
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322390566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Nonlocal Electromagnetic Media: A Paradigm for Material Engineering 73

Nonlocal Electromagnetic Media: A Paradigm for Material Engineering

Said M. Mikki and Ahmed A. Kishk

0

Nonlocal Electromagnetic Media:

A Paradigm for Material Engineering

Said M. Mikki
Royal Millitary College, Kingston

Canada

Ahmed A. Kishk
University of Mississippi, University

USA

Abstract

In this paper, we provide a general Fourier transform formalism suitable for studying the
electromagnetic response of material media. This approach can handle media that exhibit
natural optical activity, magnetoelectric effects, spatial dispersion, etc. Moreover, it is a pow-
erful method in addressing the impact of electromagentic systems on the spatial structure of
the field, particulary at the nanoscale (e.g., near-field nano-optics, subwavelength imaging,
etc.) The formalism is employed to analyze the localization of electromagnetic energy around
radiating sources and also to provide a new paradigm for thinking about metamaterials.

1. Introduction

Traditionally, the research area known under the label “artificial materials,” or what has be-
come popular nowadays as “metamatrials,” is based on the idea of mimicking the way natural
media respond to an applied electromagnetic field. The mechanism responsible of the elec-
tromagnetic character of the medium, for example the optical properties, can be applied to
repeat the whole process artificially in the sense that the atomic constituents of matter are in-
dividually manipulated and controlled in order to achieve a desired electromagnetic profile.
The conventional approach to describe material responses rely on assuming that the external
field induce multipole electric and magnetic moments in the medium, giving rise to polariza-
tion and magnetization density vectors. This approach, as will be demonstrated in this paper,
has its merits although theoretically problematic. It provides an extremely simple mathemat-
ical model that is adequate for a very wide range of applications. However, on the other
hand, with the exploding progress in nanotechnology and experimental research, it is becom-
ing increasingly pressing to employ a more general mathematical formalism that allows us
to explore new dimensions in the material response that go beyond the traditional multipole
description.
It is the vision of the present authors that a large proportion of the future research in the field
of artificial and metamaterials should be invested in studying the spatial degrees of freedom of
the medium response, a space hitherto unexplored in depth with few notable exceptions (1),
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(2). The purely spatial effects, for example spatial dispersion, has been often neglected because
natural materials happen to have very small interatomic spacing to operating wavelength ra-
tio, which implies that when a macroscopic field measurement is employed, all microscopic
spatial information are washed away. However, there is nothing in principle prohibiting de-
signing artificial media with arbitrary spatial response profile.1 The possibility of controlling
wave propagation through a given device by manipulating both the temporal and spatial dis-
persion was already proposed in conjunction with realizing the so-called negative refraction
metamaterials (4).
In this paper, we review a Fourier-space formalism suitable for modeling the spatial effects
of a given natural or artificial medium. The formalism is compatible with the traditional
multipole approach but is conceptually easier to understand. The Fourier transform method
we introduce here is inspired by techniques developed in the physics community to attack
plasma problems (1), (2).
There is a plethora of advantages in employing this particular point of view in this setting.
The chief advantage is that the Fourier-space formalism is more general in its applicability to
fluctuating fields with higher frequencies. Also, it naturally provides a complete characteriza-
tion of the field in both space and time. Finally, being a spectral method, it allows for deeper
understanding of localization phenomena and coupling mechanisms.
Some of the disadvantages is that it requires an additional mathematical background that is
not usually part of the training of professional electromagnetic engineers. It also does not
apply to static field problems. In general, the Fourier formalism does not conform with the
conventional literature standards of notation and usage. For this reason, the current paper will
provide, in a pedagogically illuminating way, a review of the space formalism starting from
the ground, Maxwell’s equations, and building up to advanced applications in the concluding
section.

2. Maxwell’s Equation

We start with the fundamental equations governing the free Maxwellian fields B and E. These
are

∇× E = −
∂B

∂t
, (1)

∇× B = µ0J +
(

1
/

c2
) ∂E

∂t
, (2)

∇ · E =
ρ

ε0
, (3)

∇ · B = 0, (4)

where c is the speed of light and ε0 = 8.854 × 10−12 F/m and µ0 = 4π × 10−7 H/m are the
permittivity and permeability of free space, respectively.
We notice that these set of Maxwell’s equations are complete since they capture everything
related to electromagnetic interactions. However, in order to solve Maxwell’s equations in the
presence of matter, one has to supply suitable decompositions of the source terms appearing in
(2) and (3) in the following manner

ρ = ρext + ρind (5)

1 The implementation of a particular solution of Maxwell’s equations coupled with a suitable mechanical
model is a technological problem, not a theoretical one. In this sense, the present paper should be
viewed as a theoretical contribution.
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and
J = Jext + Jind, (6)

where ρext and Jext are the imposed sources supplied externally. Matter will interact with
the fields radiated by these sources and respond by generating induced sources ρind and Jind.
These induced sources cannot be deduced from Maxwell’s equations themselves. They must
be found upon constructing an appropriate mechanical model for matter in the radiation field.

2.1 The Continuity Equation and Energy Conservation

By imposing the conservation of electric charge density ρ(t,r), the equation of continuity for
electromagnetism takes the following form

∂ρ

∂t
+∇ · J = 0. (7)

Energy conservation is already built into the structure of Maxwell’s equations in continuous
media. Indeed, it is possible to directly derive the following relation

∂

∂t

(

1

2
ε0 |E|

2 +
1

2
|B|2

/

µ0

)

+∇ ·

(

1

µ0
E × B

)

= −J · E. (8)

Let us supplement this equation with Lorentz force law

F = qE + v × B. (9)

One can carefully build the interpretation of the terms appearing in the RHS of (8) starting
from the basic law of force (9). As it turns out, the time rate of the volume density of the work
done by the electric current J on the electric field E is given by −J · E. This provides us with
an interpretation of the RHS of (8). Now, in order to interpret (8) as a continuity equation,

we observe that, in vacuum, the quantities ε0 |E|
2
/

2 and |B|2
/

2µ0 can straightforwardly be

interpreted as volume densities of electric and magnetic energies, respectively, stored in free
space. It follows then that the last term, that of E × B

/

µ0, can be easily interpreted to stand
for the volume density of the power flow, or the electromagnetic flux.

3. Fourier Transform Approach to the Greens Functions

3.1 Maxwell’s Equations in the Spectral Domain

As we are going to formulate the entire problem in terms of Fourier transform, the usual
spatio-temporal form of Maxwell’s equations must be transformed into the spectral domain.
In this section, we handle the problem of a source radiating in infinite isotropic and homoge-
nous medium. Maxwell’s equations (1)-(4) can be written in the Fourier transform domain
as

k × E (ω,k) = ωB (ω,k) , (10)

ik × B (ω,k) = −iωE (ω,k)
/

c2 + µ0J (ω,k) , (11)

k · E (ω,k) = −iρ (ω,k)
/

ε0, (12)

k · B (ω,k) = 0. (13)

The equation of continuity (7) can be also Fourier transformed into the form

ωρ (ω,k) = k · J (ω,k) . (14)

www.intechopen.com



Passive Microwave Components and Antennas76

The reader must notice that these equations cannot be used to describe static fields, which may
be tackled on their own by applying the Coloumb gauge. Therefore, throughout this paper,
we restrict ourselves to the case ω �= 0.
The program of performing calculations in electromagnetism using the Fourier transform
method can be elucidated in the following manner

1. Express the magnetic field in terms of the electric field using Maxwell’s equation (10)

B (ω,k) = k × E (ω,k)
/

ω. (15)

2. Express the charge density in terms of the current density using the equation of conti-
nuity (14)

ρ (ω,k) =
1

ω
k · J (ω,k) . (16)

3. End up with a single equation in one unknown, E(ω,k), and forcing term J(ω,k); i.e.,
solve

ω2

c2
E (ω,k) + k × [k × E (ω,k)] = −iωµ0J (ω,k) . (17)

Therefore, the program of solving Maxwell’s equations reduces to solving a single algebraic
equation in terms of the electric field E (ω,k). All the other field and source components can
obtained from the solution of the electric field together with the given form of the source.

3.2 The Greens Function Tensor in the Spectral Domain

To obtain the Greens function in the Fourier domain, we first put equation (17) in a suitable
form. We use the following identity

A × B = ǫijk AjBk, (18)

where ǫijk is the permutation tensor.2 Therefore, we have

k × E = ǫijkkjEk. (19)

Iterating, we obtain

k × k × E = ǫijkkjǫkj′k′kj′ Ek′ = ǫijkǫkj′k′kjkj′ Ek′ . (20)

We use the following basic identity

ǫabcǫijk = δaiδbjδck + δakδbiδcj + δajδbkδci

−δbiδajδck − δakδaiδcj − δbjδakδci.
(21)

Therefore, we have
ǫiabǫijk = δajδbk − δakδbj. (22)

Using this identity in (17), we arrive to

[(

ω2

c2
− k2

)

δnm + knkm

]

Em (ω,k) = −iωµ0 Jn (ω,k) . (23)

2 Throughout this paper, the Einstein (repeated) summation index is used. That is, whenever an index is
repeated in a given expression, summation is implied with respect to these indices.
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The Greens function tensor is defined to satisfy the following equation

[(

ω2

c2
− k2

)

δnm + knkm

]

Gml (ω,k) = −iωµ0δnl (ω,k) . (24)

Therefore, by inverting the matrix operator appearing in the equation above, the Greens func-
tion tensor is readily obtained in the following compact closed form

Gnm (ω,k) =
−iωµ0

ω2
/

c2
− k2

(

δnm −

c2

ω2
knkm

)

(25)

Finally, we notice that it is possible to separate the field into two components, one transverse
to the direction of the wave vector k (transverse mode), and another perpendicular to this
direction, which we call longitudinal mode. The longitudinal mode is not involved in the
radiation and is related to the near field. It contributes directly to the structure of the field
surrounding the source.

4. Review of the Traditional Description of Electromagnetic Materials in terms of

Multipole Moments

The conventional old description of electromagnetic materials involves the introduction of
two quantities to calculate the induced charge and current distributions. We review here the
traditional view and show how it can be derived by a Fourier transform approach to the
multipole expansion of the source.
The conventional idea is to assume that a given medium responds to both electric and mag-
netic fields by generating an induced polarization density P and magnetization M. However, this
description is strictly valid when both the electric and magnetic responses can be unambigu-
ously separated from each other. This is possible only when the fields are static; otherwise, it
should be viewed as an approximation. Indeed, if rapid field fluctuations at the microscopic
scale are taken into consideration, then the separation becomes ill-defined and problematic.
Let us see how P and M arise from the Fourier transform perspective. Consider an arbitrary
charge and current distribution

ρ (t,k) =
∫

d3re−ik·rρ (t, r) , (26)

J (t,k) =
∫

d3re−ik·rJ (t, r) . (27)

Expand the exponential in Taylor series

e−ik·r = 1 − ik · r +
1

2
(ik · r)2 + · · ·. (28)
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Inserting (28) into (26), we obtain

ρ (t,k) =
∫

d3rρ (t, r)
[

1 − ik · r + 1
2 (ik · r)2 + · · ·

]

=
∫

d3rρ (t, r)−
∫

d3rik · rρ (t, r) + 1
2

∫
d3r (ik · r)2 ρ (t, r) + · · ·

= −

∫
d3riknrnρ (t, r)− 1

2

∫
d3rknrnkmrmρ (t, r) + · · ·

= −ikn
∫

d3rrnρ (t, r)− 1
2 knkm

∫
d3r rnrmρ (t, r) + · · ·

= −ik · p (t)− 1
2 knkmqnm (t) + · · ·,

(29)

where

pn (t) =
∫

d3rrnρ (t) (30)

and

qnm (t) =
∫

d3r rnrmρ (t) (31)

are the dipole and quadrable moments, respectively. We also used the assumption that the
charge distribution is neutral

∫
d3rρ (t, r) = 0. Similarly, by inserting (28) into (27), one obtains

Jn (t,k) =
∫

d3rJn (t, r)
[

1 − ik · r + 1
2 (ik · r)2 + · · ·

]

=
∫

d3rJn (t, r)−
∫

d3r (ik · r) Jn (t, r) +
1
2

∫
d3r (ik · r)2 Jn (t, r) + · · ·

=
∫

d3rJn (t, r)
︸ ︷︷ ︸

µn(t)

−ikm

∫

d3r rm Jn (t, r)
︸ ︷︷ ︸

µmn(t)

−
1
2 klkm

∫
d3r rlrm Jn (t, r) + · · ·

= ∂
∂t pn (t)− ikm

1
2

∂
∂t qmn (t)− iǫmnskmms (t) + · · ·

= ∂
∂t pn (t)− ikm

1
2

∂
∂t qmn (t) + iǫnmskmms (t) + · · ·,

(32)

where equations (110) and (120) (see Appendix) were utilized in obtaining the fourth equal-
ity, and the relation ǫnms = −ǫmns is employed in the writing last equality. By ignoring all
quadrable and higher terms in (29) and (32), we find

ρ (t,k) = −ik · p (t) , (33)

J (t,k) =
∂

∂t
p (t) + ik × m (t) . (34)

Define the polarization and magnetization densities P and M, respectively, by the following
relations

p (t) =
∫

d3rP (t, r) (35)

and

m (t) =
∫

d3rM (t, r) . (36)

Inserting (33) and (34) into (26) and (27), it follows

ρ (t,k) =
∫

d3r [−ik · P (t, r)] , (37)
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J (t,k) =
∫

d3r

[

∂

∂t
P (t, r) + ik × M (t, r)

]

. (38)

Therefore, by inverting the Fourier transforms (37) and (38), we obtain

ρind (t, r) = −∇ · P (t, r) , (39)

Jind (t, r) =
∂

∂t
P (t, r) +∇× M (t, r) . (40)

As can be seen now, this derivation ignores higher-order multipole without providing a clear-
cut criterion for when and why this approximation is valid. Since we are attempting to con-
struct a general theory for both near and far fields in the context of material response, it is
important to employ a formulation that does not involve approximations that may not hold
in certain media. Some other difficulties relate to the question of the convergence of the mul-
tipole expansion that is seldom addressed in literature. Finally, there is the incompleteness
issue in the expansion (28), which includes only terms with zero trace.

5. Material Response Through the Fourier Transform Approach

We will now carefully introduce the equivalent representation of the electromagnetic mate-
rial response in terms of the Fourier transform of the fields, not the actual field in space and
time. There are several advantages in this approach that are worthy detailed considerations
in themselves. First, notice that this approach does not apply to static fields, which are better
addressed by the classical P-M approach. On other hand, certain complex electromagnetic
effects, like spatial dispersion (nonlocality) magnetoelectric responses and optical activity, can
be regarded as special case of spatial dispersion.
It appears to the authors that operating directly on material systems with a formalism tai-
lored especially to handle spatial dispersion is very advantageous. Besides its ability to deal
with complex media exhibiting phenomena like magnetoelectric effects and optical activity,
it can also provide a natural window to probe near-field interactions. Although we are still
trying to mathematically identify the meaning of the near field, remember that one of the most
immediate features that come to mind when thinking about fields in the near zone (close to
the radiator or the scatterer) is that they tend to be localized, or, equivalently, contain short
wavelength components that contribute significantly to the field structure. In this case, one is
looking naturally for a mathematical device that characterize electromagnetic wave phenom-
ena in terms of the Fourier spatial modes, i.e., the k-component. Therefore, the formalism
should look for information about the response of the system to particular wavevecotrs k.
This is essentially the goal of integrating spatial dispersion in the theoretical description of
material media.
Let us try to address in more details some of the difficulties in the traditional approach to
electromagnetic material response. By Fourier transforming equation (40) in time, we obtain

Jind (ω,k) = −iωP (ω,k) + ik × M (ω,k) . (41)

The problem here is that there exists no general a priori method to tell how the individual
contributions of the quantities P and M divide in forming the total induced current. In this
sense, one can view these two vectors as mere calculational tools, auxiliary devices used to
compute the actually observed induced current Jind. In particular, there seems to be no harm
in just setting the magnetization density M to zero and considering only a polarization density
P contributing to the induced charge and current densities.
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As we have just observed in Section 3.1, the program of calculating the fields through
Maxwell’s equations can be reduced to the solution of a single equation, namely (17), which
contains a single unknown, the electric field vector E(ω,k) itself. If the relation between the
induced current density Jind (ω,k) and the electric field is known, then this relation, together
with the master equation (17), can be used to completely solve the problem of light-matter
interaction. It seems natural then to introduce a single material response tensor

(Jind)m (ω,k) = σmn (ω,k)En (ω,k) , (42)

where the matrix σmn (ω,k) is called the conductivity tensor. After solving for the electric field,
all the remaining quantities, the magnetic field B(t, r) and the charge density ρ(t, r), can be
calculated from the knowledge of the total current and the electric field.
One can replace the conductivity tensor by different equivalent representations that may turn
out to be handy in some applications. In particular, we discuss here the polarization tensor
αnm(ω,k) and the equivalent dielectric constant ε

eq
nm (ω,k), defined by the following equation

ε
eq
nm (ω,k) = δnm + i

ωε0
σnm (ω,k)

= δnm + 1
ω2ε0

αnm (ω,k)

= δnm + χnm (ω,k) .

(43)

The reader should notice that the equivalent dielectric function ε0ε
eq
nm (ω,k) is not the same

as the conventional dielectric function defined in terms of the polarization and magnetization
densities appearing in equation (40). In terms of the new dielectric function ε

eq
nm (ω,k), we

write
Dn (ω,k) = ∑

m
ε0ε

eq
nm (ω,k)Em (ω,k). (44)

It follows that in the Fourier transform approach to the material response, we effectively kill
the magnetization vector M and collect all relevant physical processes into a single vector, the
effective polarization density P.

6. Comparison between the Traditional Multipole and the Fourier Transform Ap-

proaches to the Material Response

Within the miltipole approach to the material response, two new fields are traditionally in-
troduced, the electric induction D (the electric displacement vector), and the magnetic field
strength H. These are defined by the relations

D ≡ ε0E + P, (45)

H ≡
1

µ0
B − M. (46)

The electric susceptibility χe and the magnetic susceptibility χm are defined by the following
equations

P = ε0χeE, (47)

M =
1

µ0
χmB. (48)

The effective dielectric constant, or electric permittivity ε, and the magnetic permeability µ,
can now be defined in terms of the quantities above as

D (ω,k) = εE (ω,k) , (49)
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H (ω,k) =
1

µ
B (ω,k) . (50)

We now proceed to derive the equivalence between this traditional approach and the Fourier
formalism of Section 5. First, the current distribution is decomposed into two parts, one due to
external (applied) sources, Jext, and the other, Jind due to the interaction between the medium
and the electromagnetic fields. We write

J (t, r) = Jext (t, r) + Jind (t, r) . (51)

The induced current is written using the conductivity tensor introduced in (42) and the result
is substituted to the master equation (17). After simple re-arranging of terms, we find

ω2

c2
E (ω,k) + k × k × E (ω,k) + iωµ0 ¯̄σ (ω,k) · E (ω,k) = −iωµ0Jext (ω,k) . (52)

Now let us calculate by means of the ǫ-µ method. In this case, the induced current is written
in terms of both the polarization and magnetization current densities P and M as shown in
(40). Using (47) and (48) in (41), we find

Jind (ω,k) = −iωε0χeE (ω,k) + ik ×
χm

µ0
B (ω,k) . (53)

But from Maxwell’s equations in the Fourier domain, specifically (10), we know that

ik × B (ω,k) =
i

ω
k × k × E (ω,k) . (54)

The induced current in (53) becomes then

Jind (ω,k) = −iωε0χeE (ω,k) + i
χm

ωµ0
k × k × E (ω,k) . (55)

Combining (51) and (55) and substituting the result into (17), we arrive after some rearranging
to

ω2

c2 E (ω,k) + k × k × E (ω,k)

+ω2

c2 χeE (ω,k)− χmk × k × E (ω,k) = −iωµ0Jext (ω,k)
(56)

By comparing (52) and (56), we conclude that we must have

iωµ0 ¯̄σ (ω,k) · E (ω,k) =
ω2

c2
χeE (ω,k)− χmk × k × E (ω,k) . (57)

In tensor form, equation (57) becomes

iωµ0σnl (ω,k)El (ω,k) =
ω2

c2
χe

En (ω,k)− χm
[

knkl − k
2δnl

]

El (ω,k) . (58)

Since the equality holds for arbitrary El , we obtain

σnl (ω,k) =
1

iωµ0

{

ω2

c2
χeδnl − χm

[

knkl − k
2δnl

]

}

. (59)

www.intechopen.com



Passive Microwave Components and Antennas82

From (43), we reach to

ε
eq
nl (ω,k) = δnl +

i
ωε0

1
iωµ0

{

ω2

c2 χeδnl − χm
[

knkl − k2δnl

]

}

= δnl + χeδnl −
c2

ω2 χm
(

knkl − k2δnl

)

= (1 + χe)δnl −
c2

ω2 χm
(

knkl − k2δnl

)

(60)

Finally, we use the definitions (45), (46), (47), (48) to write

ε
eq
nm (ω,k) =

(

ε

ε0

)

δnm −

c2

ω2

(

1 −
µ0

µ

)

(

knkm − k2δnm

)

. (61)

This is the main equation we are looking for. It shows that a medium which is magnetic in the
ε-µ approach translates into spatial dispersion in the Fourier approach. It follows also that the
two dielectric constants are the same only if there is no spatial dispersion.

7. General Properties of the Material Response Tensors

The requirement that the electromagnetic fields should by themselves satisfy Maxwell’s equa-
tions cannot fully specify how the very same fields will behave in a material environment.
Such behavior is dictated by a more complex structure consisting of the mechanical response
coupled with the electromagnetic fields. In this section, we survey and present rigorously
the most important non-electromagnetic restrictions imposed on the material tensor. Such
restrictions can be conveniently gathered under the heading ‘General properties of the Mate-
rial Tensor’ since they involve quite broad characteristics that are wider than the particular
dynamical laws encapsulated by the Maxwell’s equations.
Our main equations will be the relation between the electric flux density vector and the electric
field in both the spatio-temporal and spectral domain. These are, respectively,

Dn (ω,k) = ∑
m

ε0ε
eq
nm (ω,k)Em (ω,k), (62)

Dn (t, r) = ε0

∫

dt′
∫

d3r′ ∑
m

ε
eq
nm

(

t − t′, r − r′
)

Em
(

t′, r′
)

. (63)

These equations describe electromagnetic processes in homogenous, isotropic or anisotropic
media. It is important to keep in mind that within the Fourier-space formalism the equivalent
dielectric tensor is inherently a tensor; even when the medium under consideration is isotropic,
the dielectric function is still generally a tensor. Also, the reader may notice from (63) that the
field induced at particular time t and location r depends generally on the applied field at
different times and locations. We say that the medium exhibit “memory” in both the temporal
and spatial sense. The spatial sense of the this memory, which is going to be the main concern
for us here, is called nonlocality.3

3 Whenever there is no risk of confusion, we drop the superscript ‘eq’ from ε
eq
nm (ω,k) and refer to the

equivalent dielectric function as merely the dielectric tensor.
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7.1 The Reality of the Fields

Since the fields appearing in equation (63) are all real, the properties of the Fourier transform
dictate that the negative and positive frequencies appearing in the spectrum of the fields are
both essentially equivalent to each other. Formally, we express this requirement in the follow-
ing relation that any material tensor describing the responses of the medium to real quantities
must satisfy

ε
∗

nm (ω,k) = εnm (−ω,−k) . (64)

7.2 Dissipative and Non-Dissipative Processes

The material tensorial response is the Fourier transform of a real quantity and hence generally
complex. The real part and the imaginary part of this tensor are usually interpreted as those
responsible for dispersion and losses (dissipation), respectively. In this section, we provide
the mathematical evidence in support of this interpretation.
We start be decomposing an arbitrary response tensor into hermitian and antihermitian parts

εnm (ω,k) = ε
H
nm (ω,k) + ε

A
nm (ω,k) , (65)

where

ε
H
nm (ω,k) =

1

2
[εnm (ω,k) + ε

∗

mn (ω,k)] , (66)

ε
A
nm (ω,k) =

1

2
[εnm (ω,k)− ε

∗

mn (ω,k)] . (67)

It is obvious that the two parts satisfy

ε
H∗

nm (ω,k) = ε
H∗

mn (ω,k) , (68)

ε
A∗

nm (ω,k) = −ε
A∗

mn (ω,k) . (69)

We now recall our interpretation in Section 2.1 of the term −J · E as the density of the rate of
energy transfer by the current J into the electric field E. The current can be decomposed into
external and induced parts as J = Jex+Jind. Thus, the total work done by the medium on the
electric field is given by integrating −Jind · E in both time and space as

−

∫

dt

∫

d
3
rJind (t, r) · E (t, r) =

∫

dωd3k

(2π)4
Jind (ω,k) · E∗ (ω,k) , (70)

where the power theorem of Fourier transforms was used in writing the equality. We now
have

∫

dωd3k

(2π)4 Jind (ω,k) · E∗ (ω,k)

=
∫

dωd3k

(2π)4
1
2

[

J∗ind (ω,k) · E (ω,k) + Jind (ω,k) · E∗ (ω,k)
] (71)

In deriving this, the integral was first divided into its negative and positive frequency parts,
and then a transformation of variables was applied to the negative frequencies integral. Fi-
nally, the symmetry condition (reality condition) given in (64) was applied. Employing equa-
tion (42) in (71), we can write

−

∫

dωd3k

(2π)4 Jind (ω,k) · E∗ (ω,k)

=
∫

dωd3k

(2π)4
1
2 [σnm (ω,k)Em (ω,k)E∗

n (ω,k) + σ
∗

mn (ω,k)E∗

n (ω,k)Em (ω,k)]

=
∫

dωd3k

(2π)4 σ
H
nm (ω,k)Em (ω,k)E∗

n (ω,k).

(72)
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Therefore, it is the hermitian part of the conductivity tensor which contributes to the dissipa-
tion of energy by the medium. Equivalently, by considering the relation between the conduc-
tivity and the equivalent dielectric tensor (43), we find that it is the antihermitian part of the
dielectric tensor that contributes to energy dissipation by the medium.

7.3 Onsager Relations

Since any material responses tensor is ultimately based on a mechanical model, of which the
dynamical equations must satisfy certain space-time symmetry transformations, there exists
certain general restrictions on the mathematical form of a physically realizable material tensor.
In order to give the reader some idea about such requirement, we list the classical dynamical
equation for the particle motion, namely the Lorentz force (9). By writing the force as F =
dp/dt, where p is the linear momentum, it is an easy matter to verify that the equation of
motion is invariant under the transformations

t →−t, p →−p, B →−B (73)

The same conclusion can be obtained if the Lorentz force law is replaced by the Schrodinger
equation.
Notice that a time-reversal corresponds to the substitution ω → −ω in the Fourier domain.
The reversal of the sign of the momentum corresponds to reversing the sign of the wavevec-
tor. Finally, the reversal of the sign of the magnetic field is shown explicitly in the following
standard form of the Onsager relations4

ε
eq
nm (ω,−k)

∣

∣

∣

−B
= ε

eq
mn (ω,k)

∣

∣

∣

B
. (74)

The Onsager relations places severe restrictions on the physically allowable form of the mate-
rial response. We discuss below particular examples of isotropic spatially dispersed media.
Let us focus on materials that don’t respond to the magnetic field. In this case, the Onsager
relations reduces to the situation in which the tensorial responses is required to be invariant
under the transformation

k →−k, n ↔ m. (75)

First, notice that in the Fourier transform approach, even when the medium is isotropic, the
response is still described by a tensorial quantity, c.f. equation (61). For isotropic media that is
spatially dispersive, we can analyze the situation by pure matrix theoretic arguments. Indeed,
the only available vector in this case is km, while the only available tensors are δnm and ǫnml . It
can be shown that the Onsager relations leads to the result that we can construct only three in-
dependent second-rank tensors. A popular choice in the condensed-matter physics literature
is the following

ε
eq
nm (ω,k) = ε

L (ω,k)κnκm + ε
T (ω,k) (δnm − κnκm)+ iε

R (ω,k)ǫnmlkl , (76)

where
κm = km

/

k, k = |k| . (77)

Here, the quantities ε
L(ω,k), ε

T(ω,k), ε
R(ω,k) are the longitudinal, transverse, and rotational

permittivities, respectively. The rotatory parts can be ignored in media that don’t exhibit
optical activity. Notice that for media in which both the longitudinal and transverse parts
happen to be equal to each other, the equivalent dielectric tensor reduces to the scalar case.

4 The symmetry relations (64) are used to simplify the final form.
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7.4 The Kramers–Kronig Relations

The fact that the dielectric tensor is a response function imposes a restriction on the relation-
ship between the real and imaginary part. This restriction is due to causality and can be
rigourously derived by standard techniques in the theory of complex functions.5 Kramers-
Kronig relations say that the real and imaginary parts of the Fourier transform of a function
that is causal (i.e., a function that its inverse Fourier transform is identically zero for a time
interval in the form −∞ < t < t0) satisfy

ε
eq,H
nm (ω,k)− δnm =

i

π
℘

∫

∞

−∞

dω
′ ε

eq,A
nm (ω′,k)− δnm

ω − ω′ , (78)

ε
eq,A
nm (ω,k) =

i

π
℘

∫

∞

−∞

dω
′ ε

eq,H
nm (ω′,k)

ω − ω′ , (79)

where ℘ symbolizes the Cauchy principal value.6 Equations (78) and (79) show that if dissi-
pation is known, then dispersion can be uniquely determined (and vice versa) by applying
the Hilbert transform operator to the available data.
One can see that when spatial dispersion is present, then in the case of non-dissipative
medium, i.e., a medium with negligible losses which, as can be seen from Section 7.2, cor-

responds to ε
eq,A
nm (ω,k) = 0, the dispersion behavior dictated by ε

eq,H
nm (ω,k) is restricted to

only the class of functions of ω which has zero Hilbert transform. It can be shown that such
functions take the basic form 1

/

(ω − ωm) with constant ωm. This explains partially why such
basic form pops out very frequently in practice. However, they also demonstrate the power
of Kramers-Kronig relations in being able to severely restrict the allowable functional form of
the dispersion in lossless media.
The general lesson we learn from taking casuality into consideration when thinking about
designing artificial media is that once the losses is neglected for the entire frequency range
−∞ < ω < ∞ (or the medium is designed to have small losses globally), the global form of dis-
persion is no more a free degree of freedom but, instead, takes a particular form. However, in
practice we seldom achieve or require particular specifications of the losses and/or dispersion
to hold for the entire frequency range. Noticing that the Hilbert transform relations in (78) and
(79) are global operators, i.e., they involve integration over the entire frequency range in or-
der to know the value at a single frequency (nonlocal or memory-dependent in frequency),
we need just to restrict ourselves to a finite frequency and wavenumber range upon which
the desired losses and dispersion characteristics are required to apply. By this restrictions, the
Kramers–Kronig relations cannot impose a serious restriction on the design and analysis of
artificial media.

8. Advanced Properties of the Material Tensor

In this Section, we look at the material tensor through the point of view of complex analysis.
The motivation for such study is that certain characteristics of signals excited in media, like

5 The causality restriction translates formally to the following setting. Imagine that the medium is excited
by an applied electric field E. The material responses, for example through (47), will appear in the form
of a forced (induced) quantity, here the polarization density P. If the applied field was zero for time
t < 0, then causality implies that there must be no induced polarization in this time interval.

6 These relations represent a Hilbert transform relation between the hermitian and antihermitian parts,
which play the role of real and imaginary parts, respectively, in the case of matrices (linear operators).
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short-term disturbances and damped waveforms are best understood analytically if viewed
using the mathematical device of Laplace transform instead of the familiar Fourier transform,
the latter being best suited ideally to analyze the steady-state behavior of a given system. As
will be shown below, there are general restrictions on the mathematical form of the response
functions when viewed in the complex plane. Knowledge of such global restrictions is vital in
the theory and practice of meta-materials.

8.1 Stability Restrictions

From the physical point of view, a passive medium cannot generate energy and hence all
propagating signals must be damped or decaying when the distance goes to infinity.7 Math-
ematically, this translates to the requirement that all poles are located in the LHP. We call the
following the statement of the stability condition of material media

All poles of the material tensor must be located in the LHP. (80)

To see why this should be the case, just (Laplace) invert a spectral component in the form
1
/(

ω − ω0 + iγ
/

2
)

and notice the sign of the resulting exponential factor. For signals to ex-
ponentially decay, instead of growing, the algebraic sign of the factor γ must be positive.

8.2 Causality Restrictions

Although we have already looked at casuality in the study of Kramers -Kronig relations, we
want to understand here this topic at a deeper level. Consider the Fourier transform of a
causal function f (t) given by

f (ω) =
∫

∞

0
dt f (t) eiωt. (81)

Let us study the asymptotic behavior of this function when t → ∞. We first notice that when
Im{ω} > 0, the integral in (81) has a finite value since the integrand approaches zero as t
grows to infinity. Moreover, on repeatedly differentiating this integral, we conclude also that
all derivatives of f (ω) are finite. Therefore, the function f (ω) is analytic in the upper half
complex plane. We have then

A causal function is analytic in the UHP. (82)

An immediate corollary is that

A causal function has no poles or branch points in the UHP. (83)

This principle forms the mathematical background behind the derivation of Kramers-Kronig
relations.

8.3 Landau Condition

The Laplace transform of a signal is defined as

F (s) ≡
∫

∞

0
dt f (t) e−st. (84)

7 Notice that for a range that is bounded, both growing and decaying signals are possible. For example,
consider a multilayered medium. In one intermediate layer both growing and decaying waves are
permitted.
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Therefor, the s-plane and the complex ω-plane are related by s = iω, which means that ‘upper’
and ‘lower’ in one plane translates into ‘right’ and ‘left’, respectively, in the other plane.
The inverse Laplace transform is given by the equation

f (t) =
1

2πi

∫

Γ+i∞

Γ−i∞
ds F (s) est, (85)

where Γ specifies how the integration contour should be chosen. Landau condition states that

The contour in (85) is to the left of all singularites in the s-plane. (86)

Therefore, the integration contour must be above all singularities in the complex ω-plane. It
can be shown then that the resulting function does not depend on the particular path provided
it satisfies the Landau condition.

9. Wave Propagation

9.1 Dispersion Relations

By wave modes or wave propagation we mean electromagnetic disturbances that can propa-
gate in a source-free medium. In our case, the medium response is described by the nonlocal
model of the Fourier approach.
Equation (52) is the inhomogeneous wave equation in our medium. From the definition (42),
the induced current in terms of the vector potential (temporal gauge) is expressed as follows

Jind,m (ω,k) = αmn (ω,k)An (ω,k) . (87)

In tensor form, we can write then (52) as

Ξnm (ω,k)Am (ω,k) = −
µ0c2

ω2
Jext,n (ω,k) , (88)

where

Ξnm (ω,k) =
c2

ω2

(

knkm − k2δnm

)

+ χnm (ω,k) . (89)

If the source term in (88) is set to zero, we obtain the homogenous wave equation describ-
ing the propagation of waves in a source-free environment, i.e., the eigenmodes. However,
as we found in Section 7.2, the antihermitian part of the tensor Ξnm (ω,k) is responsible of
dissipation or energy generation in the medium. Such term must be omitted from the final
homogeneous equation describing pure wave propagation. The desired equation of motion is
therefore given by

Ξ
H
nm (ω,k)Am (ω,k) = 0, (90)

where Ξ
H
nm (ω,k) describes the hermitian part of the tensor Ξnm (ω,k). The reader should

notice that there is a thermodynamic hypothesis implicit in the derivation of this fundamental
equation. That is, dissipation is treated as equivalent to source, and so the antihermitian part
is removed even when it describes only a passive medium. Such hypothesis, equivalence of
source and sink, is an additional postulate that cannot be derived from Maxwell’s equations
and should be supplied by an external theory, in this case thermodynamics of continuous
media.
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Notice that (90) is a matrix equation. From linear algebra, the necessary and sufficient condi-
tion for the existence of a nontrivial solution is that the determinant of the hermitian matrix
ΞH

nm (ω,k) is identically zero. That is, the dispersion relation is given by

det
[

ΞH
nm (ω,k)

]

= 0. (91)

In general, this dispersion relation has potentially many solutions, each is called a mode or
branch. We write the solution of the lth mode of the dispersion equation (91) as

ω = ωl (k) . (92)

For each mode, there corresponds a vector An satisfying equation (90). Such vector is called
the polarization of the wave mode. within the scheme of Fourier-space electromagnetics, there
exists a detailed theory of how to obtain and classify polarization in various types of media,
which is based on direct application of results from tensor calculus. However, we omit such
details for the limitations of space.

9.2 The Greens Function

The solution of the inhomogeneous wave equation (88) can be formally written as

An (ω,k) = −
µ0c2

ω2
Gnm (ω,k) Jext,n (ω,k) , (93)

where Gnm (ω,k) is the Greens function dyad in the spectral domain. From matrix theory, an
expression of this dyad can be immediately written as

Gnm (ω,k) =
cofnm [Ξn′m′ (ω,k)]

det [Ξnm (ω,k)]
, (94)

where cofnm is the cofactor matrix. In deriving this result, only the hermitian part of the oper-
ator Ξnm (ω,k) is used, and therefore the Greens dyad as it stands here is hermitian. However,
when inverting the Fourier transform to calculate the fields in the spatio-temporal domain, a
singularity in the spectral domain is encountered around ω = ωl (k). The traditional solution
of this problem is to carefully enforce suitable causality conditions. Technically, the determi-
nant is expanded in the following form

det [Ξnm (ω,k)] ≈
∂

∂ω
det [Ξnm (ω,k)]

∣

∣

∣

∣

ω=ωl(k)
{ω − ωl (k) + i0} , (95)

where the expansion illustrated here is taken around the lth mode pole. By formally inverting
the Fourier transform using the Dirac delta function, we obtain the following expression for
the antihermitian part of the Greens function

DA
nm (ω,k) = ∑

l

−iπωl (k)e
∗
l,m (k)el,n (k)Fl [Ξnm (ω,k)]δ (ω − ωl (k)) , (96)

where the Fl [Ξnm (ω,k)] can be directly determined by the dispersion profile of the medium,
but its explicit expression is not of direct concern to us here. The unit vectors el,n (k) describe

the polarization of the lth mode.8 This derivation shows that although the antihermitian part

8 Notice that for the case of transverse modes, the degeneracy of the eigenvalue problems requires a
special treatment. Indeed, in this case one has to resort to the use of polarization matrices. We omit
such details here.
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was not originally taken into consideration in writing up the expression of the Greens dyad
(94), causality considerations forces us to introduce an antihermitian part. As we will show in
Section 10.1, it is precisely this antihermitian part that contributes to the radiated field.9

It is interesting to observe again the role played by thermodynamics in the solution of
Maxwell’s equations. Indeed, the ultimate origin of the causality consideration introduced
above can be tracked back to the thermodynamic requirement that energy decays away from
the source and toward the sink. Maxwell’s equations themselves are blind to the direction
of power flow; they can support both (temporally) forward and backward waves. However,
thermodynamics appears to fix the sign of the pole contribution around the real ω-axis and
hence effectively imposes a particular form of the solution of the field equations. The reader
can appreciate better the subtlety of this fact by recalling that the very concepts of source and
sink are thermodynamic in nature and cannot be based ultimately on Maxwell’s equations.
An impulsive excitation, say an ideal Dirac delta function, can be mathematically introduced
to the theory in a straightforward manner, e.g., using generalized function theory. However,
the choice of the signs of the imaginary part of the pole associated with source or sink de-
pends on energetics and dissipation, a topic that is best described macroscopically by classical
thermodynamics. Since the ultimate origin of the antihermitian part of the Greens function, as
shown above in equation (96), is causality, and the particular form of this depends in turn on
thermodynamic consideration, and knowing that it is this part of the Greens dyad that is re-
sponsible of radiation (see Section 10.1), we can claim that the ultimate answer to the question
of why an antenna can radiate appears to be purely thermodynamic in nature.

10. Applications

In this section, we provide some applications for the general Fourier approach toward the
characterization of the material responses to the electromagnetic fields as sketched above.

10.1 Localization of Electromagnetic Energy Radiated by Antennas in Complex Media

In this part, we perform an explicit calculation of the electromagnetic energy radiated by an
arbitrary antenna in a medium described by a nonlocal response tensor. We will show that the
Fourier approach described in this paper provides a direct method to understand the structure
of the near-field surrounding the antenna, and therefore the possibility of localizing energy in
complex artificial media.
The method relies on calculating the total energy of the radiated field using the Fourier in-
tegral. We start from the statement of energy conservation as stated in (8). The current J

appearing at the RHS is replaced by the current distribution on the antenna, which is taken
as an external current Jext. As discussed in Section 2.1, the energy density (work) transferred
to the surrounding field by this current is given by −Jext · E. The trick in performing general
calculation is to introduce a new quantity Ul (k), which is defined as the density in the k-space
of the energy added to the surrounding field by the antenna when radiating through the lth mode. That
is, by energy conservation, the time-averaged total energy added to the field by all modes is
given by the following equation

T/2
∫

−T/2

dt
∫

d3rJext (t, r) · E (t, r) = ∑
l

∫

d3k

(2π)3
Ul (k). (97)

9 The hermitian part will contribute to the non-propagating field (near field) surrounding the source.
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Expressing the electric field in terms of the vector potential in the temporal gauge as E (ω,k) =
iωA (ω,k), using the Greens function of (93), and employing the Pareseval (power) theorem
of Fourier analysis, we write the LHS as

T/2
∫

−T/2

dt
∫

d3rJext (t, r) · E (t, r) = −

∫

dωd3k

(2π)4 J∗ext (ω,k) · E (ω,k)

=
∫

dωd3k

(2π)4
i

ε0ω
J∗ext,m (ω,k)Gmn (ω,k) Jext,n (ω,k)

=
∫

dωd3k

(2π)4
i

ε0ω
J∗ext,m (ω,k)

[

GA
mn (ω,k) + GH

mn (ω,k)
]

Jext,n (ω,k)

(98)

Due to the presence of the factor i in the integrand, together with the fact that the integral
must be real, it follows from the basic properties of hermitian and antihermitian functions
(operators) that only the antihermitian part of the Greens dyad contributes to the radiation
field. Now, by plugging this part as given in (96) into (98), we finally arrive to the following
expression of the energy density

Ul (k) =
Fl [Ξnm (ω,k)]

ε0
|e∗l (k) · Jext (ωl (k) ,k)|2 . (99)

We will propose an interpretation for the physical meaning of Ul (k). Consider the inverse
Fourier transform

uF,l (r) = ℑ−1

{

√

Ul (k)

}

. (100)

Next, we use the Parseval theorem to write

∫

d3r uF,l (r)
(

uF,l (r)
)∗

=
∫

d3k

(2π)3

√

Ul (k)
√

Ul (k). (101)

Since the RHS is by definition the total energy radiated by the antenna in the lth mode, it

follows that the integrand of the LHS, namely ul (r) ≡
∣

∣uF,l (r)
∣

∣

2
can be interpreted as the

spatial distribution of the energy density radiated by the antenna through the lth mode. We
have

ul (r) =
∫ ∫

d3kd3k′
√

Fl [Ξnm(ω,k)]Fl [Ξnm(ω,k′)]∗

ε0
ei(k−k′)·r

×
∣

∣e∗l (k) · Jext (ωl (k) ,k)e∗l (k
′) · Jext (ωl (k

′) ,k′)
∣

∣ .
(102)

This new quantitative measure contains information about the spatial structure of the time-
averaged energy surrounding a radiator specified by its externally enforced current distri-
bution Jext(t,r). For example, it can be directly used in studying the localization of the ra-
diated energy in an antenna inside an artificial medium described by the dispersion profile
χnm (ω,k).

10.2 Nonlocal Electromagnetic Media

10.2.1 General Theoretical Background from the Field of Crystal Optics

By the term nonlocal medium we refer to a material described by response functions similar to
(47). As we we noticed previously, it follows from this definition that the material exhibits a
memory-like behavior in the sense that the response to a field excreted at a particular location
appears to depend on the field values at other locations. We will show below that this phe-
nomenon is very general and does not just refer to a particular physical process occurring in
the crystal.
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First, notice that we arrived to the definition (47) through a Fourier transform approach to the
electromagnetic fields. Moreover, we were able to derive a relation connecting the traditional
multipole approach and the Fourier approach. We found that nonlocality or spatial dispersion
arises very naturally to account for nonmagnetic media. However, it is in the nature of the
Fourier approach itself to introduce the spatial spectral variable k into the description of the
material medium, and hence one can view nonlocality as a characteristics of the formalism
itself, rather than a particular label given to an exotic physical process, for example exciotons-
polaritons in crystal optics.
Let us start by providing a global qualitative look at the response of material media in classical
and quantum optics. This view will serve as standard theoretical background upon which we
measure our understanding of how to design artificial media.
Imagine that the material is composed of a system of uncoupled (hence, independent) oscilla-
tors. Each oscillator can interact with the applied electromagnetic fields by producing a dipole
moment p. From the basic picture of Lorentz models, we can express the functional depen-
dence of this induced dipole moment on the temporal frequency ω in the broad Lorentzian
form ζ

/(

ω2 − ω2
0

)

, where ω0 is a constant called the eigenfrequency or the resonance fre-
quency, and ζ the oscillator strength. In general, each independent oscillator will resonate
with the applied field according to its own eigenfrequency and strength, and the medium
overall response will be taken as the sum of all individual resonances. In this view, it is useful
to think of each oscillator as representing an ‘atom’, even when its actual physical dimensions
are much larger than real atoms. The essential idea in the art of artificial material design is
taking this conceptual framework into its extreme by assuming that one can manipulate each
atom individually in order to control and tailor the resulted material responses. The assump-
tion that the atoms are uncoupled will be translated to the fact that the resulted eigenfrequency
ω0 and oscillator strength ζ don’t depend on wavelength, or equivalently on k. For natural
materials observed and studied through macroscopic electromagnetics, the atomic separation,
for example in periodic structures like crystals, denoted here by a, is very small compared with
the operating wavelength, i.e., we have a/λ ≪ 1. In this case, all atoms appear to be in perfect
phase synchronization and no significant coupling mechanism takes place.10

The situation is dramatically different in periodic structures, like photonic crystals and fre-
quency selective surfaces, where, in this case, the operating wavelength can become appre-
ciable compared with the characteristic spatial scale of the separation between the atoms (or
unit cells), and hence interesting electromagnetic behavior can arise, like stopbands, localiza-
tion, etc. It is still however possible to describe all these complex structures by employing
an effective dielectric function that is nonlocal. Such function can contain the full information
of the symmetry group of the periodic structure. Therefore, Maxwell’s equations, written in
terms of these equivalent responses functions, can be used to describe the electromagnetics of
the medium without writing explicitly the set of the boundary conditions.11 Aside from the
economic advantage of such formulation, allowing the effective dielectric function to become
nonlocal has the advantage of bringing the full power of the conceptual framework of effec-
tive medium theory right to the fore even though the artificial medium under consideration
may not satisfy the natural condition of infinitesimally small atomic constituents.

10 The fundamental pre-condition for this to be true is that the fields are averaged on a spatial scale much
larger than this natural characteristic spatial scale, i.e., the atomic separation a.

11 As an example for a concrete implementation of this general idea, see (6).
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10.2.2 Negative Group Velocity Artificial Media

We now briefly demonstrate the above general theory by showing that a new genre of artificial
(meta-) materials can be envisioned by thinking in terms of the Fourier-space formalism of this
paper. Specifically, we consider an idealized isotropic and homogenous medium that exhibit
both temporal and spatial dispersion.

The dispersion relation for the transverse waves is k · k = (ω/c)2 n2 (ω,k) , where we have

defined the index of refraction as n (ω,k)2
≡ ε (ω,k)µ. We will work with such general index

of refraction given by n = n(ω,k). The group velocity is defined as vg = ∇kω. It can be
shown that an equation connecting the spatial and temporal dispersion such that the resulted
medium supports negative group velocity propagation can be put in the following form

ω

c

∂n (ω,k)

∂k
−

γ

c

(

1 + ω
∂

∂ω

)

n (ω,k) = 1. (103)

where γ = −
∣

∣vg

∣

∣. We call this partial differential equation the dispersion engineering equa-
tion for negative group velocity. An exact solution for this equation can be attempted for
interesting special cases.
Consider the boundary-value problem consisting of the partial differential equation (103) to-
gether with

∂γ

∂ω
= 0, n (ω,k = k1) = φ (ω) , (104)

where ω1 < ω < ω2,ω1 > 0,k1 > 0. Here, k1 < k2 and ω1 < ω2 are positive real numbers
and φ (ω) is a general function representing the boundary condition of the problem. In the
interesting scenario where the group velocity is constant and negative, an exact solution was
found to be (4)

n (ω,k) =
c (k − k1)

ω
+

1

ω
[ω + γ (k − k1)]φ (ω + γ (k − k1)) . (105)

Such solution is then theoretically feasible. It demonstrates that there is rich degrees of free-
dom in the material design waiting for us to discover and exploit for novel and interesting
applications. A more comprehensive theory for the negative group velocity metamaterial was
developed by the authors in (4).

A. Magnetic Moments in Terms of Electric Moments

A.1 The Magnetic Moment Term

Multiply the equation of continuity (7) by rl and integrate over all space to get

∫

d3r
∂ρ (t, r)

∂t
rl = −

∫

d3r rl∇ · J (t, r) . (106)

Consider first the LHS of (106). By employing the definition of the dipole moment (30), we
write immediately

∫

d3r
∂ρ (t, r)

∂t
rl =

∂

∂t

∫

d3rρ (t, r) rl =
∂

∂t
pl (t, r) . (107)
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Now we consider the RHS of (106). Write the divergence as ∇ · J (t, r) =
(

∂
/

∂rs
)

Js (t, r) and
integrate by parts through the variable rs to obtain

∫

d3r rl∇ · J (t, r) =
∫

d3r rl
∂

∂rs
Js (t, r)

=
∫

d2r
∫

drs rl
∂

∂rs
Js (t, r)

=
∫

d2r
[

Js (t, r) rl |
rs=+∞

rs=−∞
−
∫

drs
∂rl
∂rs

Js (t, r)
]

=
∫

d2r
[

Js (t, r) rl |
rs=+∞

rs=−∞
−
∫

drs δl
s Js (t, r)

]

=
∫

d2r
[

Js (t, r) rl |
rs=+∞

rs=−∞
−
∫

drs Jl (t, r)
]

.

(108)

Using the assumption that the surface current Js (t, r) vanishes on the surface of the integration
volume, we obtain

∫

d3r rl∇ · J (t, r) = −

∫

d3r Jl (t, r) ≡ −µl (t, r) . (109)

From (106), (107), and (109), we finally arrive to

µl (t, r) =
∂

∂t
pl (t, r) . (110)

A.2 The Magnetic Quadrable Term

Multiply the equation of continuity (7) by rlrm and integrate over all space to get

∫

d3r
∂ρ (t, r)

∂t
rnrm = −

∫

d3r rnrm∇ · J (t, r) . (111)

Consider first the LHS of (111). By employing the definition of the electric quadrable moment
(31), we write immediately

∫

d3r
∂ρ (t, r)

∂t
rnrm =

∂

∂t

∫

d3rρ (t, r) rnrm =
∂

∂t
qnm (t) . (112)

Now let us take the RHS of (111). We first decompose the magnetic moment into the sum of
symmetric and anti-symmetric parts as follows

xn Jm =
1

2
(xn Jm + xm Jn) +

1

2
(xn Jm − xm Jn) . (113)

Now, write again the divergence as ∇ · J (t, r) =
(

∂
/

∂rs
)

Js (t, r) and integrate by parts through
the variable rs to obtain

∫

d3r rnrm∇ · J (t, r) =
∫

d3r rnrm
∂

∂rs
Js (t, r)

=
∫

d2r
∫

drs rnrm
∂

∂rs
Js (t, r)

=
∫

d2r
[

Js (t, r) rnrm|
rs=+∞

rs=−∞
−
∫

drs
∂

∂rs
(rnrm) Js (t, r)

]

=
∫

d2r
[

Js (t, r) rnrm|
rs=+∞

rs=−∞
−
∫

drs (rnδn
s + rmδm

s ) Js (t, r)
]

=
∫

d2r
[

Js (t, r) rnrm|
rs=+∞

rs=−∞
−
∫

drs {rn Js (t, r) + rm Js (t, r)}
]

(114)
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Using again the assumption that the surface current Js (t, r) vanishes on the surface of the
integration volume, we obtain

∫

d3r rnrm∇ · J (t, r) = −

∫

d3r [rn Js (t, r)+ rm Js (t, r)]. (115)

From (111), (112), and (115), we reach

∫

d3r [rn Js (t, r)+ rm Js (t, r)] =
∂

∂t
qns (t) . (116)

The antisymmetrical part in (113) can be written readily in the form 1/2ǫlmnµmn (t), where
magnetic quadrable moment µmn is defined as

µnm (t) =
∫

d3r rm Jn (t, r) . (117)

Therefore, one can express the axial vector as

m (t) =
1

2

∫

d3r r × J (t, r) . (118)

It follows then
ǫlsnmn (t) =

1
2

∫

d3rǫlsn (r × J (t, r))n

= 1
2

∫

d3rǫlsn ǫns′n′ rs′ Jn′ (t, r)
= 1

2

∫

d3r (δss′δnn′ − δsn′δns′ ) rs′ Jn′ (t, r)
= 1

2

∫

d3r [rs Jn (t, r)− rn Js (t, r)]

(119)

where the the definition of the cross product (18) was used in the second equality, and the
identity (22) was employed for the third equality. Thus, from (112), (113), (116), and (119) we
finally arrive to

µln (t) =
1

2

∂

∂t
qln (t)+ ǫlnsms (t) . (120)
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