, 2004) can provide an initial design, which can be refined by 
simulation.  
The authors’ intention is to reduce the number of lumped elements. Hence a π -section is 
used. Fig.12(a) shows the ring resonator with a π -section. The corresponding microstrip 
version is shown in Fig.12(b). The inductors are implemented with short-circuited 
transmission lines. Thus the circuit uses only one discrete element. 
 

 
Fig. 12. (a) Circuit model of a ring resonator incorporating a π -section with weak coupling 
to RF input and output (b) Microstrip layout (From Fong et al, 2009) 
 
Consider the microstrip transmission line of length  , characteristic admittance 0Y  and 
propagation constant β , in parallel with the π -section. The Y-parameter of the 
transmission line considered as a 2-port network is given by  
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For the two networks in parallel, the overall Y-matrix is given by the sum of the Y matrices 
as follows 
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The resonant frequencies are obtained by setting the determinant of (23) to zero. From the 
resulting quadratic equation, one can show that the resonant frequencies, 1ω and 2ω  
satisfy the equations 
 

2
0Y2L2ω1ω

1LC2
1ω2




 

)2/βtan(0Y
L2ω

1   

 
(24) 

 
 

(25) 

 
These equations allow one to design dual mode resonators required by a filter design. For 
example consider the design of a fourth order Chebyshev filter with a centre frequency, 0f  
of 0.6 GHz, 10 % fractional bandwidth and a passband ripple of 0.5 dB. This would require 
four single mode resonators with resonant frequency 0f with coupling coefficients between 
resonators 1 and 2 and between 3 and 4, 07.034K12K  . Resonators 1 and 2 can be 
replaced by a single dual mode resonator and resonators 3 and 4 can be replaced by an 
identical dual mode resonator. One now has to design a dual mode resonator with the 
required coupling coefficient and then couple two such resonators for the required coupling 
coefficient of 23K 0.06. Finally one designs the load and source coupling to get the 
required external quality factor.  
The resonant frequencies of the dual modes are calculated from (11) and (12) using the 
values of 0f  and 12K . Then choosing a standard value of 10 pF for the capacitor, C, the 
required value of L is calculated from (24) to be 12.9 nH and 4.4 nH. The smaller value is 
chosen as both lumped inductors and short-circuited transmission lines have higher self-
resonant frequencies for lower inductance values. Using (20), this value is implemented by a 
short-circuited transmission line of characteristic impedance 50 Ω and length 9.8 mm (width 
is 1.2 mm). The characteristic impedance of the right-handed transmission line is chosen as 
28 Ω . RT/Duroid 6010.2 from Rogers Corporation is chosen as the substrate. The width of 
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four single mode resonators with resonant frequency 0f with coupling coefficients between 
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coefficient of 23K 0.06. Finally one designs the load and source coupling to get the 
required external quality factor.  
The resonant frequencies of the dual modes are calculated from (11) and (12) using the 
values of 0f  and 12K . Then choosing a standard value of 10 pF for the capacitor, C, the 
required value of L is calculated from (24) to be 12.9 nH and 4.4 nH. The smaller value is 
chosen as both lumped inductors and short-circuited transmission lines have higher self-
resonant frequencies for lower inductance values. Using (20), this value is implemented by a 
short-circuited transmission line of characteristic impedance 50 Ω and length 9.8 mm (width 
is 1.2 mm). The characteristic impedance of the right-handed transmission line is chosen as 
28 Ω . RT/Duroid 6010.2 from Rogers Corporation is chosen as the substrate. The width of 
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the line is calculated to be 3.2 mm. After determining the effective dielectric constant, the 
length  of the line is then calculated from (24) to be 61.5 mm. 
To check the circuit model against simulated results (SONNET, 2008) weak coupling to 
input and output are used to obtain sharp resonance peaks. For the circuit model of 
Fig.12(a), this coupling is produced by the small coupling capacitor, C1 = 0.05 pF. For the 
microstrip implementations of Fig.12(b) the weak coupling is provided by the gaps. To 
obtain the response of the circuit, the Y-matrix of the resonator is converted to Z-matrix, 
added to the Z-matrix of the coupling capacitors and then reconverted to Y-matrix. 21S for  
reference impedance of 50 Ω ( S 50/10Y  ) is calculated from this Y-matrix using  

21Y12Y)0Y22Y)(0Y11Y(
0Y21Y

21S



  

 
(26) 

Fig.13. compares the variation of the magnitude of 21S  with frequency for the circuit model 
and simulations of Fig.12 (b) (1) and (2). 

 
Fig. 13. Comparison of circuit model and simulation. Solid line: circuit model. Dashed line: 
Fig.12(b)(1). Dotted line: Fig12(b)(2) (From Fong et al, 2009) 
 
Good agreement is obtained between the circuit model and the simulation of Fig.12 (b) (1). 
The difference with the simulation of Fig.12(b) (2) is ascribed to capacitive coupling between 
the short circuited lines. To offset this, the inductances of the lines have to be increased by 
increasing their lengths. Good agreement is obtained when the lengths are increased to 10.8 
mm. 
For the Chebyshev filter, the required external quality factor, 7.16extQ  . The coupling is 
obtained by tapping one of short-circuited lines at the source end and at the load end. The 
resistance in parallel with the inductance is obtained from 
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The calculated value of R is 276.3 Ω . An inductor tap transforms the resistance R to 50 Ω  
load/source impedance. The approximate formula (for high quality factor) is  
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where, TL is the inductance value at the tap. 
The tap position is then given by 
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where the lengths  and T  are measured from the short circuit. 
Equation (29) is approximate because inductance of a short-circuited line does not vary 
linearly with length (see equation 20). However, this is adequate because the circuit model 
establishes an initial design, which is fine tuned by simulation. The gap between two 
resonators is adjusted to get the filter. Fig. 14 shows a picture of the 4-pole Chebyshev filter. 
Fig. 15 and 16 show measured and simulated results for the filter. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 14 A picture of the 4-pole Chebyshev filter. 

 
Fig. 15. Variation of magnitudes of 21S and 11S with frequency. Measured: Solid lines. 
Simulated (with losses): Dashed lines (From Fong et al, 2009) 
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Fig. 16. Wideband frequency response showing harmonic reduction. Measured: Solid line. 
Simulated: Dashed line (From Fong et al, 2009) 

 
7. Other considerations for composite-right/left-handed line ring resonators  
 

7.1 Practical considerations for lumped capacitors 
The reader might have noticed that the centre frequency of the filter designed is quite low. 
This is a very conservative design to avoid the self resonances of the lumped capacitor. 
However, it is possible to design for higher frequencies by using the circuit model of the 
capacitor. Such a circuit model is shown in Fig. 17. 

 
 
 
 
 
 
 

 
 
 
 
 
 
Fig. 17. Capacitor model: (a) Equivalent Circuit (b) Variation of reactance with frequence 
(ignoring R) showing the series and parallel resonant frequencies. (From Su et al, 2008, © 
2008 IEEE)     
 
The model parameters can be obtained by measuring the variation of the S-parameters with 
frequency and then adjusting the element values of the model to get best agreement with the 
calculated and measured results. For example, for the 10 pF capacitor considered here, C1 = 
4.22 pF, C2 = 5.78 pF, R = 0.06 Ω  and L1 = 0.42 nH. The capacitor behaves as a capacitor 
below the series resonant frequency. So it appears that resonator design using lumped 
capacitors is limited to frequencies below the series resonant frequency.  
Lumped inductors are rarely as good as lumped capacitors both in terms of self resonance 
and quality factor. Thus when lumped inductors are used, the maximum frequency of 

 

 

operation may be limited further. Fortunately, they can be replaced by short-circuited 
transmission lines, but one needs to be careful about the effect resonance of the line on 
harmonic suppression. 

 
7.2 Tunable composite-right/left-handed line ring resonators 
Tunable resonators have been reported by Allen et al (Allen et al, 2007). A typical design is 
shown in Fig.18. As in their earlier work (Allen et al, 2006), two T sections are used with the 
two capacitors of each section are replaced by varactor diodes. The dc bias is provided 
through high characteristic impedance lines with shunt radial stubs. 
 

 
Fig. 18. Tunable resonator (a) Layout (b) Variation of insertion loss with frequency for 
different bias voltages (From Allen et al, 2007 © 2007 IEEE)     
 
From Fig.18(b), one can see that the centre frequency of the resonator can be shifted by using 
varactor diodes. 
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Fig. 16. Wideband frequency response showing harmonic reduction. Measured: Solid line. 
Simulated: Dashed line (From Fong et al, 2009) 
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7.2 Tunable composite-right/left-handed line ring resonators 
Tunable resonators have been reported by Allen et al (Allen et al, 2007). A typical design is 
shown in Fig.18. As in their earlier work (Allen et al, 2006), two T sections are used with the 
two capacitors of each section are replaced by varactor diodes. The dc bias is provided 
through high characteristic impedance lines with shunt radial stubs. 
 

 
Fig. 18. Tunable resonator (a) Layout (b) Variation of insertion loss with frequency for 
different bias voltages (From Allen et al, 2007 © 2007 IEEE)     
 
From Fig.18(b), one can see that the centre frequency of the resonator can be shifted by using 
varactor diodes. 
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8. Conclusion and future developments 
 

Starting with the explanation of right/left-handed lines, the authors have described recent  
developments in Dual Mode Microstrip Ring Resonator with Composite-Right/Left-handed 
Lines. The authors have discussed a circuit technique for the analysis and design. It is 
shown that a large number of T or π sections may not be needed – the authors describe a 
resonator with only one π section requiring just one capacitor. However such a section has 
DC short circuits at both ends of the capacitor. Hence the section is not suitable for 
designing tunable filters in which dc biased varactor diodes replace capacitors. The design 
of filters using ring resonators with composite-right/left-handed lines has been explained 
and demonstrated. 
 
What are the future developments?  
Possible developments are as follow: 

(1) Can one design compact higher order filters? 
(2) Can one use lumped capacitors and inductors near their resonant frequencies to 

design ring resonators with Composite-Right/Left-handed Lines? It may be 
possible to use the parallel resonance of a capacitor.  

(3) Can one use slow wave structures to replace lumped capacitors for ring resonator 
with Composite-Right/Left-handed Lines. 

(4) Can one design ring resonators with composite-Right/Left-handed Lines using 
coplanar transmission lines? 
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