
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322390547?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Random Forest-LNS Architecture and Vision 151

Random Forest-LNS Architecture and Vision

Hassab Elgawi Osman

0

Random Forest-LNS Architecture and Vision

Hassab Elgawi Osman
Imaging Science and Engineering Laboratory, Tokyo Institute of Technology

Japan

1. Introduction

Combining multiple classifiers (e.g., decision trees) to build an ensemble is an advanced ma-
chine learning technique with substantially improvement over single-based classifiers. Ran-
dom forests (RFs) (1), a representative decision tree-based ensemble has been emerged as a
principle machine learning tool combining properties of efficient classifier and feature selec-
tion model running on general-purpose processor (GPP-based) custom-hardware and opti-
mized operating systems. Rather than minimizing training error, RF minimizes the general-
ization error, while being fast to train, proven not to overfit, and computationally effective,

(O(
√

VTlogT), where V is the number of variables and T is the number of observations).
These merits make RF a potential tool suited for adaptive classification problems. RF has
been applied to vision problems such as object recognition (2–7). It has also been used for
OCR (8) and for key point recognition (9). Despite of the appearance success of RF virtually
no work has been done to map from its ideal mathematical model to compact and reliable
hardware design.
In this chapter we present object recognition system implemented on a field programmable
gate array (FPGA), enables learning algorithm to scale up. Fig.1 shows the general architec-
ture of the proposed recognition system, composed of two main steps, each comprises several
computational models. In the first step, objects are automatically represented as covariance
matrices followed by a tree-based RF detector that operates on-line. We have shown in (4)
utilizing a bag of covariance matrices as object descriptor improves the accuracy of object
recognition while speed up the learning process, so we are extending this technique, present
its hardware architecture. The on-line RF detector is designed using Logarithmic Number
System (LNS) (10), RF-LNS, allows the reduction of the required word-length to 16 bits, and
consequently a general-purpose microprocessor of the same word-length can be used. For the
compact architecture we made RF-LNS comprises few computation modules, referred to as
‘Tree Units’, ‘Majority Vote Unit’, and ‘Forest Units’. The main contribution of our approach
(in addition to its impacts on the tradeoff between algorithmic setting accuracy and hardware
implementation cost) is three-fold: (1) its direction towards arithmetic complexity reduction
using a modified RF based on LNS (RF-LNS), (2) it has been designed in order to be easily
integrated in a system-on-chip (SoC), which can perform both automatic feature selection and
recognition, and (3) it allows for fair comparison with floating-point (FP) and fixed-point (FX)
implementations. We test and verified the model functionality using numerical simulation,
present results obtained using examples from GRAZ02 dataset (11). First, in Section 2 we
present related works and highlight on general constrains in implementing hardware-based
recognition systems. Section 3 shows the object descriptor we used and overview on RF al-

10

www.intechopen.com

New Advances in Machine Learning152

Fig. 1. Object Recognition based on RF-LNS which is optimized to be easily integrated in a
System-on-Chip (SoC) platform implementation.

gorithmic settings. In Section 4 we present full architecture and design of our recognition
system. We follow with experimental evaluation and estimation of the required precision in
Section 5. A brief conclusion appears in Section 6.

2. Hardware-based Machine Learning

Perhaps motivated by the high computational complexity of many software-oriented machine
vision algorithms, there have been several attempts to create faster execution hardware imple-
mentations which are able to identify and localize objects in a given scene or an image, achieve
high recognition performance. There are studies about Pulsed Neural Network (PNN) that
employ Pulsed Neuron (PN) or Spiking Neuron object localization and processing. The PN
models and have the ability to adapt, much better than traditional neural nets. The Kernel-
tron (12; 13) is a SVM classification module, with a system precision resolution of no more
than 8 bits. A fully digital architecture for SVM classification employing the linear and RBF
kernels is proposed. The minimal word size they are able to use is 20 bits. In (14) hardware
implementation of Decision Trees (DTs) is proposed. However to the best of our knowledge,
ours is the first attempt to implement RF in hardware. We predict further progress using this
approach.

2.1 Hardware implementations: problems and constraints

Any kind of hardware implementations of machine vision algorithms be it analog, digital, or
optical, brings along various constraints:

• Algorithematic design: Automatic optimize settings of the parameters.

• Accuracy and efficiency: Hardware implementations can only offer limited accuracy. FP
arithmetics are costly in terms of the number of logic elements required while FX im-
plementation may speed up the algorithm but is leading to a definitively power con-
sumption with marginally lose in precision.

• Area: The tradeoff between accuracy required and hardware (chip) area available. Ac-
curacy often comes at the price of an area penalty.

www.intechopen.com

Random Forest-LNS Architecture and Vision 153

• GPP vs. FPGA: A general purpose processor’s (GPP) hardware contains all the basic
blocks needed to build any logic of mathematical function imaginable but the limita-
tions are in the parallelism available in the program, i.e. performance, and power con-
sumption. FPGA provides flexibility to cope with the current evolving applications but
at the cost of large performance, area, power and reconfiguration time penalties.

2.2 logarithmic Number System (LNS)

LNS is an alternative way to represent real numbers/values beside the conventional FP rep-
resentation. The idea is to convert values into logarithms once and keep them in this repre-
sentation throughout the entire computation. The LNS represents a number by the exponent
in a certain base and a sign bit. The multiplication of two numbers is simply the sum of the
two numbers’ exponent parts, log2(x · y) = log2(x) + log2(y), divisions and square roots are
implemented by fixed-point subtraction and bit shift respectively. However, the addition of
two LNS numbers, log2|(X,Y)|= X+ log2|1+ 2Y−X | is not a linear operation and requires two
fixed-point adder/subtractors, and lookup-tables (LUTs) process (Function Generators (FGs)).
The size of LNS adders increases exponentially as the operands’ word lengths increase. Thus
the LNS arithmetic systems usually have advantages of low precision and constant relative
error.

3. Algorithmtic Considerations

The proposed object recognition approach consists of two basic models, a model for object
descriptor based on covariance matrices (4; 15) and a classifier based on on-line variant of RF
implemented on FPGA using LNS. First we introduce the algorithmtic settings of each model.

3.1 Covariance Matrices Descriptor

We have used bag of covariance matrices (Fig.2), to represent an object region.
Let I be an input color image. Let F be the dimensional feature image extracted from I

F(x,y) = φ(I, x,y) (1)

where function φ can be any feature maps (such as intensity, color, etc). For a given region
R ⊂ F, let {zk}k=1···n be the d dimensional feature points inside R. We represent region R with
d × d covariance matrix CR of feature points.

CR =
1

n − 1

n

∑
k=1

(zk − µ)(zk − µ)T (2)

where µ is the mean of region R centered at the point.

3.2 Image Labeling

We gradually build our knowledge of the image from features to covariance matrix to a bag
of covariance matrices. Starting by forming covariance matrix C from image features such
that each feature Z in C has intensity µ(z) and associated variance λ−1(z), so λ is the inverse
variance (precision). We then group covariance matrices as a set of spatially grouped feature
in C that are likely to share common labels into a bag of covariance matrices.
Covariance matrix. Different regions of an object may have different descriptive powers and,
hence, a difference impact on learning and recognition (Fig.2A). Following (15), we represent
image objects with five covariance matrices Ci=1···5 of the feature computed inside R (Fig.2B),

www.intechopen.com

New Advances in Machine Learning154

Fig. 2. (A) Rectangles are examples of possible regions for histogram features. Stable appear-
ance in Rectangles A, B and C are good candidates for a car classifier while regions D is not.
(C) Top, points sampled to calculate the LBP around a point (x,y). Bottom, the use of standard
invariant feature (SIFT). (D) Any region can be represented by a covariance matrix. Size of the
bag is proportional to the number of features used, while the size of the covariance matrix
depends on the dimension of the features.

noting that features in the covariance matrix may be used in multiple image locations.
Color. Color is described by taken Ohta space histogram values of pixels (I1 = R + G + B/3,
I2 = R − B, I3 = (2G − R − B)/2). This histogram is chosen because it is less sensitive to vari-
ations in illumination. Ohta values for each pixel in an image are clustered using k-means,
e.g., each pixel in image I is assigned to the nearest cluster center, then histogram frequency
is normalized.
Appearance. We have used histograms of Local Binary Patterns (LBPs) for representing each
feature’s appearance in some appearance space. Fig.2C depicts the points that must be sam-
pled around a particular point (x,y) in order to calculate the LBP. In our implementation, each
sample point lies at a distance of 2 pixels from (x,y). Instead of the traditional 3 × 3 rectangu-
lar neighborhood, we sample neighborhood circularly with two different radii (1 and 3). The
resulting operators are denoted by LBP8,1 and LBP8,1+8,3, where subscripts tell the number of
samples and the neighborhood radii.
A bag of covariance matrices. A bag of covariance which is a concatenation of Ohta color
space histogram, and appearance model based on LBP and Scale Invariant Feature Transform
(SIFT) of different features of an image region is presented in Fig.1E. Then estimate the bag of
covariance matrix likelihoods P(Ii|C, Ii) and the likelihood that each bag of covariance matri-
ces is homogeneously labeled. We use this representation to automatically detect any target
in images. We then apply on-line RF learner to select object descriptors and to learn an object
classifier.

3.3 RF for Recognition

A detailed discussion of Breiman’s RF (1) learning algorithm is beyond our scope here, how-
ever, in order to simplify the further discussion, we briefly define some fundamental terms:
Decision-tree. For the k-th tree, a random covariance matrix Ck is generated, independent of
the past random covariance matrices C1, . . . ,Ck−1, and a tree is grown using the training set of

www.intechopen.com

Random Forest-LNS Architecture and Vision 155

positive (contains the object relevant to the class) and negative (does not contain the object)
image I, and covariance feature Ck. The decision generated by a random tree corresponds to
a covariance feature selected by learning algorithm. Each tree casts a unit vote for a single
matrix, resulting in a classifier h (I,Ck).
Forest. Given a set of M decision trees, a forest is computed as ensemble of these tree-
generated base classifiers h (I,Ck), k = 1, . . . ,n, using a majority vote.
Majority vote. If there are M Decision Trees, the majority voting method will give a correct
decision if at least f loor(M/2) + 1 decision trees gives correct outputs. If each tree has prob-
ability p to make a correct decision, then the forest will have the following probability P to
make a correction decision.

P =
b

∑
i=floor(M/2)+1

(

M
i

)

p(1 − p) (3)

3.4 On-line RF for Recognition

To obtain an on-line algorithm, the steps above must be on-line where the current base classi-
fier is updated whenever a new sample arrives. In particular our on-line RF involves two steps
in inferring the object category (Algorithm 1). First, based on covariance object descriptor we
develop a new, conditional permutation scheme for the computation of feature importance
measure. Second, the fixed set tree K is initialized, then individual trees in RF are incremen-
tally generated by specifically selected covariance matrix from the bag of covariance matrices.
For updating, any on-line learning algorithm may be used, but we employ a standard Karman
filtering technique.

Algorithm 1 On-line Random Forests

1: Initially select the number K of trees to be generated.
2: for k = 1,2, · · · , K do
3: T̀ b̄ootstrap sample from T initialize e = 0, t = 0, Tk = φ
4: Do until Tk = Nk

5: Vector Ck that represent a bag of covariance is generate
6: Construct Tree h (I,Ck) using any decision tree algorithm
7: Each Tree makes its estimation based on a single matrix from the bag of covariance

matrices at I
8: Each Tree casts a vote for most popular covariance matrix at image I
9: The popular covariance matrix at I at is predicted by selecting the matrix with max

votes over h1, h2, . . . , hk

10: hl = arg maxy ∑
K
k=1 I(hk(x) = y)

11: Return a hypothesis hl

12: end for
13: Get the next sample set
14: Output: Proximity measure, feature importance, a hypothesis h

www.intechopen.com

New Advances in Machine Learning156

4. Hardware Architecture

4.1 FPGA Architecture

All FPGAs consist of three major components: 1) logic blocks (LBs); 2) I/O blocks; and 3)
programmable routing, as shown in Fig.3(A). A logic block (LB) is functionally complete logic
circuits, partitioned to LB size, mapped and routed, and place in an interconnect framework to
perform a desired operation. Field programmability is achieved through switches (transistors
controlled by memory element or fuses) and each I/O block is programmed to act as an input
or output, as required, i.e., N-input LUTs can implement any n-input boolean function. The
programmable routing is also configured to make the necessary connections between logic
blocks, and from logic blocks to I/O blocks. The processing power of an FPGA is highly
dependent on the processing capabilities of its LBs and the total number of LBs available in
the array. Generally, FPGAs use logic blocks that contain one or more LUT, typically with at
least four-inputs. A four-input LUT can implement any binary function of four logic inputs.
Fig.3(B) shows the architecture of a simple LB containing one four-input LUT and one flip-flop
for storage.

Fig. 3. (A) Granularity and interconnection structure of generic Xilinx FPGA. (B) An architec-
ture of a logic block with one, four-input LUT use for implementation of memory and shift
registers.

4.2 Transform into Log-domain

Rather than adapting the FP arithmetic we based on LNS, eliminate the need for multiplica-
tions and division, allowing all operations to be carried out using shifts and additions. In LNS,
a number x is represented in signed magnitude form, i.e., as a pair (S, e), where x = (−1)s(r)e,
S being the sign bit (which is either 0 or 1 according to the sign of x) and e being the signed
exponent of the radix r (usually in radix 2). The exponent e is expressed in fixed-point bi-
nary mode with say, G bits for the integer part and F bits for the fractional part and one bit

www.intechopen.com

Random Forest-LNS Architecture and Vision 157

for the sign of the exponent, i.e., with a total of (G + F + 1) bits. If the radix is considered
to be 2, then the smallest number that can be represented using the scheme is 2−N , where
N = (sG − 1) + (1 − 2−F) = (2G − 2−F). The ratio between two consecutive numbers is equal

to r2−F

, and the corresponding precision e is roughly (lnr)2−F. Typically, if G = 5, F = 30, and
r = 2, we can have a precision of 30 bits in radix 2. However, for the purpose of comparison
with the precision of FP representation, e will be assumed as 2−23(≈ 10−7). Numbers closer
to zero, are represented with better precision in LNS than FP systems. However, LNS depart
from FP in that, the relative error of LNS is constant and LNS can often achieve equivalent
signal-to-noise ratio with fewer bits of precision relative to FP architectures.

4.3 Object Recognition Architecture based on RF-LNS

Fig.4 shows RF-LNS object classifier proposed in this paper. The classifier consists of three
main design blocks (a) The LG block; (b) The ACC block; and (c) The SIGM block. The ‘Co-
variance Unit’ in Fig.1 contains all the features extracted from an image in a form of bag of
covariance matrices. The output of covariance descriptor becomes the input of the RF-LNS
classifier. However, Function φ given by eq(1) consists of float values which require much
place for storing in an FPGA memory. In order to reduce the hardware cost, we propose to
approximate the function φ using LG. This function will transform float elements of the φ
into binary elements. For ‘Tree Units’ we compute 16 covariance matrices in 32 bit memory.
Basically the decision trees consist of two types of nodes: decision nodes, corresponding to
state variables and least nodes, which correspond to all possible covariance features that can
be taken. In a decision node a decision is taken about one of the input. Each least node stores
the state values for the corresponding region in the image, meaning that a least node stores
a value for each relevant covariance matrix that can be taken. The tree starts out with only
one least node that represents the entire image region then, a decision has to be made whether
the node should be split or not. ACC block that does the accumulation operations at each
node. Once a tree is constructed it can be used to map an input vector to a least node, which
corresponds to a region in the image. Then a decision tree can be converting into an equiva-
lent ‘Tree Unit’ by extracting one logic function per class from the tree structure. Each ‘Tree
Units’ gives a unit vote for its popular object class. ‘Forest Unit’ is an ensemble of trees grown
incrementally to a certain depth. The object is recognized as the one having the majority vote,
stored at ‘Majority Vote Unit’. The SIGM block that performs the sigmoid evaluation function
for majority votes.

Fig. 4. RF-LNS object classifier Architecture.

www.intechopen.com

New Advances in Machine Learning158

5. Evaluation

The functionality of the proposed system was simulated, and the hardware is programmed.
We now demonstrate the usefulness of this frame work in the area of recognition generic
objects such as bikes, cars, and persons.

5.1 Dataset

We have used data derived from the GRAZ021 dataset (11), a collection of 640 × 480 24-bit
color images. As can be seen in Fig.5, this dataset has three object classes, bikes, cars, persons,
and in addition to the background class (270 images). This database contains variability with
respect to scale and clutter. Objects of interest are often occluded, and they are not dominant in
the image. According to (16) the average ratio of object size to image size counted in number
of pixels is 0.22 for bikes, 0.17 for people, and 0.9 for cars. Thus this dataset is more complex
dataset to learn detectors from, but of more interest because it better reflects the real world
complexity. Table 1 reports the number of images and objects in each class, 380 images are
available for background class .

Dataset Images Objects

Bikes 365 511
Cars 420 770
Persons 311 785

Total 1096 2066

Table 1. Number of images and objects in each class in the GRAZ02 dataset.

5.2 Experimental Settings

Our RF-LNS is trained with varying amounts (10%,50% and 90% respectively) of randomly
selected training data. All images not selected for the training split were put into the test
split. For the 10% training data experiments, 10% of images were selected randomly with the
remainder used for testing. This was repeated 20 times. For the 50% training data experi-
ments, stratified 5 × 2 fold cross validation was used. Each cross validation selected 50% of
the dataset for training and tested the classifiers on the remaining 50%; the test and training
sets were then exchanged and the classifiers retrained and retested. This process was repeated
5 times. Finally, for the 90% training data situation, stratified 1 × 10 fold cross validation was
performed, with the dataset divided into ten randomly selected, equally sized subsets, with
each subset being used in turn for testing after the classifiers were trained on the remaining
nine subsets.

6. Performances

GRAZ02 images contain only one object category per image so the recognition task can be
seen as a binary classification problem: bikes vs. background (i.e., non-bikes), people vs.
background, and car vs. background. Generalization performances in these object recogni-
tion experiments were estimated by statistic measure; the Area Under the ROC Curve (AUC)
to measure the classifiers performance. AUC measures of classifier performance that is inde-
pendent of the threshold, meaning it summarizes how true positive and false positive rates

1 available at http://www.emt.tugraz.at/˜pinz/data/

www.intechopen.com

Random Forest-LNS Architecture and Vision 159

Fig. 5. Examples from GRAZ02 dataset (11) for four different categories: A) cars and ground
truth, B) bikes and ground truth, C) persons and ground truth, and D) background.

change as the threshold gradually increases from 0.0 to 1.0, i.e., it does not summarize accu-
racy. An ideal perfect classifier has an AUC of 1.0 and a random classifier has an AUC of
0.5.

6.1 Finite Precision Analysis

The primary task here is to analyze the precision requirements for performing recognition.
The RF-LNS precision was varied to ascertain optimal LNS precisions and compare them
against the cost of using FP architectures. Tables 2, 3, and 4 give the mean AUC values across
all runs to 2 decimal places for RF-LNS and training data amount combinations, for the bikes,
cars and people datasets respectively. The performance of RF-LNS is reported with weight
quantized with 4, 8, and 16 bits, and for different decision tree depths, from depth = 3 to depth

www.intechopen.com

New Advances in Machine Learning160

= 7. For example a figure of 85% means that 85% of object images were correctly classified but
15% of the background images were incorrectly classified (i.e. thought to be foreground). For
RF-LNS to maintain acceptable performance, 16 bits of precision are sufficient for all GRAZ02
categories, even when only 10% training examples are used. Such low precision required by
RF-LNS makes it competitive with FP arithmetic for our generic object recognition application.

RF-LNS (4-bit Precision) RF-LNS (8-bit Precision) RF-LNS (16-bit Precision)
D=3 D=4 D=5 D=6 D=7 D=3 h=4 D=5 D=6 D=7 D=3 D=4 D=5 D=6 D=7

10% 0.79 0.79 0.77 0.81 0.81 0.81 0.81 0.80 0.83 0.83 0.83 0.83 0.81 0.84 0.83

50% 0.86 0.86 0.82 0.81 0.83 0.88 0.89 0.85 0.88 0.86 0.90 0.90 0.86 0.89 0.89

90% 0.80 0.81 0.81 0.83 0.88 0.87 0.87 0.87 0.88 0.90 0.90 0.91 0.90 0.90 0.90

Table 2. Mean AUC performance of RF-LNS on the Bikes vs. Background dataset, by amount
of training data. Performance of RF-LNS is reported for different Depths (D).

RF-LNS (4-bit Precision) RF-LNS (8-bit Precision) RF-LNS (16-bit Precision)
D=3 D=4 D=5 D=6 D=7 D=3 D=4 D=5 D=6 D=7 D=3 D=4 D=5 D=6 D=7

10% 0.66 0.70 0.70 0.75 0.71 0.68 0.73 0.73 0.76 0.73 0.71 0.75 0.75 0.77 0.75

50% 0.77 0.78 0.77 0.77 0.79 0.79 0.80 0.79 0.81 0.81 0.81 0.80 0.81 0.82 0.83

90% 0.77 0.75 0.75 0.73 0.79 0.81 0.81 0.78 0.78 0.82 0.83 0.83 0.81 0.80 0.85

Table 3. Mean AUC performance of RF-LNS on the Cars vs. Background dataset, by amount
of training data. Performance of RF-LNS is reported for different Depths (D).

RF-LNS (4-bit Precision) RF-LNS (8-bit Precision) RF-LNS (16-bit Precision)
D=3 D=4 D=5 D=6 D=7 D=3 D=4 D=5 D=6 D=7 D=3 D=4 D=5 D=6 D=7

10% 0.83 0.73 0.77 0.77 0.79 0.77 0.74 0.80 0.79 0.81 0.80 0.78 0.81 0.81 0.82

50% 0.79 0.80 0.79 0.78 0.83 0.81 0.83 0.83 0.80 0.84 0.85 0.86 0.85 0.82 0.85

90% 0.80 0.80 0.81 0.78 0.83 0.81 0.82 0.82 0.80 0.86 0.88 0.86 0.83 0.83 0.87

Table 4. Mean AUC performance of RF-LNS on the Persons vs. Background dataset, by
amount of training data. Performance of RF-LNS is reported for different Depths (D).

6.2 Efficiency and Hardware area

The efficiency of RF-LNS classifier is evaluated in terms of the number of slices. This is sim-
ply equivalent to hardware area required to achieve acceptable performance. Table 5 shows
number of slice used by RF-LNS classifier as compared with 10- and 20-bit fixed-point (FX)
implementations. The number of slices is reported for different Tree Unit for each dataset.
RF-LNS takes almost the same number of slices as 10-bit FX but less than one-half of 20-bit
FX implementation. This is interesting because 10-bit FX implementation has been widely
recognized for not acceptable performance, particularly for recognition problem. Our design

www.intechopen.com

Random Forest-LNS Architecture and Vision 161

also achieved high speed clock rate processing. For the 1-bit RF-LNS, the power dissipation is
small, and the area usage on FPGA is less than 2 percents.

7. Conclusions and Future Works

Efficient hardware implementations of machine-learning techniques yield a variety of advan-
tages over software solutions: increased processing speed, and reliability as well as reduced
cost and complexity. In this paper RF technique is modified so that classification is performed
by LNS arithmetic. The model is applied for generic object recognition task, it shows that at
low precision the RF-LNS hardware has significant area savings compared to the fixed-point
alternative. With these characteristics, RF-LNS may be a good way for designing a real-time
low power object recognition systems. Our future goals include further exploring precision re-
quirements for hardware RF-LNS, noise analysis to determine the robustness of the hardware
classifier and expanding LNS hardware architectures to other machine learning algorithms.

Dataset Tree Units 16-bit LNS 10-bit FX 20-bit FX

Bikes 3 315 219 576
4 498 407 713
5 611 622 878
6 823 835 1103
7 1010 974 1345

Cars 3 277 283 603
4 397 476 783
5 536 694 866
6 784 943 1002
7 989 1287 1311

Persons 3 336 318 409
4 534 535 657
5 765 689 845
6 878 926 1127
7 1123 1158 1287

Table 5. Slices used for different tree units for each dataset.

8. References

[1] L. Breiman, “Random Forests,” Machine Learning, 45(1):5-32, 2001.
[2] F. Moomsmann, B. Triggs, and F. Jurie. “Fast discriminative visual codebooks using ran-

domized clustering forests,” In Proc. NIPS 2006.
[3] J. Winn and A. Criminisi. “Object class recognition at a glance,” In Proc. CVPR, 2006.
[4] H. Elgawi Osman, “A binary Classification and Online Vision,” In Proc. IJCNN, 2009.

pp.1142-1148
[5] A.Bosch, A.Zisserman, X.Munoz, “Image Classification Using Random Forests and

Ferns,” ICCV, pp.1-8, 2007.
[6] J. Shotton, M. Johnson, R. Cipolla, “Semantic Texton Forests for Image Categorization and

Segmentation,” In Proc. CVPR, pp.1-8 2008.
[7] F. Schroff, A. Criminisi, and A. Zisserman, “Object Class Segmentation using Random

Forests,” In Proc. BMVC 2008.

www.intechopen.com

New Advances in Machine Learning162

[8] Y. Amit and D. Geman. “Shape quantization and recognition with randomized trees,”
Neural Computation 9(7):15451588, 1997.

[9] V. Lepetit, P. Lagger, and P. Fua. “Randomized trees for real-time keypoint recognition,”
In Proc. CVPR, 2005.

[10] H. Elgawi Osman, “Hardware-based solutions utilizing Random Forests for Object
Recognition,” In Proc. ICONIP, Part II, LNCS 5507, pp. 760-767, 2008.

[11] A. Oplet, M. Fussenegger, A. Pinz and P. Auer. “Generic object recognition with boost-
ing,” TPAMI 28(3):416-431, 2006.

[12] R. Genov and G. Cauwenberghs. “Kerneltron: Support Vector Machine in Silicon,” IEEE
Transactions on Neural Networks, 14(5):1426-1434, 2003.

[13] R. Genov, S. Chakrabartty and G. Cauwenberghs. “Silicon Support Vector Machine with
On-Line Learning,” IJPRAI, 17(3):385-404, 2003.

[14] M. Muselli and D. Liberati. “Binary Rule Generation via Hamming Clustering,” IEEE
Transactions on Knowledge and Data Engineering, 14(6):1258-1268, 2002.

[15] O. Tuzel, F. Porikli, and P. Meer. “Region covariance: A fast descriptor for detection and
classification,” In Proc. ECCV, pp.589-600, 2006.

[16] A. Opelt. and Pinz A. “Object Localization with boosting and weak supervision for
generic object recognition,” In Kalvianen H. et al. (Eds.) SCIA 2005, LNCS 3450, pp.862-871,
2005

www.intechopen.com

New Advances in Machine Learning

Edited by Yagang Zhang

ISBN 978-953-307-034-6

Hard cover, 366 pages

Publisher InTech

Published online 01, February, 2010

Published in print edition February, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The purpose of this book is to provide an up-to-date and systematical introduction to the principles and

algorithms of machine learning. The definition of learning is broad enough to include most tasks that we

commonly call “learning” tasks, as we use the word in daily life. It is also broad enough to encompass

computers that improve from experience in quite straightforward ways. The book will be of interest to industrial

engineers and scientists as well as academics who wish to pursue machine learning. The book is intended for

both graduate and postgraduate students in fields such as computer science, cybernetics, system sciences,

engineering, statistics, and social sciences, and as a reference for software professionals and practitioners.

The wide scope of the book provides a good introduction to many approaches of machine learning, and it is

also the source of useful bibliographical information.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Hassab Elgawi Osman (2010). Random Forest-LNS Architecture and Vision, New Advances in Machine

Learning, Yagang Zhang (Ed.), ISBN: 978-953-307-034-6, InTech, Available from:

http://www.intechopen.com/books/new-advances-in-machine-learning/random-forest-lns-architecture-and-

vision

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

