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1. Introduction 

In this chapter, we introduce profit sharing method (Grefenstette, 1988) (Miyazaki et al., 
1994a) which is a reinforcement learning method. Profit sharing can work well on the 
partially observable Markov decision process (POMDP) where a learning agent cannot 
distinguish an observation between states which need another action, because it is a typical 
non-bootstrap method, and its Q-value is usually handled accumulatively. So we study 
profit sharing as the next generation reinforcement learning system. First we discuss how to 
assign the credit to a rule on POMDP. The conventional reinforcement function of profit 
sharing does not consider POMDP. So we propose a novel credit assignment which 
considers the condition of the reward distribution on POMDP. Secondly, we discuss the 
probabilistic state transition on MDP. Profit sharing does not work well on the probabilistic 
state transition. We propose a novel learning method which considers the probabilistic state 
transition. It is similar to the Monte Carlo method. We therefore discuss the Q-values of our 
proposed method. In an environment with deterministic state transitions, we show the same 
performance for both conventional profit sharing and the proposed method. We also show 
the good performance of the proposed method against the conventional profit sharing. 
In this chapter, we discuss the learning in POMDP and the probabilistic state transition. We 
show the advantages and disadvantages of the profit sharing method. We propose a novel 
learning method which has the same advantages and solves the disadvantages. 
We propose how to handle the Q-values in an action-selection. Section 2 introduces the 
conventional reinforcement learning methods and profit sharing method. We propose the 
novel learning method in Section 3. Section 4 shows the results and finally Section 5 
concludes this chapter. 

2. Reinforcement learning system 

In a reinforcement learning system (Sutton, 1990), a learning agent gets a reward if and only 
if it reaches the goal state. An agent learns a better policy by repeated trial and error. We just 
describe the goal condition, so an agent must learn how to go from the start state to the goal 
state by the interaction between an agent and an environment. At time t, an agent observes 
the observation ot at the state st, and selects an action at by the policy. After selecting the 
action at, the environment will change from the state st to the next state st+1. When the next 
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state st+1 is the goal state, the agent gets the reward rt+1, and if the next state st+1 is not the 
goal state, the reward rt+1 will be equal to 0, or less than 0 which means the penalty. 
In Markov decision process (MDP) (Sutton, 1990), the probability Pst,st+1, which is the state 
transition probability from the state st to the state st+1 by the action at, is decided by only the 
state st and the action at. If an agent cannot get the all of the state, then some other states are 
observed with the same observation. We call this a partially observable Markov decision 
process (POMDP) (Miyazaki et. al, 1998) (Whitehead & Balland, 1990). In a POMDP 
environment, an agent must select two or more actions at the same observation. 

2.1 Q-learning 
We introduce Q-learning (Watkins & Dayan, 1992) which estimate the rule’s value as a Q-
value. The Q-value means the expected return which is updated as follow: 
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where   is the learning rate, and γ is the discount rate. After many trials, Q-value will reach 
the estimate value of its rule. Thus, an agent selects the rule which has the highest Q-value 
of its state in order to get the optimal policy. Using Q-learning, an agent can update Q-value 
per action-selection without the reward. We call this on-line updating. Thus we can set the 
any value as initial Q-value. We call this optimistic initial value. 
In a POMDP environment the combination of Q(ot,at) and Q(ot+1,at+1) is effected by alias 
problems, where the observation ot and ot+1 means the observation at the state st and st+1 
respectively, so Q-value cannot reach the optimal value. For example, Q(o1,a1) has the high-
value at the state s1, on the other hand Q(o1,a1) has the low-value at the state s2, then Q(o1,a1) 
has no aim.  

2.2 Profit sharing 
In this section, we introduce profit sharing (Grefenstette, 1988) (Miyazaki et. al, 1994a) 
(Miyazaki et. al, 1994b) which is a reinforcement learning method. A profit sharing method 
has some advantages over other learning methods which mean that it can learn in MDP and 
also POMDP environments. In profit sharing, the agent distributes the reward to the 
selected rules (called an episode) when it reaches the goal state. The distributed function f(x) 
is called a reinforcement function, and in MDP (Miyazaki et. al, 1994a) (Miyazaki et. al, 
1994b) it should be formed by 
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where C is the maximum number of conflicting effective rules, and W is the maximum 
length of episodes. We usually use the reinforcement function that implements Equation 2 
as follow: 

 xLxf /1)(  , (3) 
where x is the number of steps from the goal state, and L is the number of actions at each 
state.  

3. Novel profit sharing  

3.1 Reward distribution in a POMDP 
Profit sharing uses the estimate value of rules in selecting rules. The estimate value does not 
be correct value when an aliasing observation confuses the agent observation capability. The 
conventional reinforcement function of profit sharing has this problem. The reinforcement 
of profit sharing is expressed by 

 )(),(),( xfraoao xxxx  , (4) 

where ox is the observation from the state sx. In Equation 4, there is no problem because 
profit sharing does not use the relationship between observations. Profit sharing does not 
correctly estimate rules if and only if a rule (ox,ax) is equal to a rule (ox',ax'), a state sx is not 
equal to a state sx', and an action ax is not equal to an action ax'. We discuss this case. 
The case of the problem in profit sharing is that an agent confuses between a reinforcement 
rule and a non-reinforcement one. For example, at Figure 1a an agent has to suppress the 
rule (st1,aj) than the rule (st1,ai). At Figure 1b an agent can not distinguish the state st1 and the 
state st2 from observation o (=ot1=ot2). If the agent suppresses the rule (ot1,aj) than the rule 
(ot1,ai) at the state st1, its suppression will reinforce the rule (ot2,ai) to make a loop at the state 
st2. Both the rule (o,ai) and the rule (o,aj) at Figure 1b are needed to receive a reward and 
must not be suppressed. None of needed rules for a reward must be suppressed. On MDP it 
is needless for an agent to think of the rule suppression because there is not aliasing state 
(like Figure 1b). On POMDP it is need for an agent to think of the rule suppression. All rule 
for a reward should be reinforced equally. All rule in an episode should be reinforced 
equally at each state, because an agent can see no difference between Figure 1a and Figure 
1b with one episode.  
Thorem 1: 
On POMDP the condition to distribute correctly the reward is 
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 first reinforcement of rule x

otherwise, (5) 

where rule x is reinforced by the function f(x).  ox has to take the constant value at each 
observation ox. 
We propose the Episode-based Profit Sharing (EPS) that fills the need for the correct 
distribution on POMDP. The reinforcement function of EPS is 
 

 
Fig. 1. Aliasing states and a non-aliasing state. 
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goal state, the reward rt+1 will be equal to 0, or less than 0 which means the penalty. 
In Markov decision process (MDP) (Sutton, 1990), the probability Pst,st+1, which is the state 
transition probability from the state st to the state st+1 by the action at, is decided by only the 
state st and the action at. If an agent cannot get the all of the state, then some other states are 
observed with the same observation. We call this a partially observable Markov decision 
process (POMDP) (Miyazaki et. al, 1998) (Whitehead & Balland, 1990). In a POMDP 
environment, an agent must select two or more actions at the same observation. 

2.1 Q-learning 
We introduce Q-learning (Watkins & Dayan, 1992) which estimate the rule’s value as a Q-
value. The Q-value means the expected return which is updated as follow: 
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where   is the learning rate, and γ is the discount rate. After many trials, Q-value will reach 
the estimate value of its rule. Thus, an agent selects the rule which has the highest Q-value 
of its state in order to get the optimal policy. Using Q-learning, an agent can update Q-value 
per action-selection without the reward. We call this on-line updating. Thus we can set the 
any value as initial Q-value. We call this optimistic initial value. 
In a POMDP environment the combination of Q(ot,at) and Q(ot+1,at+1) is effected by alias 
problems, where the observation ot and ot+1 means the observation at the state st and st+1 
respectively, so Q-value cannot reach the optimal value. For example, Q(o1,a1) has the high-
value at the state s1, on the other hand Q(o1,a1) has the low-value at the state s2, then Q(o1,a1) 
has no aim.  

2.2 Profit sharing 
In this section, we introduce profit sharing (Grefenstette, 1988) (Miyazaki et. al, 1994a) 
(Miyazaki et. al, 1994b) which is a reinforcement learning method. A profit sharing method 
has some advantages over other learning methods which mean that it can learn in MDP and 
also POMDP environments. In profit sharing, the agent distributes the reward to the 
selected rules (called an episode) when it reaches the goal state. The distributed function f(x) 
is called a reinforcement function, and in MDP (Miyazaki et. al, 1994a) (Miyazaki et. al, 
1994b) it should be formed by 
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where x is the number of steps from the goal state, and L is the number of actions at each 
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conventional reinforcement function of profit sharing has this problem. The reinforcement 
of profit sharing is expressed by 
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where ox is the observation from the state sx. In Equation 4, there is no problem because 
profit sharing does not use the relationship between observations. Profit sharing does not 
correctly estimate rules if and only if a rule (ox,ax) is equal to a rule (ox',ax'), a state sx is not 
equal to a state sx', and an action ax is not equal to an action ax'. We discuss this case. 
The case of the problem in profit sharing is that an agent confuses between a reinforcement 
rule and a non-reinforcement one. For example, at Figure 1a an agent has to suppress the 
rule (st1,aj) than the rule (st1,ai). At Figure 1b an agent can not distinguish the state st1 and the 
state st2 from observation o (=ot1=ot2). If the agent suppresses the rule (ot1,aj) than the rule 
(ot1,ai) at the state st1, its suppression will reinforce the rule (ot2,ai) to make a loop at the state 
st2. Both the rule (o,ai) and the rule (o,aj) at Figure 1b are needed to receive a reward and 
must not be suppressed. None of needed rules for a reward must be suppressed. On MDP it 
is needless for an agent to think of the rule suppression because there is not aliasing state 
(like Figure 1b). On POMDP it is need for an agent to think of the rule suppression. All rule 
for a reward should be reinforced equally. All rule in an episode should be reinforced 
equally at each state, because an agent can see no difference between Figure 1a and Figure 
1b with one episode.  
Thorem 1: 
On POMDP the condition to distribute correctly the reward is 
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where rule x is reinforced by the function f(x).  ox has to take the constant value at each 
observation ox. 
We propose the Episode-based Profit Sharing (EPS) that fills the need for the correct 
distribution on POMDP. The reinforcement function of EPS is 
 

 
Fig. 1. Aliasing states and a non-aliasing state. 
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xf first reinforcement of rule x
otherwise, (6) 

where L is the number of non-detour rules at a state, then the number of rule-1 is sufficient 
for L. We show that EPS can suppress the reinforcement of rules that make a loop. 
If the environment has aliasing states, then the reinforcement function to distribute correctly 
rewards needs Theorem 1. The perceptual aliasing problem does not affect EPS because EPS 
can fill the needs from Theorem 1. So we have no need to think about the affectable of the 
aliasing states. We show the two case, one is that only one state makes a loop, and the other 
case is that multiple states make a loop. Next we propose the sub-episode method that 
reinforces rules with part of an episode. When part of an episode can be used always, the 
reinforcement function matches a geometrical decreasing function, that is the conventional 
function. 
(a) a loop consisting of single state 
Now we discuss the case that one observation makes a loop. The reinforcement value is 
written as Δ. The difference of reinforcement values between a non-detour rule and a detour 
rule is  

 Δ(o, non-detoure rule) > Δ(o, detour rule). (7) 

So EPS can suppress the reinforcement of rules that make a loop in the case of single state. 
(b) a loop consisting of multiple states 
Now we discuss the case that has two or more observations in order to make a loop. The 
difference of reinforcement values between a non-detour rule and a detour rule is 

 Δ(ol, non-detoure rule) > Δ(ol, detour rule). (8) 

EPS can suppress the reinforcement of rules that make a loop in the case of multiple states. 
So we can show the suppression proof of EPS. 
(c) using part of an episode 
We discuss about the sub-episodes (oi,ai), (oi+1,ai+1), ..., (ot,at) (i=1,2,...,t-1) which are the parts 
of an episode (o1,a1), (o2,a2), ..., (ot,at). An agent can learn from the sub-episodes which start at 
the time i. To use sub-episodes has to fill the needs for Theorem 1 in order to distribute 
correctly rewards on POMDP. When an agent can see no difference between the observation 
ok1 and the observation ok2 affected by perceptual aliasing, there may be some difference 
between the state sk1 and the state sk2. In this case, the agent can not use the sub-episode 
which has the rule (ok,ak) is the start rule in order to fill the needs for Theorem 1 (k1 < k ≤ k2). 
That is to say that the agent can use the sub-episode starting at the rule (ok,ak) (k ≤ k1 or k2 < 
k). It is the same when two or many observations are affected by perceptual aliasing. The 
rules between the observation ok1 and the observation ok2 are defined as rules on an 
observation loop. The flag to mean whether the rule (ok,ak) is on an observation loop or not is 
dk which is defined as 






1
0

kd
ok is on an observation loop. 
otherwise, (9) 

An agent can reinforce rules using the length t-i+1 of the sub-episode (oi,ai), (oi+1,ai+1), ..., 
(ot,at). Now the amount f(x) of reinforcement for rule (ox,ax) is 
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Figure 2 shows this reuse sub-episodes. So the reinforcement function of EPS with sub-
episodes is  
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xk kk dLxf first reinforcement of rule x 
otherwise. (11)

The reinforcement function on MDP that is dk=1 ( Wk ,,2,1  ) and has no same rules in an 
episode is 
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Given W , the reinforcement function f(x) becomes the geometrical decreasing function 
with a common ratio 1/L. This function matches the conventional function. 

3.2 Online updating 
Usually softmax action selection is used for profit sharing because its Q-value means the 
accumulation of past rule values, for example, roulette distribution, Boltzmann distribution, 
and Gibbs distribution. In a POMDP environment, in some states, the agent cannot 
recognize that the observation there is not similar to the observation of another state. In 
other words, it gets the same observation in the other states. This problem is called an alias 
problem (Whitehead & Ballland, 1990).  
Profit sharing is robust in a POMDP environment for two reasons. One is that updating the 
Q-value is non-bootstrapping. Non-bootstrapping means that the agent does not use Q-
values which are in other states in order to estimate the Q-value. Updating the equation for 
profit sharing is as follows: 
 

 
Fig. 2. Reuse sub-episodes (when ok1 = ok2). 
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 )(),(),( xfasas xxxx  ,   For all value of x in the episode.  (13) 

where ω(sx, ax) is the Q-value of the rule (sx,ax). Equation 13 was proposed by Miyazaki 
(Miyazaki et. al, 1994a) (Miyazaki et. al, 1994b). This updating euqation does not require the 
Q-value of another rule. So profit sharing is a non-bootstrapping method. 
The second reason is that the action selection of profit sharing is a softmax action 
selection. In order to solve the alias problem, the agent must not select one action always 
often one observation because due to the alias problem the agent must select two or more 
actions. For example, in the state st1 the agent gets the observation o (=ot1), and the action 
which brings the agent near to the goal state is action ai (shown at Figure 1b). On the other 
hand, in the state st2 the agent gets the same observation o (=ot2), however the action 
which bring the agent near to the next state is action aj. Thus, the agent should not select 
one action for the one observation o. The agent must select both two actions, ai and aj, at 
the one observation o. 
The conventional reinforcement learning methods (Watkins & Dayan, 1992) uses greedy 
action selection. When the action selection is greedy action selection, the agent can select the 
rule which has the highest Q-value of its state. Using this select method, a rule which has a 
secondary high Q-value is never selected. Thus the conventional reinforcement learning 
method does not work well in a POMDP environment. In an MDP environment, there is no 
aliasing states (shown in Figure 1a). So greedy action selection can work well. Using 
Equation 14 proposed by Miyazaki (Miyazaki et. al, 1994a) (Miyazaki et. al, 1994b) (called 
accumulative profit sharing), the agent can select two or more actions at the same 
observation. So accumulative profit sharing is robust in a POMDP environment. 
Accumulative profit sharing, however, does not consider the probability of the state 
transition (Uemura et. al, 2007). For example, it distributes the same rewards whatever the 
state transition probability is. The expected value means R  P, where R is the reward and P 
is the transition probability. So we should make the distributed reward nearly equal to its 
expected value. 
A reinforcement function cannot know the state transition probability because many trials 
are needed to find it. Thus it is too difficult to estimate the rule-transition probability using 
only one episode. Some conventional reinforcement learning methods work per action 
selection, where the agent can update Q-values.  
We propose a novel credit assignment method which considers the probabilistic state 
transition. Accumulative profit sharing does not consider the number of selection in the 
same rule. This method, therefore, distributes the same credit assignment to the rules which 
got the same rewards but have a different probabilistic state transition. 
So we must count the number of selections in the same action, and discount the Q-value. 
The novel Q-value is as follows: 

 ),(),(),(),( asasNasNasQ ar  , (14) 

where Nr(s,a) is the number of rewards by the rule (s,a), and Na(s,a) is the number of 
selections of the rule (s,a). 
If the state transition of rule (s,a) is always deterministic, then the number of rewards 
obtained Nr(s,a) is almost equal to the number of selections of the rule Na(s,a). If and only if 

the episode has a loop, Na(s,a) becomes larger than Nr(s,a). If the rule (s,a) has the 
probabilistic state transition, Nr(s,a) / Na(s,a) means an estimated value. In other words, 
Nr(s,a) / Nr(s,a) means the experiential rule transitional probability under its learning 
procedure. 
For example, the conventional Monte Carlo method uses the average estimate value. Its 
estimating function is as follows: 

 ),(),(),( asNasNasQ ar ,  (15) 

This equation brings the Q(s,a) to the average of rewards. This, however, is not 
accumulative. Thus the Monte Carlo method requires greedy action selection. Our proposed 
method accumulates the rewards. Thus it requires softmax action selection. It is also robust 
for the POMDP environment. We call our proposed method the accumulative Monte Carlo 
method. 

4. Experiment 

4.1 Reward distribution in a POMDP 
An agent cannot know how many states affected perceptual aliasing on POMDP. So we 
prepare the experimental environment which has aliasing states by half of all (Figure 3). 
Agent can select one action from four actions (up, down, left and right) at each state. If the 
direction of the selected action is equal to one of the arrow in the figure, then the agent 
moves to the next state. The observation o1 is observed at the state s1, s2, and s3. The agent 
should select randomly one action from three actions except for left action because the agent 
must select right, down, and up at each state. At the state s4, s5, and s6, the agent has to learn 
the action moving to the next state because the observations are equal to the states. The 
performance means received rewards per number of the selected actions, and the 
performance by the optimum policy is 10/12 = 0.833. 
 

 
Fig. 3. The Experimental Environment in a POMDP. 
 
Figure 4 shows the result. The action selection of Q-Learning is -greedy which selects the 
maximum Q-value in 90% probability and random actions in 10% probability. The 
conventional profit sharing with the geometric decreasing function is written as PS 
(Decrease). The performance of PS (Decrease) becomes worse but the proposed profit 
sharing, EPS, can learn more policy. 
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where ω(sx, ax) is the Q-value of the rule (sx,ax). Equation 13 was proposed by Miyazaki 
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Q-value of another rule. So profit sharing is a non-bootstrapping method. 
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often one observation because due to the alias problem the agent must select two or more 
actions. For example, in the state st1 the agent gets the observation o (=ot1), and the action 
which brings the agent near to the goal state is action ai (shown at Figure 1b). On the other 
hand, in the state st2 the agent gets the same observation o (=ot2), however the action 
which bring the agent near to the next state is action aj. Thus, the agent should not select 
one action for the one observation o. The agent must select both two actions, ai and aj, at 
the one observation o. 
The conventional reinforcement learning methods (Watkins & Dayan, 1992) uses greedy 
action selection. When the action selection is greedy action selection, the agent can select the 
rule which has the highest Q-value of its state. Using this select method, a rule which has a 
secondary high Q-value is never selected. Thus the conventional reinforcement learning 
method does not work well in a POMDP environment. In an MDP environment, there is no 
aliasing states (shown in Figure 1a). So greedy action selection can work well. Using 
Equation 14 proposed by Miyazaki (Miyazaki et. al, 1994a) (Miyazaki et. al, 1994b) (called 
accumulative profit sharing), the agent can select two or more actions at the same 
observation. So accumulative profit sharing is robust in a POMDP environment. 
Accumulative profit sharing, however, does not consider the probability of the state 
transition (Uemura et. al, 2007). For example, it distributes the same rewards whatever the 
state transition probability is. The expected value means R  P, where R is the reward and P 
is the transition probability. So we should make the distributed reward nearly equal to its 
expected value. 
A reinforcement function cannot know the state transition probability because many trials 
are needed to find it. Thus it is too difficult to estimate the rule-transition probability using 
only one episode. Some conventional reinforcement learning methods work per action 
selection, where the agent can update Q-values.  
We propose a novel credit assignment method which considers the probabilistic state 
transition. Accumulative profit sharing does not consider the number of selection in the 
same rule. This method, therefore, distributes the same credit assignment to the rules which 
got the same rewards but have a different probabilistic state transition. 
So we must count the number of selections in the same action, and discount the Q-value. 
The novel Q-value is as follows: 

 ),(),(),(),( asasNasNasQ ar  , (14) 

where Nr(s,a) is the number of rewards by the rule (s,a), and Na(s,a) is the number of 
selections of the rule (s,a). 
If the state transition of rule (s,a) is always deterministic, then the number of rewards 
obtained Nr(s,a) is almost equal to the number of selections of the rule Na(s,a). If and only if 

the episode has a loop, Na(s,a) becomes larger than Nr(s,a). If the rule (s,a) has the 
probabilistic state transition, Nr(s,a) / Na(s,a) means an estimated value. In other words, 
Nr(s,a) / Nr(s,a) means the experiential rule transitional probability under its learning 
procedure. 
For example, the conventional Monte Carlo method uses the average estimate value. Its 
estimating function is as follows: 

 ),(),(),( asNasNasQ ar ,  (15) 

This equation brings the Q(s,a) to the average of rewards. This, however, is not 
accumulative. Thus the Monte Carlo method requires greedy action selection. Our proposed 
method accumulates the rewards. Thus it requires softmax action selection. It is also robust 
for the POMDP environment. We call our proposed method the accumulative Monte Carlo 
method. 

4. Experiment 

4.1 Reward distribution in a POMDP 
An agent cannot know how many states affected perceptual aliasing on POMDP. So we 
prepare the experimental environment which has aliasing states by half of all (Figure 3). 
Agent can select one action from four actions (up, down, left and right) at each state. If the 
direction of the selected action is equal to one of the arrow in the figure, then the agent 
moves to the next state. The observation o1 is observed at the state s1, s2, and s3. The agent 
should select randomly one action from three actions except for left action because the agent 
must select right, down, and up at each state. At the state s4, s5, and s6, the agent has to learn 
the action moving to the next state because the observations are equal to the states. The 
performance means received rewards per number of the selected actions, and the 
performance by the optimum policy is 10/12 = 0.833. 
 

 
Fig. 3. The Experimental Environment in a POMDP. 
 
Figure 4 shows the result. The action selection of Q-Learning is -greedy which selects the 
maximum Q-value in 90% probability and random actions in 10% probability. The 
conventional profit sharing with the geometric decreasing function is written as PS 
(Decrease). The performance of PS (Decrease) becomes worse but the proposed profit 
sharing, EPS, can learn more policy. 
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Fig. 4. The learning performances at POMDP. 

4.2 Online updating 
We carried out experiments in a maze (Sutton, 1998) (Figure 5). An agent starts at state S 
and selects one action from 4 actions (up, down, left and right). When the agent reaches the 
goal state G, the reward R = 10 is received, and the agent restarts at the start state S. The 
performance is how many rewards to get per step. All actions have the same probabilistic 
state transition. The agent goes to the selected state by the probability P = 0.8, and goes to 
the neighbour state by the probability P = 0.2. 
 

 
Fig. 5. The maze of Sutton with probabilistic state transitions. 
 
The proposed method has almost the same performance as the conventional method in the 
non-probabilistic state transition. There is a difference if and only if the agent makes a loop 
in the early stage of learning. So in the first learning steps, the proposed method distributes 
slightly less rewards than conventional profit sharing. The performance for the probabilistic 
state transition is shown in Figure 6. The proposed method has better performance than the 
conventional method. 

5. Conclusion 

In this chapter, we have proposed a novel credit assignment method similar to profit 
sharing which considers the aliasing problem and the probabilistic state transition. We show 
that the condition to learn in a POMDP is to distribute equal rewards to rules at the same 
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Fig. 6. The performance between conventional method and the proposed method. 
 
state in an episode. We proposed a novel reward distribution method, called EPS, which 
considers this condition. Next, we consider the probabilistic state transition. If the agent 
experiences the same rule as the previous episode, the current episode has a loop rule, that 
is, its rule has a probabilistic state transition. So its rule value should be less than the 
previous reward. The equation R  P, where R is the reward and P is the transition 
probability, shows the expected value. Thus the temporary rule variable should be divided 
by the number of its rule selection. Finally the temporary rule variable reaches to its 
expected value. We have proposed how to decrease the estimated values of rules per action 
selection. 
In an environment with a deterministic state transition, we show the same performance for 
both conventional profit sharing and the proposed profit sharing. And we show the good 
performance of proposed profit sharing against the conventional profit sharing with a 
probabilistic state transition. 
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state in an episode. We proposed a novel reward distribution method, called EPS, which 
considers this condition. Next, we consider the probabilistic state transition. If the agent 
experiences the same rule as the previous episode, the current episode has a loop rule, that 
is, its rule has a probabilistic state transition. So its rule value should be less than the 
previous reward. The equation R  P, where R is the reward and P is the transition 
probability, shows the expected value. Thus the temporary rule variable should be divided 
by the number of its rule selection. Finally the temporary rule variable reaches to its 
expected value. We have proposed how to decrease the estimated values of rules per action 
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