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1. Introduction 
 

The objective of this chapter is first to describe the generalized circuital analysis as a method 
to solve complex electromagnetic problems and second to apply this specific technique to 
the determination of the resonant frequency and Q-factor of a cylindrical cavity loaded with 
a dielectric material when the material is introduced inside the cavity through a hole in the 
upper wall.  
The generalized circuital analysis as a method for solving electromagnetic problems 
consisting of the segmentation of the whole geometry of the microwave circuit into simpler 
structures which resolution can be solved in a easier way. Once the simpler structures have 
been solved separately, they can be joined or combined in order to give the complete 
solution of the complex structure. 
The resolution of the resonant frequency and Quality factor of a coaxially loaded circular 
cavity with a dielectric material is very interesting, for instance, for the determination of the 
dielectric properties (complex permittivity) of materials on this type of cavities. This type of 
analysis on these cavities can be found in the technical literature but in all cases, the effect of 
the hole to introduce the dielectric material inside the cavity is neglected and in some cases, 
such as it will be shown in the second part of the chapter, the effect of the hole can introduce 
considerable errors in the determination of the resonant frequency and quality factor whose 
can interfere the precision of the permittivity calculations. 
In next sections, the effect of the hole for the introduction of dielectric materials inside 
circular cavities is evaluated by solving the structure by the generalized circuital analysis. 
Several measurements of circular cavities with dielectric materials will confirm the effect of 
the hole in the precision of permittivity calculations. 
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2. Circuital Analysis 
 

In this section the ability of solving complex electromagnetic problems by segmenting the 
whole structure in several much simpler sub-structures that can be analyzed separately is 
described. The Generalized Scattering Matrix is also introduced as the method to interconnect 
(combine) networks with different ports and therefore re-combine the segmented networks 
to characterize the original structure. 

 
2.1 The Generalized Admittance Matrix 
The circuital analysis is based on the wave impedance concept. This parameter establishes 
the relationship between electric and magnetic fields in each point of the space and reflects 
the interaction between fields and the medium. The concept of impedance (or admittance), 
associated to each point in a coordinates system, can be extended to the characterization of a 
given volume by the introduction of the Generalized Admittance Matrix (GAM)1 or the 
Generalized Impedance Matrix (GIM).  
As introduced by Schelkunoff in the 30ths and as indicated in (Harrington, 1961), in 
electromagnetic theories, the relation between the electric field components E


 and magnetic 

field components H


 is called as wave impedances. These values are punctual because they 
are associated to each space point. Then, if the wave impedance characterizes a unique 
relation between E


 and H


, the GAM characterizes all the volume free of sources by means 

of the relationship established by E


 and H


 on the surrounding surface. 
The generalized admittance is unique as probed by the Uniqueness theorem (Harrington, 
1961). This theorem establishes that the field inside a closed and lossy region can be 
completely determined by knowing the sources into the region and the electric and 
magnetic tangential field components in a fictitious surface that surrounds the region of 
interest.  
Figure 1 shows the schematic of this situation. Region 2 is the region of interest free of 
sources and region 1 is the region that contains the sources. The Uniqueness theorem 
guaranties that it is not necessary to know the real sources of region 1 to determine in a 
unique way the fields E


 and H


 in any point within region 2 but it is enough to know the 

tangential electric field tE


 in the surface S, or the tangential magnetic field tH


 in the 

surface S or  the tangential electric field tE


 in part of the surface S and the tangential 

magnetic field tH


 in the rest of the surface S. 
 

 
Fig. 1. Generic Surface with two types of regions: with and without sources 
                                                 
1 In an equivalent manner we can speak of Generalized Impedance Matrix (GIM) 

 

Therefore, it is clear that there exists a relationship between both tangential electric and 
magnetic field components, since the knowledge of one of them ensures the knowledge of 
all the rest electromagnetic field components. Moreover this relationship is unique due to 
the Uniqueness Theorem. 
The relation between electric and magnetic fields can be expressed as a linear combination 
of base function according to the following expressions: 
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where  nE


  and nH


 are the base functions for the electric and magnetic fields, respectively, 

and the terms ne  and nh   are, respectively,  the amplitudes of weight of each base function.  
According to these expressions, the relation between both field components is established 
by a matrix. This matrix relates the weights of the magnetic field series nh  with the weights 

of the electric field series ne . This matrix is known as the Generalized Admittance Matrix Y . 

The inverse is called the Generalized impedance Matrix Z : 
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The relation between both matrices Y  y Z  is clearly: 
 

1







 YZ  (3) 

 
N refers to the number of terms considered in the series development of the electric and 
magnetic fields of equation (1). 
The definition of this matrix is very important for solving complex electromagnetic 
problems because it permits to segment the whole structure into simpler structures by 
making use of circuital theories. The segmentation concept can be first attributed to 
Harrington en (Harrington, 1961) where diverse waveguide apertures were analyzed by 
dividing the structure in two parts by placing at the aperture some equivalent currents. This 
technique was known as Generalized Circuital Formulation. From this first attempts, there has 
been many references that made use of it. For instance, (Collin, 1966), (Collin, 1991) and 
(Pozar, 1990) applied this technique for solving cavities excited by slots. Another interesting 
example is the work of (Gentili & Melloni, 1996). Some other examples can be found in 
(Alessandri et al, 1994), (Gimeno & Guglielmi, 1997) y (Rebollar et al., 1994) for closed 
structures and in (Valero-Nogueira 1997), (Penaranda-Foix, 2001), (Penaranda-Foix & Ferrando-
Bataller, 2003), (Penaranda-Foix et al., 2007a) y (Penaranda-Foix et al., 2009) for open problems. 
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2. Circuital Analysis 
 

In this section the ability of solving complex electromagnetic problems by segmenting the 
whole structure in several much simpler sub-structures that can be analyzed separately is 
described. The Generalized Scattering Matrix is also introduced as the method to interconnect 
(combine) networks with different ports and therefore re-combine the segmented networks 
to characterize the original structure. 

 
2.1 The Generalized Admittance Matrix 
The circuital analysis is based on the wave impedance concept. This parameter establishes 
the relationship between electric and magnetic fields in each point of the space and reflects 
the interaction between fields and the medium. The concept of impedance (or admittance), 
associated to each point in a coordinates system, can be extended to the characterization of a 
given volume by the introduction of the Generalized Admittance Matrix (GAM)1 or the 
Generalized Impedance Matrix (GIM).  
As introduced by Schelkunoff in the 30ths and as indicated in (Harrington, 1961), in 
electromagnetic theories, the relation between the electric field components E


 and magnetic 

field components H
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 is called as wave impedances. These values are punctual because they 
are associated to each space point. Then, if the wave impedance characterizes a unique 
relation between E


 and H


, the GAM characterizes all the volume free of sources by means 

of the relationship established by E


 and H


 on the surrounding surface. 
The generalized admittance is unique as probed by the Uniqueness theorem (Harrington, 
1961). This theorem establishes that the field inside a closed and lossy region can be 
completely determined by knowing the sources into the region and the electric and 
magnetic tangential field components in a fictitious surface that surrounds the region of 
interest.  
Figure 1 shows the schematic of this situation. Region 2 is the region of interest free of 
sources and region 1 is the region that contains the sources. The Uniqueness theorem 
guaranties that it is not necessary to know the real sources of region 1 to determine in a 
unique way the fields E


 and H


 in any point within region 2 but it is enough to know the 

tangential electric field tE


 in the surface S, or the tangential magnetic field tH


 in the 

surface S or  the tangential electric field tE


 in part of the surface S and the tangential 

magnetic field tH


 in the rest of the surface S. 
 

 
Fig. 1. Generic Surface with two types of regions: with and without sources 
                                                 
1 In an equivalent manner we can speak of Generalized Impedance Matrix (GIM) 

 

Therefore, it is clear that there exists a relationship between both tangential electric and 
magnetic field components, since the knowledge of one of them ensures the knowledge of 
all the rest electromagnetic field components. Moreover this relationship is unique due to 
the Uniqueness Theorem. 
The relation between electric and magnetic fields can be expressed as a linear combination 
of base function according to the following expressions: 
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where  nE


  and nH


 are the base functions for the electric and magnetic fields, respectively, 

and the terms ne  and nh   are, respectively,  the amplitudes of weight of each base function.  
According to these expressions, the relation between both field components is established 
by a matrix. This matrix relates the weights of the magnetic field series nh  with the weights 

of the electric field series ne . This matrix is known as the Generalized Admittance Matrix Y . 

The inverse is called the Generalized impedance Matrix Z : 
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The relation between both matrices Y  y Z  is clearly: 
 

1







 YZ  (3) 

 
N refers to the number of terms considered in the series development of the electric and 
magnetic fields of equation (1). 
The definition of this matrix is very important for solving complex electromagnetic 
problems because it permits to segment the whole structure into simpler structures by 
making use of circuital theories. The segmentation concept can be first attributed to 
Harrington en (Harrington, 1961) where diverse waveguide apertures were analyzed by 
dividing the structure in two parts by placing at the aperture some equivalent currents. This 
technique was known as Generalized Circuital Formulation. From this first attempts, there has 
been many references that made use of it. For instance, (Collin, 1966), (Collin, 1991) and 
(Pozar, 1990) applied this technique for solving cavities excited by slots. Another interesting 
example is the work of (Gentili & Melloni, 1996). Some other examples can be found in 
(Alessandri et al, 1994), (Gimeno & Guglielmi, 1997) y (Rebollar et al., 1994) for closed 
structures and in (Valero-Nogueira 1997), (Penaranda-Foix, 2001), (Penaranda-Foix & Ferrando-
Bataller, 2003), (Penaranda-Foix et al., 2007a) y (Penaranda-Foix et al., 2009) for open problems. 
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Figure 2a shows a generic example for illustrating how the circuital theory can be applied to 
solve complex structures. Figure 2a distinguishes two zones: region a free of sources and 
region b with sources. 
 

 
 

Fig. 2a. Segmentation problem: Two regions 
connected by the aperture

 
Fig. 2b. Segmentation problem: Two 
regions separated by the aperture 

 
Figure 2b shows the same structure but segmented in two equivalent problems by means of 
the equivalent principle. This separation of regions is carried out by placing an electric wall in 
the aperture between regions a and b. 
The fields generated in region b are the result of the sources iJ  y iM  and the fields created 

by the equivalent magnetic current nEM ˆx


  on the aperture surface. Since the aperture is 
covered by an electric wall, it is not necessary the use of equivalent electric currents. On the 
other hand, in region a, the field is uniquely created by the magnetic current M


  at the 

aperture since there are no sources in this region (a). 
To raise this problem, continuity of tangential magnetic fields in the aperture is imposed. 
The total magnetic field on the aperture zone in region b is the summation of the field due to 
the impressed currents i

tH


 and the field due to the equivalent sources M


 called as  MH


b
t  

from now on, then: 
 MHHH


b
t

i
t

b
t   (4) 

 

It is important to remark that both i
tH


 and  MH


b
t  are fields calculated by assuming the 

aperture as an electric wall.  
In a similar manner, the tangential magnetic field in the aperture of region b is due to the 
equivalent sources M


  called  MH


a

t  from now on, leading to: 
 

 MHH


 a
t

a
t  (5) 

Where once again  MH


a
t  is calculated assuming the source M


  in the aperture where 

the electric wall is located. 
Making both tangential components equal, we have: 
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Equation (6) is the basic equation for the calculation of M


 by assuming it is known the 

operator that relates magnetic fields with the sources in each region. 
To solve this equation two numerical methods, very similar between them, are available: 
The Method of Moments (MoM), see (Harrington, 1967) y (Harrington, 1993), and Modal 
Analysis or Mode Matching, see (Wexler, 1967). 
Assuming that the unknown source M


 can be written as a series of base functions, in a 

similar manner to equation (1), 
 

 
n

nnv mM


 (7) 

 
where coefficients nv  need to be determined. Substituting this series development in 
equation (6) and making use of the operator linearity, we can write: 
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With the definition of the internal product: 
 

 
Aperture

dSBABA


,  (9) 

 
and a set of weight functions  nw


, that in general may differ from the base functions nm


, 

can be applied in (8), leading, thanks to the linearity of the product function, to: 
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If previous equations are re-written in a matricial form, a new set of matrices 
a

Y  and 
b

Y  are 
defined as the matrices that characterizes the regions a and b, respectively. 
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b
tmmn

b
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a
tmn

a
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Matrix iI


 of dimensions (Mx1) is also defined as, 

i
tmm

iI Hw


,  (12) 

 
and the column vector V


, of dimensions (Nx1), as: 
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Figure 2a shows a generic example for illustrating how the circuital theory can be applied to 
solve complex structures. Figure 2a distinguishes two zones: region a free of sources and 
region b with sources. 
 

 
 

Fig. 2a. Segmentation problem: Two regions 
connected by the aperture

 
Fig. 2b. Segmentation problem: Two 
regions separated by the aperture 

 
Figure 2b shows the same structure but segmented in two equivalent problems by means of 
the equivalent principle. This separation of regions is carried out by placing an electric wall in 
the aperture between regions a and b. 
The fields generated in region b are the result of the sources iJ  y iM  and the fields created 

by the equivalent magnetic current nEM ˆx
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  on the aperture surface. Since the aperture is 
covered by an electric wall, it is not necessary the use of equivalent electric currents. On the 
other hand, in region a, the field is uniquely created by the magnetic current M


  at the 

aperture since there are no sources in this region (a). 
To raise this problem, continuity of tangential magnetic fields in the aperture is imposed. 
The total magnetic field on the aperture zone in region b is the summation of the field due to 
the impressed currents i
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Equation (6) is the basic equation for the calculation of M
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 by assuming it is known the 

operator that relates magnetic fields with the sources in each region. 
To solve this equation two numerical methods, very similar between them, are available: 
The Method of Moments (MoM), see (Harrington, 1967) y (Harrington, 1993), and Modal 
Analysis or Mode Matching, see (Wexler, 1967). 
Assuming that the unknown source M
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 can be written as a series of base functions, in a 

similar manner to equation (1), 
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where coefficients nv  need to be determined. Substituting this series development in 
equation (6) and making use of the operator linearity, we can write: 
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If previous equations are re-written in a matricial form, a new set of matrices 
a

Y  and 
b

Y  are 
defined as the matrices that characterizes the regions a and b, respectively. 
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and the column vector V
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, of dimensions (Nx1), as: 
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nn vV   (13) 
 
On the other hand, equation (10) is now: 
 

i
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IVYY






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


  (14) 

T 
hen, magnetic current M


 is –see equations (6) and (8)-: 

 

i
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




1

 (15) 

 
It is important to emphasize that equation (15) presents a clear circuital interpretation which 
is showed in next figure 3. 
 

 
Fig. 3. Circuital interpretation of equation (15)  
 

Figure 3 represents two networks, each one characterized by an admittance matrix (
a

Y  and 
b

Y , respectively) and a current source iI


, which solution is given by equation (15). The 
importance of this result falls in the possibility to analyze and solve each region separately 
and irrespective of the other regions. Moreover, this result can be extended to networks with 
more port numbers, as described in (Penaranda-Foix, 2001) 

 
2.2 The Generalized Scattering Matrix 
In previous section, GAM and GIM matrices were introduced. Next section adds to these 
matrices the Generalized Scattering Matrix (GSM). 
It is well known that by considering a canonic plane as the access port to the network under 
analysis, the electric and magnetic fields in such surface can be decomposed in forward and 
reflected waves in the network, respectively. This is especially evident when the wave 
equation is solved (Balanis, 1989), (Harrington, 1961)-. 
Therefore, electric and magnetic fields in a port of the network, can be written as: 
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By making use the known concept of characteristic admittances 
 i
0Y  y 

 r

0Y . 

 

At the same time, according to equation (1), electric and magnetic fields can be written as a 
series development. Therefore, the Generalized Scattering Matrix (GSM) can be defined as the 
relation of the forward electric wave fields  iE


 and the reflected wave fields  rE


: 

 
   ir ESE
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  (17) 

 

The relationship between the S  matrix and the admittance Y  and impedance Z  matrices is 
calculated by the following equations 
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In a similar manner, the admittance matrix is given by: 
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2.3 Connecting networks 
To conclude with this section, the procedure to interconnect networks of several ports and 

set the new S , Y  o Z  matrices is described. 

Assuming two generic networks characterized by their respective admittance matrices 
 1

Y  

and 
 2

Y  where, for example, the first network presents 5 ports and the second 6 ports, 
respectively. (See figure 4a for more details of the networks and port numbers). 
 

Fig. 4a. Networks before connecting  
Fig. 4b. Networks joined but not connected 

 
The first step consists of setting a global network with a number of ports equal to the sum of 
the number of ports of both networks and with a new numeration of ports. (It is a good 
practice to keep the order of the ports with the new numeration) Thus, the new GAM is 
witten as: 
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nn vV   (13) 
 
On the other hand, equation (10) is now: 
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hen, magnetic current M
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It is important to emphasize that equation (15) presents a clear circuital interpretation which 
is showed in next figure 3. 
 

 
Fig. 3. Circuital interpretation of equation (15)  
 

Figure 3 represents two networks, each one characterized by an admittance matrix (
a

Y  and 
b

Y , respectively) and a current source iI


, which solution is given by equation (15). The 
importance of this result falls in the possibility to analyze and solve each region separately 
and irrespective of the other regions. Moreover, this result can be extended to networks with 
more port numbers, as described in (Penaranda-Foix, 2001) 

 
2.2 The Generalized Scattering Matrix 
In previous section, GAM and GIM matrices were introduced. Next section adds to these 
matrices the Generalized Scattering Matrix (GSM). 
It is well known that by considering a canonic plane as the access port to the network under 
analysis, the electric and magnetic fields in such surface can be decomposed in forward and 
reflected waves in the network, respectively. This is especially evident when the wave 
equation is solved (Balanis, 1989), (Harrington, 1961)-. 
Therefore, electric and magnetic fields in a port of the network, can be written as: 
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By making use the known concept of characteristic admittances 
 i
0Y  y 

 r

0Y . 

 

At the same time, according to equation (1), electric and magnetic fields can be written as a 
series development. Therefore, the Generalized Scattering Matrix (GSM) can be defined as the 
relation of the forward electric wave fields  iE


 and the reflected wave fields  rE


: 
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The relationship between the S  matrix and the admittance Y  and impedance Z  matrices is 
calculated by the following equations 
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In a similar manner, the admittance matrix is given by: 
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2.3 Connecting networks 
To conclude with this section, the procedure to interconnect networks of several ports and 

set the new S , Y  o Z  matrices is described. 

Assuming two generic networks characterized by their respective admittance matrices 
 1

Y  

and 
 2

Y  where, for example, the first network presents 5 ports and the second 6 ports, 
respectively. (See figure 4a for more details of the networks and port numbers). 
 

Fig. 4a. Networks before connecting  
Fig. 4b. Networks joined but not connected 

 
The first step consists of setting a global network with a number of ports equal to the sum of 
the number of ports of both networks and with a new numeration of ports. (It is a good 
practice to keep the order of the ports with the new numeration) Thus, the new GAM is 
witten as: 
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Figure 4b shows this new network with a commoun numeration of ports. This particular 
example of figure 4 can be extended to a any network with N ports, as the network showed 
in figure 5a. 
The second step consist of connecting two (or more) ports from the new network of figure 
5b. By connecting these two ports, for instance ports l and k, the resulting network reduces 
the number of ports to N-2. 
 

 
Fig. 5a. Generic network before connecting 
ports l and k. 

 
Fig. 5b. Generic network after connecting 

ports l and k.
 
The new GAM matrix with N-2 ports is calculated by imposing continuity of electric and 
magnetic tangential component fields between ports l and k.  
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(21) 

And operating on previous equation, the new GAM matrix with N-2 ports, called 
 T

Y , is 
reached: 
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Operating in a similar manner, the impedance matrix GIM, is also found as: 
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Also by imposing the same continuity of tangential fields, the new GSM matrix is obtained: 
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where: 
11

;







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
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Equations (22), (23) and (24) are a powerful set of equations that allow to apply the circuital 
method to electromagnetic problems by the segmentation procedure. 
Once each simple problem or circuit has been analysed and its GAM, GIM or GSM is 
known, just using the previous equations the whole GAM, GIM or GSM or the orginal 
problem is calculated. 
In the next point this general procedure will be applied to a specific problem: a cylindrical 
cavity with insertion hole. 

 
3. Cylindrical cavity analysis 
 

As an example of the circuital theory described in previous section we will analyze the 
circular resonant cavities used for the electromagnetic characterization of materials. 
To determine accurately the dielectric and magnetic properties of materials is essential 
nowadays in applications such antennas, radomes, planar circuits, etc. Special attention 
must be dedicated to the new materials developed for special applications. But not only in 
those cases: in applications such as microwave heating, where losses associated to the 
materials determine its capability to be heated, where the measured electric variations will 
allow to determine how the monitorized material is changing its properties in real time. 
Finally, a large number of applications can be thought in the world of medicine, to get 
images, or even from the security view point, in order to know the electromagnetic 
properties of potentially dangerous materials. 
One of the most widely method to determine the dielectric properties is the coaxially filled 
circular resonant cavity with an insertion hole in the top or in top and in the bottom, to 
introduce the material. These cavities are based on the use of the resonant mode TM010, with 
no angular changes –see (Balanis, 1989), (Chen et al., 2004) and (Metaxas & Meredith, 1988)- 
and in the property that the insertion hole is considered as a cylindrical waveguide under 
cut-off so there is no propagation along it. Then the cavity, even open, can be considered as 
a closed cavity. 
The problem geometry is shown in figure 6a, being figure 6b a section, where we can see a 
cavity of radius b and height h with a generic material of permittivity r2 and permeability 
r2 (both will be in general air: r2r2=1). In the center there is an insertion hole, or tube, 
whose radius is a and its height is larger than the cavity height. It contains the material to be 
measured with permittivity r1 and permeability r1. Finally, above the measured material 
there is another one with permittivity r and permeability r (in general air again: rr=1). 
But it is important to remember that the tube is under cut-off and then there is no leakage 
through it and it is negligible. 
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Figure 4b shows this new network with a commoun numeration of ports. This particular 
example of figure 4 can be extended to a any network with N ports, as the network showed 
in figure 5a. 
The second step consist of connecting two (or more) ports from the new network of figure 
5b. By connecting these two ports, for instance ports l and k, the resulting network reduces 
the number of ports to N-2. 
 

 
Fig. 5a. Generic network before connecting 
ports l and k. 

 
Fig. 5b. Generic network after connecting 

ports l and k.
 
The new GAM matrix with N-2 ports is calculated by imposing continuity of electric and 
magnetic tangential component fields between ports l and k.  
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And operating on previous equation, the new GAM matrix with N-2 ports, called 
 T

Y , is 
reached: 
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Operating in a similar manner, the impedance matrix GIM, is also found as: 
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Also by imposing the same continuity of tangential fields, the new GSM matrix is obtained: 
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where: 
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Equations (22), (23) and (24) are a powerful set of equations that allow to apply the circuital 
method to electromagnetic problems by the segmentation procedure. 
Once each simple problem or circuit has been analysed and its GAM, GIM or GSM is 
known, just using the previous equations the whole GAM, GIM or GSM or the orginal 
problem is calculated. 
In the next point this general procedure will be applied to a specific problem: a cylindrical 
cavity with insertion hole. 

 
3. Cylindrical cavity analysis 
 

As an example of the circuital theory described in previous section we will analyze the 
circular resonant cavities used for the electromagnetic characterization of materials. 
To determine accurately the dielectric and magnetic properties of materials is essential 
nowadays in applications such antennas, radomes, planar circuits, etc. Special attention 
must be dedicated to the new materials developed for special applications. But not only in 
those cases: in applications such as microwave heating, where losses associated to the 
materials determine its capability to be heated, where the measured electric variations will 
allow to determine how the monitorized material is changing its properties in real time. 
Finally, a large number of applications can be thought in the world of medicine, to get 
images, or even from the security view point, in order to know the electromagnetic 
properties of potentially dangerous materials. 
One of the most widely method to determine the dielectric properties is the coaxially filled 
circular resonant cavity with an insertion hole in the top or in top and in the bottom, to 
introduce the material. These cavities are based on the use of the resonant mode TM010, with 
no angular changes –see (Balanis, 1989), (Chen et al., 2004) and (Metaxas & Meredith, 1988)- 
and in the property that the insertion hole is considered as a cylindrical waveguide under 
cut-off so there is no propagation along it. Then the cavity, even open, can be considered as 
a closed cavity. 
The problem geometry is shown in figure 6a, being figure 6b a section, where we can see a 
cavity of radius b and height h with a generic material of permittivity r2 and permeability 
r2 (both will be in general air: r2r2=1). In the center there is an insertion hole, or tube, 
whose radius is a and its height is larger than the cavity height. It contains the material to be 
measured with permittivity r1 and permeability r1. Finally, above the measured material 
there is another one with permittivity r and permeability r (in general air again: rr=1). 
But it is important to remember that the tube is under cut-off and then there is no leakage 
through it and it is negligible. 
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Fig. 6a. Circular cavity and the hole. 

 
 

Fig. 6b. Circular cavity and the hole: 
section view.

 
As previously said, to completely analyze this structure we must divide it in simpler 
networks by a segmentation process. Figure 7a shows how this structure can be segmented. 
The segmentation consists of a division of the whole network into smaller ones, with 
canonical shapes in general, and then the analysis will be easier. So, the segmentation 
proposed in figure 7a divides the geometry into 3 different networks: one is a one-port 
network, in a circular ring shape with external radius a and external radius b and height h 
where the one-port in put in the inner part (r=a). This structure is shown in figure 7b. 
Another network is a two-port network that consists of a circular waveguide of radius a and 
height d whose ports are located in the top and in the bottom, as shown in figure 7c.  
 

 
Fig. 7a. Circular cavity and the hole. 

 
Fig. 7b. 1-port network: Ring. 

 
Fig. 7c. 2-port: 

Waveguide

 
Fig. 7d. 1-port: 

Waveguide 

 
 

Fig. 7e. 3-port network: Core 

 

This network can be converted in a one-port network, located in the bottom, as shown in 
figure 7d, just considering that there is no reflection in port 2. Finally a three-port network 
appears that consists of a circular tube of radius a and height h with ports in the top and in 
the bottom, as before, but adding a port in the circular face, in r=a. This geometry is shown 
in figure 7e. 
Then the original problem is reduced to 3 simpler problems: the circular ring, a circular 
waveguide and the 3-port guide. 

 
3.4 Analysis of a 1 port network 
Let’s start calculating the Generalized Admittance Matrix (GAM) of the 1-port network 
shown in figure 7d. It is the simplest one and it will allow seeing the whole procedure. 
Figure 8 shows the axis to be considered for this structure. 
 

 
Fig. 8. One port network 
 
The internal field in the circular waveguide is: 
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All the fields correspond to circular TM0n modes (Balanis, 1989). As previously mentioned, 
only TM0n modes are considered and, even there are a larger set of modes excited ,like TEmn 
or TMmn in general, these modes are not coupled with the other ones. The resonant modes 
associated to these TM0n modes are the TM0np modes. Anyway, the proposed circuital 
method ca be used with any set of modes, so there is no loss of generality. 
The propagation constant n  is calculated from the cut-off wavenumbers kcn as (Balanis, 
1989): 
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Fig. 6a. Circular cavity and the hole. 

 
 

Fig. 6b. Circular cavity and the hole: 
section view.

 
As previously said, to completely analyze this structure we must divide it in simpler 
networks by a segmentation process. Figure 7a shows how this structure can be segmented. 
The segmentation consists of a division of the whole network into smaller ones, with 
canonical shapes in general, and then the analysis will be easier. So, the segmentation 
proposed in figure 7a divides the geometry into 3 different networks: one is a one-port 
network, in a circular ring shape with external radius a and external radius b and height h 
where the one-port in put in the inner part (r=a). This structure is shown in figure 7b. 
Another network is a two-port network that consists of a circular waveguide of radius a and 
height d whose ports are located in the top and in the bottom, as shown in figure 7c.  
 

 
Fig. 7a. Circular cavity and the hole. 

 
Fig. 7b. 1-port network: Ring. 

 
Fig. 7c. 2-port: 

Waveguide

 
Fig. 7d. 1-port: 

Waveguide 

 
 

Fig. 7e. 3-port network: Core 

 

This network can be converted in a one-port network, located in the bottom, as shown in 
figure 7d, just considering that there is no reflection in port 2. Finally a three-port network 
appears that consists of a circular tube of radius a and height h with ports in the top and in 
the bottom, as before, but adding a port in the circular face, in r=a. This geometry is shown 
in figure 7e. 
Then the original problem is reduced to 3 simpler problems: the circular ring, a circular 
waveguide and the 3-port guide. 

 
3.4 Analysis of a 1 port network 
Let’s start calculating the Generalized Admittance Matrix (GAM) of the 1-port network 
shown in figure 7d. It is the simplest one and it will allow seeing the whole procedure. 
Figure 8 shows the axis to be considered for this structure. 
 

 
Fig. 8. One port network 
 
The internal field in the circular waveguide is: 
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All the fields correspond to circular TM0n modes (Balanis, 1989). As previously mentioned, 
only TM0n modes are considered and, even there are a larger set of modes excited ,like TEmn 
or TMmn in general, these modes are not coupled with the other ones. The resonant modes 
associated to these TM0n modes are the TM0np modes. Anyway, the proposed circuital 
method ca be used with any set of modes, so there is no loss of generality. 
The propagation constant n  is calculated from the cut-off wavenumbers kcn as (Balanis, 
1989): 
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where p0n are the zeros of the First Kind Bessel Functions of order 0 (   0J 00 np ) and its 
value is obtained by focing the boundary conditions in the lateral faces (Balanis, 1989). The 
cut-off wavenumber is always a real number (Ramo, 1994) and teh criteria to select the sign 
of the propagation constant is (Baker-Jarvis et al., 1994): 
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Where the square root must be in the fist or in the forth quadrants. 
Amplitudes 

nA  y 
nA  are, respectively, the forward and backward waves in the z-axis 

direction, which is the propagation direction. In our particular case, because the waveguide 
is under cut-off, the backward waves are zero, so 0

nA . 
To get the GAM we must incide with an electric field in port 1. This electric field, as 
previously said, is written as a series expansions of base functions as: 
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where the sleected base function for port 1 is: 
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Term  1

mN  is a normalization term introduced in the modal analysis and we are going to use 
the proposed by Gentilli (Gentili, 1991). It must accomplish: 
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Then the normalization term is: 
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The incident field in port 1, equation (29), must equal to the electric field calculated from the 
inside of the structure, following equation(26). Then the forward amplitude is: 
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To get the GAM, we must obtain a relation between the electric and the magnetic fields in 
port 1. The magnetic field in port 1 is, in the same way than the electric one: 
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where the base fucntion   1

qh  is the same than that used for electric field:    11
qq eh   

And the GAM is defined as: 
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where  1e


 is a column vector with the electric field amplitudes at port 1 and  1h


 is the 

column vector with the magnetic field amplitudes at port 1: 
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Then identifying the inner magnetic field in port 1 with the magnetic field from equation  
(34) we have: 
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Then the Generalized Admittance Matrix GAM is: 
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3.5 Analysis of a 1-port ring structure 
This example will show how to calculate the GAM of the network shown in figure 7b. It is a 
1-port network, as before, but the port is located in the lateral. 
Figure 9 shows the axis to be considered. 
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where p0n are the zeros of the First Kind Bessel Functions of order 0 (   0J 00 np ) and its 
value is obtained by focing the boundary conditions in the lateral faces (Balanis, 1989). The 
cut-off wavenumber is always a real number (Ramo, 1994) and teh criteria to select the sign 
of the propagation constant is (Baker-Jarvis et al., 1994): 
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Where the square root must be in the fist or in the forth quadrants. 
Amplitudes 

nA  y 
nA  are, respectively, the forward and backward waves in the z-axis 

direction, which is the propagation direction. In our particular case, because the waveguide 
is under cut-off, the backward waves are zero, so 0

nA . 
To get the GAM we must incide with an electric field in port 1. This electric field, as 
previously said, is written as a series expansions of base functions as: 
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where the sleected base function for port 1 is: 
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Term  1

mN  is a normalization term introduced in the modal analysis and we are going to use 
the proposed by Gentilli (Gentili, 1991). It must accomplish: 
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Then the normalization term is: 
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The incident field in port 1, equation (29), must equal to the electric field calculated from the 
inside of the structure, following equation(26). Then the forward amplitude is: 
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To get the GAM, we must obtain a relation between the electric and the magnetic fields in 
port 1. The magnetic field in port 1 is, in the same way than the electric one: 
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Then identifying the inner magnetic field in port 1 with the magnetic field from equation  
(34) we have: 
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Then the Generalized Admittance Matrix GAM is: 
 

   mqjmqjY
m

r

m
qm







 






 10

11  (38) 

 
3.5 Analysis of a 1-port ring structure 
This example will show how to calculate the GAM of the network shown in figure 7b. It is a 
1-port network, as before, but the port is located in the lateral. 
Figure 9 shows the axis to be considered. 
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Fig. 9. One port network: ring 
 
The fields inside are, as before: 
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where functions  rf n0  and  rf '
0  are: 
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Again only TM0n  modes are considred. 
The cut-off wavenumber kcn is calculated, in this case, as a fucntion of the propagation 
constant n  as: 
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And the propagation constant is calculated from equations (39) by applying the boundary 
conditions in r=b, that is already accomplished, and in z=0 and z=h. Forcing these last two 
boundary conditions we have: 
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Then the fields inside the ring are: 
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But the electric field in port 1 must be a series expasions on a basis functions. In this case we 
will use: 
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where the basis functions are the trigonometric functions. 
This incident electric field in port 1, equation (44), must be equal to the same electric field 
comuted from the field inside the structure, following equation (43). Then the amplitudes 
inside are: 
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(45) 

where n , 
 2s
nmI  y 

 2c
nmI  are2: 
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Fig. 9. One port network: ring 
 
The fields inside are, as before: 
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where functions  rf n0  and  rf '
0  are: 
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Again only TM0n  modes are considred. 
The cut-off wavenumber kcn is calculated, in this case, as a fucntion of the propagation 
constant n  as: 
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And the propagation constant is calculated from equations (39) by applying the boundary 
conditions in r=b, that is already accomplished, and in z=0 and z=h. Forcing these last two 
boundary conditions we have: 
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Then the fields inside the ring are: 
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But the electric field in port 1 must be a series expasions on a basis functions. In this case we 
will use: 
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where the basis functions are the trigonometric functions. 
This incident electric field in port 1, equation (44), must be equal to the same electric field 
comuted from the field inside the structure, following equation (43). Then the amplitudes 
inside are: 
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(45) 

where n , 
 2s
nmI  y 

 2c
nmI  are2: 
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To get the GAM we must, again, obtain the relation between the electric and magnetic fields 
in port 1. The magnetic field in port 1 is: 
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And the GAM is defined as: 
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where  1e
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 are the column vectors with the electric and magnetic amplitudes in 
port 1: 
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Then, identifying the inner magnetic field in port 1, equation (43), and the magnetic field 
outside, from equation (47), and substituing 

nA  following (45): 
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On the other way, the GAM is: 
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where each submatrix 
 ab

11Y  is: 
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3.6 Analysis of a 3-port network 
Now let us calculate the GAM of the 3-port network depicted in figure 7e. This network has 
the two before cases, because it has ports in the top, in the bottom and in the lateral side. 
Figure 10 shows the axis to be used in this 3-port network. 
 

 
Fig. 10. Three port network: core 
 
Note that now the GAM is 3x3 dimension matrix: 
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To analyse this multiport structure we must go by columns, in such a way that all the ports 

are short-circuited except port j, where j=(1,2,3). So,   0
 ji

ie , and then the GAM 

elements are computed as (the j column in this case): 
 

   

3,2,1


k

j
kj

k eYh 
 (54) 

 
3.6.1 Parameters 1iY  
To compute this column we must short-circuit ports 2 and 3. Then in z=-h/2 and in r=a we 
have electric walls. 
In general, the fields inside the structure will be, considering only TM0n modes: 
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To get the GAM we must, again, obtain the relation between the electric and magnetic fields 
in port 1. The magnetic field in port 1 is: 
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And the GAM is defined as: 
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where  1e


 and  1h
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 are the column vectors with the electric and magnetic amplitudes in 
port 1: 
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Then, identifying the inner magnetic field in port 1, equation (43), and the magnetic field 
outside, from equation (47), and substituing 

nA  following (45): 
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On the other way, the GAM is: 
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where each submatrix 
 ab

11Y  is: 
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3.6 Analysis of a 3-port network 
Now let us calculate the GAM of the 3-port network depicted in figure 7e. This network has 
the two before cases, because it has ports in the top, in the bottom and in the lateral side. 
Figure 10 shows the axis to be used in this 3-port network. 
 

 
Fig. 10. Three port network: core 
 
Note that now the GAM is 3x3 dimension matrix: 
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To analyse this multiport structure we must go by columns, in such a way that all the ports 

are short-circuited except port j, where j=(1,2,3). So,   0
 ji

ie , and then the GAM 

elements are computed as (the j column in this case): 
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3.6.1 Parameters 1iY  
To compute this column we must short-circuit ports 2 and 3. Then in z=-h/2 and in r=a we 
have electric walls. 
In general, the fields inside the structure will be, considering only TM0n modes: 
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where the Second Kind Bessel Functions  rkY cn 0  disappear because they are singular in 
the origin, and where the cut-off wavenumber kcn and the propagation constant n  are 
related as: 
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The boundary condition are then: 
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And the electromagnetic fields inside are: 
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Identifying now the tangential incident field in port 1 with the ineternal field in the plane, as 
made in equation (33), and using the same series expansion for the incident electric field 
than before, as in equation (29), we have: 
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Following this, parameter 11Y  must accomplish:    1
11

1 eYh 
 . The magnetic field will 

be, in the same way than in point 3.4 and showed in equation (34): 
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Then the GAM is: 
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In the same way, parameter 31Y  is that who accomplishes:    1
31

3 eYh 
 . The magnetic 

field is, as shown in point 3.4 and in equation (34), and equating as before: 
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And parameter 21Y , who accomplishes    1
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 , is calculated in a similar way, 

remebering that the tangential magnetic field in port 2 is expanded in a series as shown in 

(47). Identifying the magnetic fields, we have, after replacing 
nA  with the value obtained in 

equation (59): 
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(63) 

 

where n  and sinc(x) have been defined before and  cs
qmI

,  are3 (more general than (46)): 
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3 Function sinhc of  cs

qmI
,  is:    

x
xx sinhsinhc   (note the difference with sinc) 
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where the Second Kind Bessel Functions  rkY cn 0  disappear because they are singular in 
the origin, and where the cut-off wavenumber kcn and the propagation constant n  are 
related as: 
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The boundary condition are then: 
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And the electromagnetic fields inside are: 
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Identifying now the tangential incident field in port 1 with the ineternal field in the plane, as 
made in equation (33), and using the same series expansion for the incident electric field 
than before, as in equation (29), we have: 
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Following this, parameter 11Y  must accomplish:    1
11

1 eYh 
 . The magnetic field will 

be, in the same way than in point 3.4 and showed in equation (34): 
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Then the GAM is: 
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In the same way, parameter 31Y  is that who accomplishes:    1
31

3 eYh 
 . The magnetic 

field is, as shown in point 3.4 and in equation (34), and equating as before: 
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And parameter 21Y , who accomplishes    1
21

2 eYh 
 , is calculated in a similar way, 

remebering that the tangential magnetic field in port 2 is expanded in a series as shown in 

(47). Identifying the magnetic fields, we have, after replacing 
nA  with the value obtained in 

equation (59): 
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(63) 

 

where n  and sinc(x) have been defined before and  cs
qmI

,  are3 (more general than (46)): 
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3 Function sinhc of  cs

qmI
,  is:    

x
xx sinhsinhc   (note the difference with sinc) 
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Then parameter 21Y , defined as    
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where each submatrix 
 cs ,
21Y  is: 
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3.6.2 Parameters 2iY  
For this column number 2, we must put short-circuits in ports 1 and 3. Then in z=-h/2 and in  
z=+h/2 we have electric walls. 
In general, the inner electromagnetic fields are, as before for TM0n modes: 
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where the cut-off wavenumber kcn and the propagation constant n  are related as: 
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Imposing the boundary conditions we have: 
 

 
 








 

h
njjhzE

eAeAAhzE

nnz

h
n

h
nnz

nn





02

02 22

 (68) 

 

And the inner fields: 
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Identifying the incident tangential electric field in port 2 with the inner electric field, from 
equation (45), and using the same series expansion in the incident field than in equation (44): 
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(70) 

Then, parameters 12Y , 22Y  and 32Y  are calculated easily using the same procedure than 
before. 

 
3.6.3 Parameters 3iY  
Finally, parameters of the 3rd column are calulated exactly in the same way than parameters 

1iY . 

 
4. Simulations and measurements 
 

Once all the GAM in figure 7a are obtained, it is quite easy and fast to analyse the 
geometries proposed in figures 6a and 6b. To do this is enough to apply the theory and 
equations proposed in point 
2.3. 
Those expressions allow interconnecting different networks just knowing the corresponding 
multimodal matrices GAM, GIM or GSM. 
At this point is important to note that each multimodal matrix can use only one mode. Then 
they are called monomode expressions. These monomode expressions are less accurate but 
they are a really good seed for a more accurate result. 
The monomode expressions were used and presented by the authors in (Penaranda-Foix et 
al., 2007b). If we look at the cavity shown in figure 7a, to get the resonant frequency is 
reduced to the simplest resonant condition, shown as an example in (Penaranda-Foix et al., 
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Then parameter 21Y , defined as    
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where each submatrix 
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21Y  is: 
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3.6.2 Parameters 2iY  
For this column number 2, we must put short-circuits in ports 1 and 3. Then in z=-h/2 and in  
z=+h/2 we have electric walls. 
In general, the inner electromagnetic fields are, as before for TM0n modes: 
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where the cut-off wavenumber kcn and the propagation constant n  are related as: 
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Imposing the boundary conditions we have: 
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And the inner fields: 
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Identifying the incident tangential electric field in port 2 with the inner electric field, from 
equation (45), and using the same series expansion in the incident field than in equation (44): 
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(70) 

Then, parameters 12Y , 22Y  and 32Y  are calculated easily using the same procedure than 
before. 

 
3.6.3 Parameters 3iY  
Finally, parameters of the 3rd column are calulated exactly in the same way than parameters 

1iY . 

 
4. Simulations and measurements 
 

Once all the GAM in figure 7a are obtained, it is quite easy and fast to analyse the 
geometries proposed in figures 6a and 6b. To do this is enough to apply the theory and 
equations proposed in point 
2.3. 
Those expressions allow interconnecting different networks just knowing the corresponding 
multimodal matrices GAM, GIM or GSM. 
At this point is important to note that each multimodal matrix can use only one mode. Then 
they are called monomode expressions. These monomode expressions are less accurate but 
they are a really good seed for a more accurate result. 
The monomode expressions were used and presented by the authors in (Penaranda-Foix et 
al., 2007b). If we look at the cavity shown in figure 7a, to get the resonant frequency is 
reduced to the simplest resonant condition, shown as an example in (Penaranda-Foix et al., 
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2009). When only one mode is considered, the monomode analysis takes us to the 
expression (10) of (Penaranda-Foix et al., 2007b): 
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where all the permitivities and permeabilities but those of the central material to be 
measured, are air, and where: 
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To obtain equation (71) the insertion hole is only in the top, having a short-circuito in the 
bottom. That menas that in port 3 a short-circuited has been placed. Using the same 
procedure, a similar expression can be achieved with an insertion hole in the top and in the 
bottom. When no insertion hole is placed, the analytical analitycal procedure can be used 
(see Balanis, 1989)). Using the monomode equations previously determined, we arrive to the 
equation (8) of (Penaranda-Foix et al., 2007b): 
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Of course, this equation is the same that that obtained by Balanis. The result is normal, 
because the Balanis procedure consists of a monomode analysis. 
The resonant frequencies obtained with and without insertion hole are different. This 
frequency deviation can be really important when measuring large permittivities or large 
aspect ratio cavities. It was 1960 when Estin (Estin & Bussey, 1960) published a first 
aproximate expression to estimate this error. It was a linear equation and it did not take into 
account the saturation effect described by the monomode procedure. It appears at large 
permittivities and at large aspect rates. Then in 2007 Penaranda-Foix (Penaranda-Foix et al., 
2007c) proposed an alternative exponential equation obtained from the exact value and (71): 
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where fr is the resonant frequency with insertion hole and f0 is the resonant frequency in the 
ideal case, without insertion hole. And the parameters are: 
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Finally, it is important to note that both equations, Estin and Penaranda-Foix, are also valid 
when the insertion hole goes through the cavity and it is in the top and in the bottom. In this 
case the relative error must be doubled. So it is enough to multiply by two equation (74). 

 
4.1 Measurements 
To probe the validity of the previous expressions, as well as the Generalised Circuital 
Analysis described along this chapter, some measurements were carried out. These 
measurements implied two diferent cavities with an insertion hole in the top and in the 
bottom. 
Cavity number 1 has a radius b=60 mm and a height h=20 mm. The insertion hole radius is 
a=6.35 mm, and long enough to consider that is under cut-off. Cavity number 2 is exactly the 
same than number 1 but the external radius is b=20 mm. 
Cavity number 1 is shown in figure 11a, where it is open. In figure 11b is shown the same 
cavity but closed and some samples used to be measured. 
 

 
Fig. 11a. Cavity N. 1 open Fig. 11b. Cavity N. 1 closed and samples 
 
The expected resonant frequency deviations is this cavities was simulated and shown in 
figure 12a. Cavity number 1 has a acpect ratio a/b=0.1058 and cavity number 2 aspect ratio is 
a/b=0.3175. Two more aspect ratios have been simulated: a/b=0.5 (b=12.7 mm), that is even 
smaller than Cavity number 2, and a/b=0.04 (b=158.75 mm), larger than Cavity number 1. 
Figure 12a shows the predicted frequency deviation by Estin and that predicted by (74), 
compared with the exact one calculated by circuital analysis following the procedure 
described along the chapter. And figure 12b shows the actual resonant frequency with are 
without insertion hole. 
Table 1 shows the measurements performed with Cavity number 1 (fu is the measured 
resonant frequency in GHz and Qu is the measured quality factor) and the calculated 
permittivities depending the case (note that in all the cases the quality factor used Qd has 
been calculated with the expression emptymeasd QQQ 111   to avoid the wall losses 
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Of course, this equation is the same that that obtained by Balanis. The result is normal, 
because the Balanis procedure consists of a monomode analysis. 
The resonant frequencies obtained with and without insertion hole are different. This 
frequency deviation can be really important when measuring large permittivities or large 
aspect ratio cavities. It was 1960 when Estin (Estin & Bussey, 1960) published a first 
aproximate expression to estimate this error. It was a linear equation and it did not take into 
account the saturation effect described by the monomode procedure. It appears at large 
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where fr is the resonant frequency with insertion hole and f0 is the resonant frequency in the 
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Finally, it is important to note that both equations, Estin and Penaranda-Foix, are also valid 
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same than number 1 but the external radius is b=20 mm. 
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The expected resonant frequency deviations is this cavities was simulated and shown in 
figure 12a. Cavity number 1 has a acpect ratio a/b=0.1058 and cavity number 2 aspect ratio is 
a/b=0.3175. Two more aspect ratios have been simulated: a/b=0.5 (b=12.7 mm), that is even 
smaller than Cavity number 2, and a/b=0.04 (b=158.75 mm), larger than Cavity number 1. 
Figure 12a shows the predicted frequency deviation by Estin and that predicted by (74), 
compared with the exact one calculated by circuital analysis following the procedure 
described along the chapter. And figure 12b shows the actual resonant frequency with are 
without insertion hole. 
Table 1 shows the measurements performed with Cavity number 1 (fu is the measured 
resonant frequency in GHz and Qu is the measured quality factor) and the calculated 
permittivities depending the case (note that in all the cases the quality factor used Qd has 
been calculated with the expression emptymeasd QQQ 111   to avoid the wall losses 
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effect, in such a way that Qmeas is the mesured quality factor with material and Qempty is the 
mesured quality factor without material) for materials M1 (Nylon 66 FG) and M2 (ACETAL): 
CASE 1: This is the permittivity calculated using the circuital and multimode method, 
considering the up and down insertion holes. This is going to be considered as the exact and 
reference case. 
 

 
Fig. 12a. Frequency deviation for different permittivities and different aspect ratios 
 

 
Fig. 12b. Frequency deviation for different permittivities and different aspect ratios. 
 
CASE 2: This is the permittivity computed neglecting the effect of the insertion hole. That is 
using equation (73) directly. 
CASE 3: This is the computed permittivity using the correction proposed by Estin (Estin & 
Bussey, 1960). 
CASE 4: This is the permittivity using the correction proposed in (74). 

 

In all the cases the imaginary part of the permittivity has been multiplied by 102 and the 
corrections to the resonant frequency (equations from Estin and (73)) have been applied to 
the complex resonant frequency, and not only to the resonant frequency- The complex 
resonant frequency is defined as   Qjfrr  21 . In Harrington (Harrington, 1961), 
the reader can find the origin of this concept for resonant problems. 
 

   CASE 1 CASE 2 CASE 3 CASE 4 
 fu Qu ’ ’’ ’ ’’ ’ ’’ ’ ’’ 

Air 1.9157 4496 60.02744 -------- -------- -------- -------- -------- -------- -------- 
M1 1.8517 564.8 2.8457 4.0922 2.5237 3.5545 2.8291 4.0184 2.8155 3.9760 
M2 1.8471 198.8 2.9778 12.6630 2.6385 10.996 2.9588 12.4362 2.9438 12.2980 

Table 1. Measurements with cavity 1. 
 
It is important to note that the error in CASE 2 in Cavity number 2 is about 12% respect to 
the exact, because the insertion hole correction has not been applied. Once the correction is 
used, even in CASE 3 or CASE 4, errors are reduced to less than 2%. 
Table 2 shows exactly the same than before, but measured in a smaller cavity: Cavity 
number 2. 

   CASE 1 CASE 2 CASE 3 CASE 4 
 fu Qu ’ ’’ ’ ’’ ’ ’’ ’ ’’ 

Air 5.8350 617.7 20.01195 -------- -------- -------- -------- -------- -------- -------- 
M1 4.6045 106.5 2.8779 3.6882 2.5410 3.1167 3.0760 4.3551 2.8903 3.7284 
M2 4.5979 49.00 2.8903 8.8461 2.552 7.6725 3.0906 10.5658 2.9032 9.0356 

Table 2. Measurements with cavity 2. 
 
In this case, and due to a highest aspect ratio in Cavity number 2, the Estin formulae fails. So 
the error, supposing that CASE 1 is the exact one, errors are about 7% and 12% using Estin 
formulae or no-insertion hole approach. But it reduces again to less than 2% when using 
(74). 
Finally, it is worth mentioning that all the above results are calculated with an uncertainty of 
1.6%). This uncertainty has been calculated following the procedure described in (Baker-
Jarvis et al., 1994) or (Bell, 2001). Basically it is based on the calculation of the derivative of 
the permittivity depending on the variable that affects the accuracy: 
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where xi are the different dimensions that are involved in the accuracy of the measurement. 
And to compute the derivatives 

ir x 1  the three terms Lagrange polynomial interpolation 
formula was used: 

                                                 
4 This value is not the air permittivity but the real cavity radius calculated from the air 
resonant frequency. 
5 Once again, this value is not the air permittivity but the real cavity radius calculated from 
the air resonant frequency. 
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where xi are the different dimensions that are involved in the accuracy of the measurement. 
And to compute the derivatives 

ir x 1  the three terms Lagrange polynomial interpolation 
formula was used: 

                                                 
4 This value is not the air permittivity but the real cavity radius calculated from the air 
resonant frequency. 
5 Once again, this value is not the air permittivity but the real cavity radius calculated from 
the air resonant frequency. 
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Then three different permittivities are calculated for each source of error in order to 
compute the interpolation and then the derivative in (76) to calculate the final uncertainty. 
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Conclusions are, firstly, that an introduction and a revision of the Generalized Circuital 
Analysis to solve in a simplest way large electromagnetic problems have been presented. 
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creating four different small networks and solving each one to get the Generalized 
Admittance Matrix (GAM), and joining all together forcing the resonant condition to obtain 
the complex resonant frequency. 
The origin of the problem comes from the deviation of the resonant frequency observed 
when the insertion hole exists. This deviation can be important if neglected, so a monomode 
approximation formula has been obtained as well as an optimized equation to estimate the 
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