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1. Introduction 
 

Pattern classification is to classify some object into one of the given categories called classes. 
For a specific pattern classification problem, a classifier is computer software. It is developed 
so that objects ( x ) are classified correctly with reasonably good accuracy. Through training 
using input-output pairs, classifiers acquire decision functions that classify an input datum 
into one of the given classes ( i ). In pattern recognition applications we rarely if ever have the 
prior probability )( iP   or the class-conditional density )|( ixp  . of complete knowledge 
about the probabilistic structure of the problem. In a typical case we merely have some vague, 
general knowledge about the situation, together with a number of design samples or training 
data—particular representatives of the patterns we want to training classify. The problem, 
then, is to find some way to use this information to design or data train the classifier.  
The organization of this chapter is to address those cases where a great deal of information 
about the models is known and to move toward problems where the form of the distributions 
are unknown and even the category membership of training patterns is unknown. We begin in 
Bayes decision theory(Sec.2) by considering the ideal case in which the probability structure 
underlying the categories is known perfectly. In Sec.3(Maximum Likelihood) we address the 
case when the full probability structure underlying the categories is not known, but the 
general forms of their distributions are the models. Thus the uncertainty about a probability 
distribution is represented by the values of some unknown parameters, and we seek to 
determine these parameters to attain the best categorization. In Sec.4(Nonparametric 
techniques)we move yet further from the Bayesian ideal,and assume that we have no prior 
parameterized knowledge about the underlying probability structure;in essence our 
classification will be based on information provided by training samples alone. Classic 
techniques such as the nearest-neighbor algorithm and potential functions play an important 
role here. We then in Sec.5(Support Vector Machine)  Next, in Sec.6(Nonlinear Discriminants 
and Neural Networks)we see how some of the ideas from such linear discriminants can be 
extended to a class of very powerful algorithms such as backpropagation and others for 
multilayer neural networks; these neural techniques have a range of useful properties that 
have made them a mainstay in contemporary pattern recognition research. In Sec.7(Stochastic 
Methods)we discuss simulated annealing by the Boltzmann learning algorithm and other 
stochastic methods. We explore the behaviour of such algorithms with regard to the matter of 
local minima that can plague other neural methods. Sec.8(Unsupervised Learning and 
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Clustering),by addressing the case when input training patterns are not labelled, and that our 
recognizer must determine the cluster structure.  

 
2. Bayesian Decision Theory 
 

Suppose that we know both the prior probabilities )( jP   and the conditional densities 
)|( jxp  . Suppose further that we measure the features of a sample and discover that its 

value is x . How does this measurement influence our attitude concerning the true state of 
nature—that is, the category of the input? We note first that the(joint) probability density of 
finding a pattern that is in category j  and has feature value x  can be written in two ways: 

)()|()()|(),( jjjj PxpxpxPxP   . Rearranging these leads us to the answer to our 
question, which is called Bayes formula: 
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where in this case of c  categories 
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2.1 Two-Category Classification 
If we have an observation x  for which )|( 1 xP   is greater than )|( 2 xP  , we would 
naturally be inclined to decide that the true state of nature is 1 . Similarly, if )|( 2 xP   is 
greater than )|( 1 xP  , we would be inclined to choose 2 . Thus we have justified the 
following Bayes decision rule for minimizing the probability of error: 
 

2211 ),|()|(  decideotherwisexPxPifDecide   (3) 
 
In Eq. (1), )(xp  is a scale factor and unimportant for our problem. By using Eq.(1), we can 
instead express the rule in terms of the conditional and prior probabilities. And we notice 

1))|()|( 21  xPxP  . By eliminating this scale factor, we obtain the following completely 
equivalent decision rule: 
 

222111 ),()|()()|(  decideotherwisePxpPxpifDecide   (4) 
 
While the two-category case is just a special instance of the multi-category case, it has 
traditionally received separate treatment.Indeed,a classifier that places a pattern in one of 
only two categories has a special name—a dichotomizer. Instead of using two dichotomizer 
discriminant functions 1g  and 2g  and assigning x  toω1 if 1g > 2g , it is more common 
to define a single discriminant function 

)()()( 21 xgxgxg   (5) 
 
and to use the following decision rule: 

21 ,0)(  decideotherwisexgifDecide    
Thus, a dichotomizer can be viewed as a machine that computes a single discriminant 
function )(xg , and classifies x  according to the algebraic sign of the result. Of the various 
forms in which the minimum-error-rate discriminant function can be written, the following 
two(derived from Eqs.(1)&(5)are particularly convenient: 
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2.2 Multi-Category Classification 
Let c ,,1   be the finite set of c  states of nature. Let the feature vector x  be a d -
component vector-valued random variable, and let )|( jxP   be the state- conditional 
probability density function for x —the probability density function for x  conditioned on 

j  being the true state of nature. As before, )( jP   describes the prior probability that 

nature is in state j . Then the posterior probability )|( xP j  can be computed from 

)|( jxp   by Bayes formula: 
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where the evidence is now 
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A Bayes classifier is easily and naturally represented in this way. For the minimum-error-
rate case, we can simplify things further by taking gi(x)=P(ωi|x),so that the maximum 
discriminant function corresponds to the maximum posterior probability. 
Clearly, the choice of discriminant functions is not unique. We can always multiply all the 
discriminant functions by the same positive constant or shift them by the same additive 
constant without influencing the decision. More generally, if we replace every )(xg  by 

))(( xgf , where )(f  is a monotonically increasing function, the resulting classification is 
unchanged. This observation can lead to significant analytical and computational 
simplifications. In particular, for minimum-error-rate classification, any of the following 
choices gives identical classification results, but some can be much simpler to understand or 
to compute than others: 
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where ln denotes natural logarithm. 

 
3. Maximum-likelihood Method 
 

It is important to distinguish between supervised learning and unsupervised learning. In 
both cases, samples x  are assumed to be obtained by selecting a state of nature i  with 
probability )( iP  ,and then independently selecting x  according to the probability law 

)|( ixp  . The distinction is that with supervised learning we know the state of nature(class 
label)for each sample, whereas with unsupervised learning we do not. As one would expect, 
the problem of unsupervised learning is the more difficult one. In this section we shall 
consider only the supervised case, deferring consideration of unsupervised learning to 
Section 8. 
The problem of parameter estimation is a classical one in statistics, and it can be approached 
in several ways. We shall consider two common and reasonable procedures, maximum 
likelihood estimation and Bayesian estimation. Although the results obtained with these two 
procedures are frequently nearly identical, the approaches are conceptually quite different. 
Maximum likelihood and several other methods view the parameters as quantities whose 
values are fixed but unknown. The best estimate of their value is defined to be the one that 
maximizes the probability of obtaining the samples actually observed. In contrast, Bayesian 
methods view the parameters as random variables having some known a priori distribution. 
Observation of the samples converts this to a posterior density, thereby revising our opinion 
about the true values of the parameters. In the Bayesian case, we shall see that a typical 
effect of observing additional samples is to sharpen the a posteriori density function, 
causing it to peak near the true values of the parameters. This phenomenon is known as 
Bayesian learning. In either case, we use the posterior densities for our classification rule, as 
we have seen before. 

 
3.1 Maximum Likelihood 
Maximum likelihood estimation methods have a number of attractive attributes. First, they 
nearly always have good convergence properties as the number of train- ing samples 
increases. Further, maximum likelihood estimation often can be simpler than alternate 
methods, such as Bayesian techniques or other methods presented in subsequent section. 
Suppose that we separate a collection of samples according to class, so that we have c sets, 

cDD ,,1  , with the samples in iD  having been drawn independently according to the 
probability law )|( ixp  . We say such samples are i.i.d.—independent identically 
distributed random variables. We assume that )|( ixp   has a known parametric form, and 
is therefore determined uniquely by the value of a parameter vector i . For example, we 

might have )|( ixp  ～ ),( iiN  , where i  consists of the components of i  and i . To 
show the dependence of )|( ixp   on i  explicitly, we write )|( ixp   as ),|( iixp  . Our 
problem is to use the information provided by the training samples to obtain good estimates 
for the unknown parameter vectors c ,,1   associated with each category. 
To simplify treatment of this problem, we shall assume that samples in iD  give no 
information about i  if ji  —that is, we shall assume that the parameters for the different 
classes are functionally independent. This permits us to work with each class separately, 
and to simplify our notation by deleting indications of class distinctions. With this 
assumption we thus have c separate problems of the following form: Use a set D  of 
training samples drawn independently from the probability density p(x|θ)to estimate the 
unknown parameter vector  . 
Suppose that D  contains n  samples, nxx ,,1  . Then, since the samples were drawn 
independently, we have 
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Viewed as a function of  , )|( Dp  is called the likelihood of   with respect to the set of 
samples. The maximum likelihood estimate of   is, by definition, the value   that 
maximizes )|( Dp . Intuitively, this estimate corresponds to the value of   that in some 
sense best agrees with or supports the actually observed training samples. 
For analytical purposes, it is usually easier to work with the logarithm of the likelihood than 
with the likelihood itself. Since the logarithm is monotonically increasing, the   that 
maximizes the log-likelihood also maximizes the likelihood. If )|( Dp  is a well behaved, 
differentiable function of  ,   can be found by the standard methods of differential 
calculus. If the number of parameters to be set is p , then we let   denote the p -component 
vector T

p ),,( 1   , and    be the gradient operator 
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We define )(L  as the log-likelihood function? 
 

)|(ln)(  DpL   (15) 
We can then write our solution formally as the argument   that maximizes the log- 
likelihood, i.e., 

)(maxargˆ 

L  (16) 
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where ln denotes natural logarithm. 
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where the dependence on the data set D  is implicit. Thus we have from Eq.(13) 
 

)|(ln)(
1

 k

n

k
xpL


  (17) 

 
and 

)|(ln
1

 k

n

k
xpL 


 (18) 

 
Thus, a set of necessary conditions for the maximum likelihood estimate for   can be 
obtained from the set of p  equations 
 

0 L  (19) 
 
A solution   to Eq.(19) could represent a true global maximum, a local maximum or 
minimum, or(rarely)an inflection point of )(L . One must be careful, too, to check if the 
extremum occurs at a boundary of the parameter space, which might not be apparent from 
the solution to Eq.(19). If all solutions are found, we are guaranteed that one represents the 
true maximum, though we might have to check each solution individually(or calculate 
second derivatives)to identify which is the global optimum. Of course, we must bear in 
mind that  is an estimate; it is only in the limit of an infinitely large number of training 
points that we can expect that our estimate will equal to the true value of the generating 
function. 

 
3.2 Bayesian estimation 
We now consider the Bayesian estimation or Bayesian learning approach to pattern 
classification problems. Although the answers we get by this method will generally be 
nearly identical to those obtained by maximum likelihood, there is a conceptual difference: 
whereas in maximum likelihood methods we view the true parameter vector we seek,  , to 
be fixed, in Bayesian learning we consider   to be a random variable, and training data 
allows us to convert a distribution on this variable into a posterior probability density. 
The computation of the posterior probabilities )|( xP i  lies at the heart of Bayesian 
classification. Bayes formula allows us to compute these probabilities from the prior 
probabilities )( iP   and the class-conditional densities )|( ixp  , but how can we proceed 
when these quantities are unknown? The general answer to this question is that the best we 
can do is to compute )|( xP i  using all of the information at our disposal. Part of this 
information might be prior knowledge, such as knowledge of the functional forms for 
unknown densities and ranges for the values of unknown parameters. Part of this 
information might reside in a set of training samples. If we again let D denote the set of 
samples, then we can emphasize the role of the samples by saying that our goal is to 
compute the posterior probabilities ),|( DxP i . From these probabilities we can obtain the 
Bayes classifier. 
Given the sample D , Bayes formula then becomes 
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As this equation suggests, we can use the information provided by the training samples to 
help determine both the class-conditional densities and the a priori probabilities. 
Although we could maintain this generality, we shall henceforth assume that the true values 
of the a priori probabilities are known or obtainable from a trivial calculation; thus we 
substitute )|()( DPP ii   . Furthermore, since we are treating the supervised case, we can 
separate the training samples by class into c  subsets cDD ,,1   with the samples in iD  
belonging to i . As we mentioned when addressing maximum likelihood methods, in most 
cases of interest(and in all of the cases we shall consider), the samples in iD  have no 
influence on ),|( Dxp j  if ji  . This has two simplifying consequences. First, it allows us 
to work with each class separately, using only the samples in iD  to determine ),|( Dxp i . 
Used in conjunction with our assumption that the prior probabilities are known, this allows 
us to write Eq. 23 as 
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Second, because each class can be treated independently, we can dispense with needless 
class distinctions and simplify our notation. In essence, we have c separate problems of the 
following form: use a set D  of samples drawn independently according to the fixed but 
unknown probability distribution p(x)to determine )|( Dxp .This is the central problem of 
Bayesian learning. 

 
4. Nonparametric Techniques 
 

We treat supervised learning under the assumption that the forms of the underlying density 
functions are known in the last section. But in most pattern recognition applications, the 
common parametric forms rarely fit the densities. In this section we shall examine 
nonparametric procedures that can be used with arbitrary distributions and without the 
assumption that the forms of the underlying densities are known. 
There are several types of nonparametric methods of interest in pattern recognition. One is 
to estimate the density functions )|( jxp   from sample. And it can be substituted for the 
true densities. Another is to estimate a posteriori probabilities )|( xP j  directly. such as the 
nearest-neighbor rule Finally, there are nonparametric procedures for transforming the 
feature space in the hope that it may be possible to employ parametric methods in the 
transformed space. 
The following obvious estimate for )(xp : 
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where the dependence on the data set D  is implicit. Thus we have from Eq.(13) 
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Thus, a set of necessary conditions for the maximum likelihood estimate for   can be 
obtained from the set of p  equations 
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A solution   to Eq.(19) could represent a true global maximum, a local maximum or 
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As this equation suggests, we can use the information provided by the training samples to 
help determine both the class-conditional densities and the a priori probabilities. 
Although we could maintain this generality, we shall henceforth assume that the true values 
of the a priori probabilities are known or obtainable from a trivial calculation; thus we 
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cases of interest(and in all of the cases we shall consider), the samples in iD  have no 
influence on ),|( Dxp j  if ji  . This has two simplifying consequences. First, it allows us 
to work with each class separately, using only the samples in iD  to determine ),|( Dxp i . 
Used in conjunction with our assumption that the prior probabilities are known, this allows 
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Second, because each class can be treated independently, we can dispense with needless 
class distinctions and simplify our notation. In essence, we have c separate problems of the 
following form: use a set D  of samples drawn independently according to the fixed but 
unknown probability distribution p(x)to determine )|( Dxp .This is the central problem of 
Bayesian learning. 

 
4. Nonparametric Techniques 
 

We treat supervised learning under the assumption that the forms of the underlying density 
functions are known in the last section. But in most pattern recognition applications, the 
common parametric forms rarely fit the densities. In this section we shall examine 
nonparametric procedures that can be used with arbitrary distributions and without the 
assumption that the forms of the underlying densities are known. 
There are several types of nonparametric methods of interest in pattern recognition. One is 
to estimate the density functions )|( jxp   from sample. And it can be substituted for the 
true densities. Another is to estimate a posteriori probabilities )|( xP j  directly. such as the 
nearest-neighbor rule Finally, there are nonparametric procedures for transforming the 
feature space in the hope that it may be possible to employ parametric methods in the 
transformed space. 
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4.1 Parzen Windows 
Assume that the region nR  is a d -dimensional hypercube. hn is the length of an edge of 
that hypercube, then its volume is given by 
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Define the window function as  
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The number of samples in this hypercube is given by 
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Substitute this into Eq (22). we obtain the estimate 
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Eq.(26) expresses the estimate for )(xp as an average of functions of x and the samples xi. In 
essence, the window function is being used for interpolation—each sample contributing to 
the estimate in accordance with its distance from x. 
It is natural to ask that the estimate )(xpn  be a legitimate density function. We can require 
that 
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and 
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Maintain the relation d

nn hV  , then the )(xpn  also satisfies these conditions. 
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Then )(xpn  can be written as the average 
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Since d

nn hV  , nh  clearly affects both the amplitude and the width of )(xn . If nh  is very 
large, the amplitude of )(xn  is small, and x must be far from xi before )( in xx  changes 
much from )0(n .In this case, pn(x) is the superposition of n broad, slowly changing 
functions and is a very smooth “out-of-focus” estimate of )(xp . On the other hand, if nh  is 
very small, the peak value of )( in xx   is large and occurs near x=xi. In this case )(xp  is the 
superposition of n sharp pulses centered at the samples—an erratic, “noisy” estimate. For 
any value of nh , the distribution is normalized, that is 
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Let nV  slowly approach zero as n increases and )(xpn  converges to the unknown density 
p(x). )(xpn  has some mean )(xpn and variance )(2 xn . )(xpn  converges to p(x) if 
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To prove convergence we must place conditions on the unknown density )(xp , on the 
window function )(u , and on the window width nh . In general, continuity of )(p  at x  is 
required, and the conditions imposed by Eqs.(27)&(28) are customarily invoked. With care, 
it can be shown that the following additional conditions assure convergence: 
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Equations (34)&(35) keep )(  well behaved, and are satisfied by most density functions that 
one might think of using for window functions. Equations (36)&(37) state that the volume 
nV  must approach zero, but at a rate slower than n/1 . We shall now see why these are the 

basic conditions for convergence. 
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Eq.(26) expresses the estimate for )(xp as an average of functions of x and the samples xi. In 
essence, the window function is being used for interpolation—each sample contributing to 
the estimate in accordance with its distance from x. 
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that 
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large, the amplitude of )(xn  is small, and x must be far from xi before )( in xx  changes 
much from )0(n .In this case, pn(x) is the superposition of n broad, slowly changing 
functions and is a very smooth “out-of-focus” estimate of )(xp . On the other hand, if nh  is 
very small, the peak value of )( in xx   is large and occurs near x=xi. In this case )(xp  is the 
superposition of n sharp pulses centered at the samples—an erratic, “noisy” estimate. For 
any value of nh , the distribution is normalized, that is 
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Let nV  slowly approach zero as n increases and )(xpn  converges to the unknown density 
p(x). )(xpn  has some mean )(xpn and variance )(2 xn . )(xpn  converges to p(x) if 
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To prove convergence we must place conditions on the unknown density )(xp , on the 
window function )(u , and on the window width nh . In general, continuity of )(p  at x  is 
required, and the conditions imposed by Eqs.(27)&(28) are customarily invoked. With care, 
it can be shown that the following additional conditions assure convergence: 
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Equations (34)&(35) keep )(  well behaved, and are satisfied by most density functions that 
one might think of using for window functions. Equations (36)&(37) state that the volume 
nV  must approach zero, but at a rate slower than n/1 . We shall now see why these are the 

basic conditions for convergence. 
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4.2 nk –Nearest-Neighbor Estimation 
A potential remedy for the problem of the unknown “best” window function is to let the cell 
volume be a function of the training data, rather than some arbitrary function of the overall 
number of samples. For example, to estimate p(x)from n training samples or prototypes we 
can center a cell about x  and let it grow until I captures nk  samples, where nk  is some 
specified function of n. These samples are the nk  nearest-neighbors of x . It the density is 
high near x , the cell will be relatively small, which leads to good resolution. If the density is 
low, it is true that the cell will grow large, but it will stop soon after it enters regions of 
higher density. In either case, if we take 
 

n

n

V
nkxp /)(   (38) 

 
we want nk  to go to infinity as n  goes to infinity, since this assures us that nkn /  will be a 
good estimate of the probability that a point will fall in the cell of volume nV . However, we 
also want nk  to grow sufficiently slowly that the size of the cell needed to capture nk  
training samples will shrink to zero. Thus, it is clear from Eq.(38) that the ratio nkn /  must go 
to zero. Although we shall not supply a proof, it can be shown that the conditions 

 nn
klim  

and 0/lim 


nknn
  are necessary and sufficient for )(xpn  to converge to p(x)in probability at 

all points where )(xp  is continuous. If we take nkn   and assume that )(xpn  is a 

reasonably good approximation to )(xp  we then see from Eq.(38) that ))(/(1 xpnVn  . Thus, 

nV  again has the form nV /1 , but the initial volume 1V  is determined by the nature of the 
data rather than by some arbitrary choice on our part. Note that there are nearly always 
discontinuities in the slopes of these estimates, and these lie away from the prototypes 
themselves.  

 
5. Support Vector Machine 
 

In a support vector machine, the direct decision function that maximizes the generalization 
ability is determined for a two-class problem. Assuming that the training data of different 
classes do not overlap, the decision function is determined so that the distance from the 
training data is maximized. We call this the optimal decision function. Because it is difficult 
to determine a nonlinear decision function, the original input space is mapped into a high-
dimensional space called feature space. And in the feature space, the optimal decision 
function, namely, the optimal hyper-plane is determined. 
Support vector machines outperform conventional classifiers, especially when the number 
of training data is small and the number of input variables is large. This is because the 
conventional classifiers do not have the mechanism to maximize the margins of class 
boundaries. Therefore, if we introduce some mechanism to maximize margins, the 
generalization ability is improved. 
If the decision function is linear, namely, )(xg i  is given by 

bxwxg T
i )(  (39) 

 
where w  is an m-dimensional vector and b  is a bias term, and if one class is on the positive 
side of the hyper-plane, i.e., 0)( xgi , and the other class is on the negative side, the given 
problem is said to be linearly separable. 

 
5.1 Indirect Decision Functions 
For an )2(n -class problem, suppose we have indirect decision functions )(xgi  for classes 
i . To avoid unclassifiable regions, we classify x  into class j given by 
 

)(maxarg xgj ii
  (40) 

 
where arg  returns the subscript with the maximum value of )(xg i .If more than one 
decision function take the same maximum value for x , namely, x  is on the class boundary, 
it is not classifiable. 
In the following we discuss several methods to obtain the direct decision functions for 
multi-class problems. 
The first approach is to determine the decision functions by the one-against-all formulation. 
We determine the i th decision function )(xgi ni ,,1 , so that when x  belongs to class i , 
 

0)( xg i  (41) 
 
and when x belongs to one of the remaining classes, 
 

0)( xg i  (42) 
 
When x  is given, we classify x  into class i  if 0)( xg i  and 0)( xg j  njij ,,1,   . But 
by these decision functions, unclassifiable regions exist when more than one decision 
function are positive or no decision functions are positive.  
The second approach is based on a decision tree. It is considered to be a variant of one-
against-all formulation. We determine the i th decision function )(xgi ni ,,1 , so that 
when x  belongs to class i , 
 

0)( xg i  (43) 
and when x  belongs to one of the classes ni ,,1 , 
 

0)( xg i  (44) 
 
In classifying x , starting from )(1 xg , we find the first positive )(xgi  and classify x  into 
class i . If there is no such i  among )(xg i ( ni ,,1 ), we classify x  into class n . 
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The decision functions change if we determine decision functions in descending order or in 
an arbitrary order of class labels. Therefore, in this architecture, we need to determine the 
decision functions so that classification performance in the upper level of the tree is more 
accurate than in the lower one. Otherwise, the classification performance may not be good. 
Pair-wise Formulation 
The third approach is to determine the decision functions by pair-wise formulation. For 
classes i and j we determine the decision function )(xgij ( njiji ,,1,,,  , so that 
 

0)( xg ij  (45) 
 
when x  belongs to class i  and 
 

0)( xg ij  (46) 
 
when x  belongs to class j . 
In this formulation, )()( xgxg jiij  , and we need to determine n(n?1)/2 decision functions. 
Classification is done by voting, namely, we calculate )(xgi  
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and we classify x  into the class with the maximum )(xg i . By this formulation also, 
unclassifiable regions exist if )(xg i  take the maximum value for more than one class. These 
can be resolved by decision-tree formulation or by introducing membership functions. 
The fourth approach is to use error-correcting codes for encoding outputs. One-against-all 
formulation is a special case of error-correcting code with no error-correcting capability, and 
so is pair-wise formulation, as if“don’t”care bits are introduced. 
The fifth approach is to determine decision functions at all once. Namely, we determine the 
decision functions )(xg i  by 
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In this formulation we need to determine n decision functions at all once. This results in 
solving a problem with a larger number of variables than the previous methods. Unlike one-
against-all and pair-wise formulations, there is no unclassifiable region. 
Determination of decision functions using input-output pairs is called training. In training a 
multilayer neural network for a two-class problem, we can determine a direct decision 
function if we set one output neuron instead of two. But because for an n-class problem we 
set n output neurons with the i th neuron corresponding to the class i decision function, the 
obtained functions are indirect. Similarly, decision functions for fuzzy classifiers are indirect 
because membership functions are defined for each class. Conventional training methods 

determine the indirect decision functions so that each training input is correctly classified 
into the class designated by the associated training output. Assuming that the circles and 
rectangles are training data for Classes 1 and 2, respectively, even if the decision function 

)(2 xg  moves to the right as shown in the dotted curve, the training data are still correctly 
classified. Thus there are infinite possibilities of the positions of the decision functions that 
correctly classify the training data. Although the generalization ability is directly affected by 
the positions, conventional training methods do not consider this. 

 
5.2 Linear Learning Machines 
In training a classifier, usually we try to maximize classification performance for the training 
data. But if the classifier is too fit for the training data, the classification ability for unknown 
data, i.e., the generalization ability is degraded. This phenomenon is called over-fitting. 
Namely, there is a trade-of between the generalization ability and fitting to the training data. 
For a two-class problem, a support vector machine is trained so that the direct decision 
function maximizes the generalization ability. Namely, the m -dimensional input space x is 
mapped into the l -dimensional( l ≥ m )feature space z . Then in z , the quadratic 
programming problem is solved to separate two classes by the optimal separating hyper-
plane. One of the main ideas is, like support vector machines, to add a regularization term, 
which controls the generalization ability, to the objective function. 
Let M m -dimensional training inputs ix ( Mi ,,1 ) belong to Class 1 or 2 and the 
associated labels be 1iy  for Class 1 and -1 for Class 2. If these data are linearly separable, 
we can determine the decision function: 
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Because the training data are linearly separable, no training data satisfy 0 bxw i
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The decision functions change if we determine decision functions in descending order or in 
an arbitrary order of class labels. Therefore, in this architecture, we need to determine the 
decision functions so that classification performance in the upper level of the tree is more 
accurate than in the lower one. Otherwise, the classification performance may not be good. 
Pair-wise Formulation 
The third approach is to determine the decision functions by pair-wise formulation. For 
classes i and j we determine the decision function )(xgij ( njiji ,,1,,,  , so that 
 

0)( xg ij  (45) 
 
when x  belongs to class i  and 
 

0)( xg ij  (46) 
 
when x  belongs to class j . 
In this formulation, )()( xgxg jiij  , and we need to determine n(n?1)/2 decision functions. 
Classification is done by voting, namely, we calculate )(xgi  
 





n

jij
iji xgsignxg

1,
))(()(  (47) 

where 









01
01

)(
x
x

xsign  (48) 

 
and we classify x  into the class with the maximum )(xg i . By this formulation also, 
unclassifiable regions exist if )(xg i  take the maximum value for more than one class. These 
can be resolved by decision-tree formulation or by introducing membership functions. 
The fourth approach is to use error-correcting codes for encoding outputs. One-against-all 
formulation is a special case of error-correcting code with no error-correcting capability, and 
so is pair-wise formulation, as if“don’t”care bits are introduced. 
The fifth approach is to determine decision functions at all once. Namely, we determine the 
decision functions )(xg i  by 
 

)()( xgxg ji   for njij ,,1,   (49) 
In this formulation we need to determine n decision functions at all once. This results in 
solving a problem with a larger number of variables than the previous methods. Unlike one-
against-all and pair-wise formulations, there is no unclassifiable region. 
Determination of decision functions using input-output pairs is called training. In training a 
multilayer neural network for a two-class problem, we can determine a direct decision 
function if we set one output neuron instead of two. But because for an n-class problem we 
set n output neurons with the i th neuron corresponding to the class i decision function, the 
obtained functions are indirect. Similarly, decision functions for fuzzy classifiers are indirect 
because membership functions are defined for each class. Conventional training methods 

determine the indirect decision functions so that each training input is correctly classified 
into the class designated by the associated training output. Assuming that the circles and 
rectangles are training data for Classes 1 and 2, respectively, even if the decision function 

)(2 xg  moves to the right as shown in the dotted curve, the training data are still correctly 
classified. Thus there are infinite possibilities of the positions of the decision functions that 
correctly classify the training data. Although the generalization ability is directly affected by 
the positions, conventional training methods do not consider this. 

 
5.2 Linear Learning Machines 
In training a classifier, usually we try to maximize classification performance for the training 
data. But if the classifier is too fit for the training data, the classification ability for unknown 
data, i.e., the generalization ability is degraded. This phenomenon is called over-fitting. 
Namely, there is a trade-of between the generalization ability and fitting to the training data. 
For a two-class problem, a support vector machine is trained so that the direct decision 
function maximizes the generalization ability. Namely, the m -dimensional input space x is 
mapped into the l -dimensional( l ≥ m )feature space z . Then in z , the quadratic 
programming problem is solved to separate two classes by the optimal separating hyper-
plane. One of the main ideas is, like support vector machines, to add a regularization term, 
which controls the generalization ability, to the objective function. 
Let M m -dimensional training inputs ix ( Mi ,,1 ) belong to Class 1 or 2 and the 
associated labels be 1iy  for Class 1 and -1 for Class 2. If these data are linearly separable, 
we can determine the decision function: 
 

bxwxD i
T )(  (50) 

 
where w  is an m-dimensional vector, b  is a bias term, and for Mi ,,1
 









10

10

i

i
i

T

yfor
yfor

bxw  (51) 

 
Because the training data are linearly separable, no training data satisfy 0 bxw i

T . Thus, 
to control separability, instead of(51),we consider the following inequalities: 
 









11

11

i

i
i

T

yfor
yfor

bxw  (52) 

 
Equation(2.3)is equivalent to 
 

1)(  bxwy i
T

i  for Mi ,,1  (53) 
 
The hyper-plane 

cbxwxD i
T )(  for 11  c  (54) 

www.intechopen.com



New Advances in Machine Learning62

forms a separating hyper-plane that separates ix  ( Mi ,,1 ). When 0c , the separating 
hyper-plane is in the middle of the two hyper-planes with 1c  and 1 . The distance 
between the separating hyper-plane and the training datum nearest to the hyper-plane is 
called the margin. Assuming that the hyper-planes 1)( xD  and 1  include at least one 
training datum, the hyper-plane 0)( xD  has the maximum margin for 11  c . The 
region }1)(1|{  xDx  is the generalization region for the decision function. 
Now consider determining the optimal separating hyper-plane. The Euclidean distance 
from a training datum x  to the separating hyper-plane is given by wxD /|)(| . Because the 
vector w  is orthogonal to the separating hyper-plane, the line that goes through x  and that 
is orthogonal to the hyper-plane is given by xwaw ||||/ , where || a  is the Euclidean 
distance from x to the hyper-plane. It crosses the hyper-plane at the point where 
 

0)||||/( xwawD  (55) 
 
is satisfied.  Solving(2.6)for a , we obtain wxDa /)( . 
Then all the training data must satisfy 
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xDy kk for Mk ,,1  (56) 

 
Where   is the margin. 
Now if ( bw, ) is a solution, ( abaw, ) is also a solution, where a  is a scalar. Thus we impose 
the following constraint: 
 

1w  (57) 
 
From (56) and (57),to find the optimal separating hyper-plane, we need to find wwith the 
minimum Euclidean norm that satisfies(52). Therefore, the optimal separating hyper-plane 
can be obtained by minimizing 
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2
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with respect to w and b subject to the constraints: 
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Here, the square of the Euclidean norm w  in (58) is to make the optimization problem 
quadratic programming. The assumption of linear separability means that there exist w and 
b that satisfy (59).We call the solutions that satisfy (2.10) feasible solutions. Because the 
optimization problem has the quadratic objective function with the inequality constraints, 
even if the solutions are non-unique, the value of the objective function is unique(see Section 
2.6.4).Thus non-uniqueness is not a problem for support vector machines. This is one of the 

advantages of support vector machines over neural networks, which have numerous local 
minima. 

 
5.3 SVM and Change-point Theory 
To detect the change-points in signal data is an important practical problem. The classical 
method to solve this problem is using the statistical algorithms which are based on Bayesian 
theory. The efficiency of these methods always depends on the character of the given data. 
In this paper, we introduce support vector machine method to detect the abrupt change on 
signal data. The experience shows that the idea is effective, and it does not limit to the 
character of the distribution. 
Consider time series )1()1(
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1mx , that means the first m  points submit to the 
distribution (1), and the following data occur with the other distribution. The time series is 
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where k  is greatly less than m  and mn  .  
We assume that the change-point is at m , and the changing information has been 
distributed to several distinct and continuous iy ’s. the vectors contain only the point on 
state (1) and state (2) are classifiable since the different distributions. Of course, it seems 
arbitrary here. We must do a great deal of experience to support this point of view.  
In this paper, we illustrate our method to detect change-point with support vector machine 
method firstly in next section. The result of experience shows that the method is effective. 
And in the third section, we discuss on the detail of method. After that, the last section is our 
conclusion. . 
 

    
Fig. 1. Plots of train data and test data 
 
The method is still effective for classifying the samples from the distributions with distinct 
variance. Let us consider a new simulation data set. The randomizer produces 100 samples 
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where k  is greatly less than m  and mn  .  
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The method is still effective for classifying the samples from the distributions with distinct 
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that submit to ),( 2
11 N  and the others that submit to ),( 2

22 N . Let 101  , 202  ，
52

1  , 102
2  . The randomizer produce 100 samples under two group of parameter 

respectively. These samples are taken as training data set. Repeat the steps to produce more 
60 and 40 samples under the different group of parameter. These samples act as test data set. 
The values of samples are described by figure below. 
The result of output file is list in the table below. The terms of columns are: (1) Dimension; 
(2) Accuracy on test set; (3) support vectors; (4) Count of incorrect samples; and (5) Mean 
Squared Error. 
 

k Accuracy SV incorrect MSE 
2 88.78% 100 11 0.890499 
3 90.63% 85 9 1.687711 
4 94.68% 74 5 1.437032 
5 96.74% 68 3 1.260453 
6 97.78% 62 2 1.098423 
7 97.73% 57 2 0.859724 
8 100.00% 55 0 0.814199 
9 100.00% 52 0 0.727360 
10 100.00% 53 0 0.754256 

Table 1. Result of experience 
 
We are interested in considering the location of the incorrect samples. Figure 4 tell us the 
information. 
 

           

           

           
Fig. 2. Predictions with SVMs which k vary from 2 to 10 

To detect the change-points in signal processing is an important practical problem. The 
classical method to solve this problem is using the statistical algorithms which are based on 
Bayesian theory. The efficiency of these methods always depends on the character of the 
given data. In this paper, we introduce support vector machine method to detect the abrupt 
change on signal data. A change-point detecting problem is transformed to a classification 
problem. The experience shows that the idea is effective, 

 
6. Neural Networks 
 

For classification, we will have c output units, one for each of the categories, and the signal 
from each output unit is the discriminant function )(xgk   as: 
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This, then, is the class of functions that can be implemented by a three-layer neural network. 
An even broader generalization would allow transfer functions at the output layer to differ 
from those in the hidden layer, or indeed even different functions at each individual unit. 
Kolmogorov proved that any continuous function )(xg defined on the unit hypercube  
nI  (I=[0,1]and n ≥ 2)can be represented in the form 
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or properly chosen functions jE  and )( iij x .  
We consider the training error on a pattern to be the sum over output units of the training 
squared difference between the desired output kt  (given by a teacher)and the actual error 
output kz , much as we had in the LMS algorithm for two-layer nets: 
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where t  and z  are the target and the network output vectors of length c ; w  represents all 
the weights in the network.  
The back propagation learning rule is based on gradient descent. The weights are initialized 
with random values, and are changed in a direction that will reduce the error: 
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or in component form 
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where   is the learning rate, and merely indicates the relative size of the change in weights. 
This iterative algorithm requires taking a weight vector at iteration m and updating it as: 
 

)()()1( mwmwmw   (66) 
 
where m indexes the particular pattern presentation 

 
7. Stochastic Search  
 

Search methods based on evolution—genetic algorithms and genetic programming —
perform highly parallel stochastic searches in a space set by the designer. The fundamental 
representation used in genetic algorithms is a string of bits, or chromosome; the 
representation in genetic programming is a snippet of computer code. Variation is 
introduced by means of crossover, mutation and insertion. As with all classification methods, 
the better the features, the better the solution. There are many heuristics that can be 
employed and parameters that must be set. As the cost of computation contiues to decline, 
computationally intensive methods, such as Boltzmann networks and evolutionary methods, 
should become increasingly popular. 

 
7.1 Simulated annealing 
In physics, the method for allowing a system such as many magnets or atoms in an alloy to 
find a low-energy configuration is based on annealing. Annealing proceeds by gradually 
lowering the temperature of the system—ultimately toward zero and thus no randomness—
so as to allow the system to relax into a low-energy configuration. Such annealing is 
effective because even at moderately high temperatures, the system slightly favors regions 
in the configuration space that are overall lower in energy, and hence are more likely to 
contain the global minimum. As the temperature is lowered, the system has increased 
probability of finding the optimum configuration. 
This method is successful in a wide range of energy functions Fortunately, the problems in 
learning we shall consider rarely involve such pathological functions. 
The statistical properties of large number of interacting physical components at a 
temperature T , such as molecules in a gas or magnetic atoms in a solid, have been 
thoroughly analyzed. A key result, which relies on a few very natural assumptions, is the 
following: the probability the system is in a(discrete)configuration indexed by   
having energy E  is given by 
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where Z  is a normalization constant. The numerator is the Boltzmann factor and the 
denominator the partition function, the sum over all possible configurations  
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which guarantees Eq. 2 represents a true probability. The number of configurations is very 
high, N2 , and in physical systems Z can be calculated only in simple cases. Fortunately, we 
need not calculate the partition function, as we shall see. 

 
7.2 Genetic Algorithms 
In basic genetic algorithms, the fundamental representation of each classifier is a binary 
string, called a chromosome. The mapping from the chromosome to the features 
chromosome and other aspects of the classifier depends upon the problem domain, and the 
designer has great latitude in specifying this mapping. In pattern classification, the score is 
usually chosen to be some monotonic function of the accuracy on a data set, possibly with 
penalty term to avoid overfitting. We use a desired fitness, θ, as the stopping criterion. 
Before we discuss these points in more depth, we first consider more specifically the 
structure of the basic genetic algorithm, and then turn to the key notion of genetic operators, 
used in the algorithm. 
There are three primary genetic operators that govern reproduction: Crossover, Mutation 
and Selection.: Crossover involves the mixing—“mating”—of two chromosomes. A mating 
split point is chosen randomly along the length of either chromosome. The first part of 
chromosome A is spliced to the last part of chromosome B, and vice versa, thereby yielding 
two new chromosomes. Each bit in a single chromosome is given a small chance, Pmut, of 
being changed from a 1 to a 0 or vice versa. Other genetic operators may be employed, for 
instance inversion—where the chromosome is reversed front to back. This operator is used 
only rarely since inverting a chromosome with a high score nearly always leads to one with 
very low score. Below we shall briefly consider another operator, insertions. 
The process of selection specifies which chromosomes from one generation will be sources 
for chromosomes in the next generation. Up to here, we have assumed that the 
chromosomes would be ranked and selected in order of decreasing fitness until the next 
generation is complete. This has the benefit of generally pushing the population toward 
higher and higher scores. Nevertheless, the average improvement from one generation to 
the next depends upon the variance in the scores at a given generation, and because this 
standard fitness-based selection need not give high variance, other selection methods may 
prove superior. 
The principle alternative selection scheme is fitness-proportional selection, or fitness 
proportional reproduction, in which the probability that each chromosome is selecte is 
proportional to its fitness. While high-fitness chromosomes are preferentially selected, 
occasionally low-fitness chromosomes are selected, and this may preserve diversity and 
increase variance of the population. 
A minor modification of this method is to make the probability of selection proportional to 
some monotonically increasing function of the fitness. If the function instead has a positive 
second derivative, the probability that high-fitness chromosomes is enhanced. One version 
of this heuristic is inspired by the Boltzmann factor of Eq.2; the probability that chromosome 
i with fitness fi will be selected is 
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where   is the learning rate, and merely indicates the relative size of the change in weights. 
This iterative algorithm requires taking a weight vector at iteration m and updating it as: 
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where m indexes the particular pattern presentation 
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thoroughly analyzed. A key result, which relies on a few very natural assumptions, is the 
following: the probability the system is in a(discrete)configuration indexed by   
having energy E  is given by 

)(
)(

/

TZ
eP

TE




  (67) 

 
where Z  is a normalization constant. The numerator is the Boltzmann factor and the 
denominator the partition function, the sum over all possible configurations  
 

 
'

/')(


 TEeTZ  (68) 

which guarantees Eq. 2 represents a true probability. The number of configurations is very 
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only rarely since inverting a chromosome with a high score nearly always leads to one with 
very low score. Below we shall briefly consider another operator, insertions. 
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chromosomes would be ranked and selected in order of decreasing fitness until the next 
generation is complete. This has the benefit of generally pushing the population toward 
higher and higher scores. Nevertheless, the average improvement from one generation to 
the next depends upon the variance in the scores at a given generation, and because this 
standard fitness-based selection need not give high variance, other selection methods may 
prove superior. 
The principle alternative selection scheme is fitness-proportional selection, or fitness 
proportional reproduction, in which the probability that each chromosome is selecte is 
proportional to its fitness. While high-fitness chromosomes are preferentially selected, 
occasionally low-fitness chromosomes are selected, and this may preserve diversity and 
increase variance of the population. 
A minor modification of this method is to make the probability of selection proportional to 
some monotonically increasing function of the fitness. If the function instead has a positive 
second derivative, the probability that high-fitness chromosomes is enhanced. One version 
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where the expectation is over the current generation and T is a control parameter loosely 
referred to as a temperature. Early in the evolution the temperature is set high, giving all 
chromosomes roughly equal probability of being selected. Late in the evolution the 
temperature is set lower so as to find the chromosomes in the region of the optimal classifier. 
We can express such search by analogy to biology: early in the search the population 
remains diverse and explores the fitness landscape in search of promising areas; later the 
population exploits the specific fitness opportunities in a small region of the space of 
possible classifiers. 
When a pattern recognition problem involves a model that is discrete or of such high 
complexity that analytic or gradient descent methods are unlikely to work, we may employ 
stochastic techniques—ones that at some level rely on randomness to find model 
parameters.Simulated annealing,based on physical annealing of metals, consists in 
randomly perturbing the system,and gradually decreasing the randomness to a low final 
level,in order to find an optimal solution.Boltzmann learning trains the weights in a network 
so that the probability of a desired final output is increased. Such learning is based on 
gradient descent in the Kullback-Liebler divergence between two distributions of visible 
states at the output units:one distribution describes these units when clamped at the known 
category information, and the other when they are free to assume values based on the 
activations throughout the network. Some graphical models, such as hidden Markov models 
and Bayes belief networks, have counterparts in structured Boltzmann networks, and this 
leads to new applications of Boltzmann learning. 

 
8. Unsupervised Learning and Clustering 
 

Until now we have assumed that the training samples used to design a classifier were 
labelled by their category membership. Procedures that use labelled samples are said to be 
supervised. Now we shall investigate a number of unsupervised procedures, which use 
unlabeled samples.  
Let us reconsider our original problem of learning something of use from a set of unlabeled 
samples. Viewed geometrically, these samples may form clouds of points in a d -
dimensional space. Suppose that we knew that these points came from a single normal 
distribution. Then the most we could learn form the data would be contained in the 
sufficient statistics—the sample mean and the sample covariance matrix. In essence, these 
statistics constitute a compact description of the data. The sample mean locates the centre of 
gravity of the cloud; it can be thought of as the single point m  that best represents all of the 
data in the sense of minimizing the sum of squared distances from m to the samples. The 
sample covariance matrix describes the amount the data scatters along various directions. If 
the data points are actually normally distributed, then the cloud has a simple 
hyperellipsoidal shape, and the sample mean tends to fall in the region where the samples 
are most densely concentrated. 
If we assume that the samples come from a mixture of c normal distributions, we can 
approximate a greater variety of situations. In essence, this corresponds to assuming that the 
samples fall in hyperellipsoidally shaped clouds of various sizes and orientations. If the 
number of component densities is sufficiently high, we can approximate virtually any 
density function as a mixture model in this way, and use the parameters of the mixture to 
describe the data. Alas, we have seen that the problem of estimating the parameters of a 

mixture density is not trivial. Furthermore, in situations where we have relatively little prior 
knowledge about the nature of the data, the assumption of particular parametric forms may 
lead to poor or meaningless results. Instead of finding structure in the data, we would be 
imposing structure on it. 
One alternative is to use one of the nonparametric methods to estimate the unknown 
mixture density. If accurate, the resulting estimate is certainly a complete description of 
what we can learn from the data. Regions of high local density, which might correspond to 
significant subclasses in the population, can be found from the peaks or modes of the 
estimated density. 
If the goal is to find subclasses,a more direct alternative is to use a clustering procedure. 
Roughly speaking, clustering procedures yield a data description in terms clustering of 
clusters or groups of data points that possess strong internal similarities. Formalprocedure 
clustering procedures use a criterion function, such as the sum of the squared distances from 
the cluster centres, and seek the grouping that extremizes the criterion function. Because 
even this can lead to unmanageable computational problems, other procedures have been 
proposed that are intuitively appealing but that lead to solutions having few if any 
established properties. Their use is usually justified on the ground that they are easy to 
apply and often yield interesting results that may guide the application of more rigorous 
procedures. 

 
8.1 Similarity Measures 
The most obvious measure of the similarity(or dissimilarity)between two samples is the 
distance between them. One way to begin a clustering investigation is to define a suitable 
distance function and compute the matrix of distances between all pairs of samples. If 
distance is a good measure of dissimilarity, then one would expect the distance between 
samples in the same cluster to be significantly less than the distance between samples in 
different clusters. 
Suppose for the moment that we say that two samples belong to the same cluster if the 
Euclidean distance between them is less than some threshold distance 0d . It is immediately 
obvious that the choice of d0 is very important. If 0d  is very large, all of the samples will be 
assigned to one cluster. If 0d  is very small, each sample will form an isolated, singleton 
cluster. To obtain “natural” clusters, 0d  will have to be greater than the typical within-
cluster distances and less than typical between-cluster distances. 
Less obvious perhaps is the fact that the results of clustering depend on the choice of 
Euclidean distance as a measure of dissimilarity. That particular choice is generally justified 
if the feature space is isotropic and the data is spread roughly evenly a long all directions. 
Clusters defined by Euclidean distance will be invariant to translations or rotations in 
feature space—rigid-body motions of the data points. However, they will not be invariant to 
linear transformations in general, or to other transformations that distort the distance 
relationships. Thus, a simple scaling of the coordinate axes can result in a different grouping 
of the data into clusters. Of course, this is of no concern for problems in which arbitrary 
rescaling is an unnatural or meaningless transformation. However, if clusters are to mean 
anything, they should be invariant to transformations natural to the problem. 
One way to achieve invariance is to normalize the data prior to clustering. For example, to 
obtain invariance to displacement and scale changes, one might translate and scale the axes 
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where the expectation is over the current generation and T is a control parameter loosely 
referred to as a temperature. Early in the evolution the temperature is set high, giving all 
chromosomes roughly equal probability of being selected. Late in the evolution the 
temperature is set lower so as to find the chromosomes in the region of the optimal classifier. 
We can express such search by analogy to biology: early in the search the population 
remains diverse and explores the fitness landscape in search of promising areas; later the 
population exploits the specific fitness opportunities in a small region of the space of 
possible classifiers. 
When a pattern recognition problem involves a model that is discrete or of such high 
complexity that analytic or gradient descent methods are unlikely to work, we may employ 
stochastic techniques—ones that at some level rely on randomness to find model 
parameters.Simulated annealing,based on physical annealing of metals, consists in 
randomly perturbing the system,and gradually decreasing the randomness to a low final 
level,in order to find an optimal solution.Boltzmann learning trains the weights in a network 
so that the probability of a desired final output is increased. Such learning is based on 
gradient descent in the Kullback-Liebler divergence between two distributions of visible 
states at the output units:one distribution describes these units when clamped at the known 
category information, and the other when they are free to assume values based on the 
activations throughout the network. Some graphical models, such as hidden Markov models 
and Bayes belief networks, have counterparts in structured Boltzmann networks, and this 
leads to new applications of Boltzmann learning. 

 
8. Unsupervised Learning and Clustering 
 

Until now we have assumed that the training samples used to design a classifier were 
labelled by their category membership. Procedures that use labelled samples are said to be 
supervised. Now we shall investigate a number of unsupervised procedures, which use 
unlabeled samples.  
Let us reconsider our original problem of learning something of use from a set of unlabeled 
samples. Viewed geometrically, these samples may form clouds of points in a d -
dimensional space. Suppose that we knew that these points came from a single normal 
distribution. Then the most we could learn form the data would be contained in the 
sufficient statistics—the sample mean and the sample covariance matrix. In essence, these 
statistics constitute a compact description of the data. The sample mean locates the centre of 
gravity of the cloud; it can be thought of as the single point m  that best represents all of the 
data in the sense of minimizing the sum of squared distances from m to the samples. The 
sample covariance matrix describes the amount the data scatters along various directions. If 
the data points are actually normally distributed, then the cloud has a simple 
hyperellipsoidal shape, and the sample mean tends to fall in the region where the samples 
are most densely concentrated. 
If we assume that the samples come from a mixture of c normal distributions, we can 
approximate a greater variety of situations. In essence, this corresponds to assuming that the 
samples fall in hyperellipsoidally shaped clouds of various sizes and orientations. If the 
number of component densities is sufficiently high, we can approximate virtually any 
density function as a mixture model in this way, and use the parameters of the mixture to 
describe the data. Alas, we have seen that the problem of estimating the parameters of a 

mixture density is not trivial. Furthermore, in situations where we have relatively little prior 
knowledge about the nature of the data, the assumption of particular parametric forms may 
lead to poor or meaningless results. Instead of finding structure in the data, we would be 
imposing structure on it. 
One alternative is to use one of the nonparametric methods to estimate the unknown 
mixture density. If accurate, the resulting estimate is certainly a complete description of 
what we can learn from the data. Regions of high local density, which might correspond to 
significant subclasses in the population, can be found from the peaks or modes of the 
estimated density. 
If the goal is to find subclasses,a more direct alternative is to use a clustering procedure. 
Roughly speaking, clustering procedures yield a data description in terms clustering of 
clusters or groups of data points that possess strong internal similarities. Formalprocedure 
clustering procedures use a criterion function, such as the sum of the squared distances from 
the cluster centres, and seek the grouping that extremizes the criterion function. Because 
even this can lead to unmanageable computational problems, other procedures have been 
proposed that are intuitively appealing but that lead to solutions having few if any 
established properties. Their use is usually justified on the ground that they are easy to 
apply and often yield interesting results that may guide the application of more rigorous 
procedures. 

 
8.1 Similarity Measures 
The most obvious measure of the similarity(or dissimilarity)between two samples is the 
distance between them. One way to begin a clustering investigation is to define a suitable 
distance function and compute the matrix of distances between all pairs of samples. If 
distance is a good measure of dissimilarity, then one would expect the distance between 
samples in the same cluster to be significantly less than the distance between samples in 
different clusters. 
Suppose for the moment that we say that two samples belong to the same cluster if the 
Euclidean distance between them is less than some threshold distance 0d . It is immediately 
obvious that the choice of d0 is very important. If 0d  is very large, all of the samples will be 
assigned to one cluster. If 0d  is very small, each sample will form an isolated, singleton 
cluster. To obtain “natural” clusters, 0d  will have to be greater than the typical within-
cluster distances and less than typical between-cluster distances. 
Less obvious perhaps is the fact that the results of clustering depend on the choice of 
Euclidean distance as a measure of dissimilarity. That particular choice is generally justified 
if the feature space is isotropic and the data is spread roughly evenly a long all directions. 
Clusters defined by Euclidean distance will be invariant to translations or rotations in 
feature space—rigid-body motions of the data points. However, they will not be invariant to 
linear transformations in general, or to other transformations that distort the distance 
relationships. Thus, a simple scaling of the coordinate axes can result in a different grouping 
of the data into clusters. Of course, this is of no concern for problems in which arbitrary 
rescaling is an unnatural or meaningless transformation. However, if clusters are to mean 
anything, they should be invariant to transformations natural to the problem. 
One way to achieve invariance is to normalize the data prior to clustering. For example, to 
obtain invariance to displacement and scale changes, one might translate and scale the axes 
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so that all of the features have zero mean and unit variance— standardize the data. To 
obtain invariance to rotation, one might rotate the axes so that they coincide with the 
eigenvectors of the sample covariance matrix. This trans- formation to principal components 
can be preceded and/or followed by normalization for scale. 
However, we should not conclude that this kind of normalization is necessarily desirable. 
Consider, for example, the matter of translating and whitening—scaling the axes so that 
each feature has zero mean and unit variance. The rationale usually given for this 
normalization is that it prevents certain features from dominating distance calculations 
merely because they have large numerical values, much as we saw in networks trained with 
backpropagation. Subtracting the mean and dividing by the standard deviation is an 
appropriate normalization if this spread of values is due to normal random 
variation;however,it can be quite inappropriate if the spread is due to the presence of 
subclasses. 
Instead of scaling axes, we can change the metric in interesting ways. For instance, one 
broad class of distance metrics is of the form 
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where q ≥1 is a selectable parameter—the general Minkowski metric we considered in. 
Setting q =2 gives the familiar Euclidean metric while setting q =1 the Manhattan or city 
block metric—the sum of the absolute distances along each of the d  coordinate axes. Note 
that only q =2 is invariant to an arbitrary rotation or translation in feature space. Another 
alternative is to use some kind of metric based on the data itself, such as the Mahalanobis 
distance. 
More generally, one can abandon the use of distance altogether and introduce a nonmetric 
similarity function )',( xxs to compare two vectors x  and x . Convention-similarity ally, 
this is a symmetric functions whose value is large when x  and x  are somehowfunction 
“similar.” For example, when the angle between two vectors is a meaningful measure of 
their similarity, then the normalized inner product 
 

||'||||||
')',(
xx

xxxxs
t


  (71) 

 
may be an appropriate similarity function. This measure, which is the cosine of the angle 
between x  and x ,is invariant to rotation and dilation, though it is not invariant to 
translation and general linear transformations. 

 
8.2 Criterion Functions 
8.2.1 The Sum-of-Squared-Error Criterion 
The simplest and most widely used criterion function for clustering is the sum-of- squared-
error criterion. Let ni be the number of samples in iD  and let mi be the mean of those 
samples, 
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Then the sum-of-squared errors is defined by 
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8.2.2 Related Minimum Variance Criteria 
By some simple algebraic manipulation we can eliminate the mean vectors from the 
expression for eJ  and obtain the equivalent expression 
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Equation 51 leads us to interprets is

  as the average squared distance between points in the  

i -th cluster, and emphasizes the fact that the sum-of-squared-error criterion uses Euclidean 
distance as the measure of similarity. It also suggests an obvious way of obtaining other 
criterion functions. For example, one can replaces is

  by the average, the median, or perhaps 
the maximum distance between points in a cluster. More generally, one can introduce an 
appropriate similarity function s(x,x)and replaces is

 by functions such as 
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8.3 Hierarchical Clustering 
The most natural representation of hierarchical clustering is a corresponding tree, called a 
dendrogram, which shows how the samples are grouped. If it is possible to measure the 
similarity between clusters, then the dendrogram is usually drawn to scale to show the 
similarity between the clusters that are grouped. We shall see shortly how such similarity 
values can be obtained, but first note that the similarity values can be used to help 
determine whether groupings are natural or forced. If the similarity values for the levels are 
roughly evenly distributed throughout the range of possible values, then there is no 
principled argument that any particular number of clusters is better or “more natural” than 
another. Conversely, suppose that there is a unusually large gap between the similarity 
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so that all of the features have zero mean and unit variance— standardize the data. To 
obtain invariance to rotation, one might rotate the axes so that they coincide with the 
eigenvectors of the sample covariance matrix. This trans- formation to principal components 
can be preceded and/or followed by normalization for scale. 
However, we should not conclude that this kind of normalization is necessarily desirable. 
Consider, for example, the matter of translating and whitening—scaling the axes so that 
each feature has zero mean and unit variance. The rationale usually given for this 
normalization is that it prevents certain features from dominating distance calculations 
merely because they have large numerical values, much as we saw in networks trained with 
backpropagation. Subtracting the mean and dividing by the standard deviation is an 
appropriate normalization if this spread of values is due to normal random 
variation;however,it can be quite inappropriate if the spread is due to the presence of 
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Instead of scaling axes, we can change the metric in interesting ways. For instance, one 
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where q ≥1 is a selectable parameter—the general Minkowski metric we considered in. 
Setting q =2 gives the familiar Euclidean metric while setting q =1 the Manhattan or city 
block metric—the sum of the absolute distances along each of the d  coordinate axes. Note 
that only q =2 is invariant to an arbitrary rotation or translation in feature space. Another 
alternative is to use some kind of metric based on the data itself, such as the Mahalanobis 
distance. 
More generally, one can abandon the use of distance altogether and introduce a nonmetric 
similarity function )',( xxs to compare two vectors x  and x . Convention-similarity ally, 
this is a symmetric functions whose value is large when x  and x  are somehowfunction 
“similar.” For example, when the angle between two vectors is a meaningful measure of 
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may be an appropriate similarity function. This measure, which is the cosine of the angle 
between x  and x ,is invariant to rotation and dilation, though it is not invariant to 
translation and general linear transformations. 

 
8.2 Criterion Functions 
8.2.1 The Sum-of-Squared-Error Criterion 
The simplest and most widely used criterion function for clustering is the sum-of- squared-
error criterion. Let ni be the number of samples in iD  and let mi be the mean of those 
samples, 
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Equation 51 leads us to interprets is
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i -th cluster, and emphasizes the fact that the sum-of-squared-error criterion uses Euclidean 
distance as the measure of similarity. It also suggests an obvious way of obtaining other 
criterion functions. For example, one can replaces is
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8.3 Hierarchical Clustering 
The most natural representation of hierarchical clustering is a corresponding tree, called a 
dendrogram, which shows how the samples are grouped. If it is possible to measure the 
similarity between clusters, then the dendrogram is usually drawn to scale to show the 
similarity between the clusters that are grouped. We shall see shortly how such similarity 
values can be obtained, but first note that the similarity values can be used to help 
determine whether groupings are natural or forced. If the similarity values for the levels are 
roughly evenly distributed throughout the range of possible values, then there is no 
principled argument that any particular number of clusters is better or “more natural” than 
another. Conversely, suppose that there is a unusually large gap between the similarity 
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values for the levels corresponding to c =3 and to c =4 clusters. In such a case, one can 
argue that c =3 is the most natural number of clusters. 

 
8.3.1 The Nearest-Neighbor Algorithm 
When maxd  is used to measure the distance between clusters the algorithm is sometimes 
called the nearest-neighbor cluster algorithm, or minimum algorithm Moreover, if it is 
terminated when the distance between nearest clusters exceeds an arbitrary threshold, it is 
called the single-linkage algorithm. Suppose that we think of the data points as being nodes 
of a graph, with edges forming a path between the nodes in the same subset iD . When dmin 
is used to measure the distance between subsets, the nearest neighbor nodes determine the 
nearest subsets. The merging of iD  and jD  corresponds to adding an edge between the 
nearest pair of nodes in iD  and jD . Since edges linking clusters always go between distinct 
clusters, the resulting graph never has any closed loops or circuits;in the terminology of 
graph theory, this procedure generates a tree. If it is allowed to continue until all of the 
subsets are linked, the result is a spanning tree—a tree with a path from any node to any 
other node. Moreover,it can be shown that the sum of the edge lengths of the resulting tree 
will not exceed the sum of the edge lengths for any other spanning tree for that set of 
samples. Thus, with the use of mind  as the distance measure, the agglomerative clustering 
procedure becomes an algorithm for generating a minimal spanning tree. 

 
8.3.2 The Farthest-Neighbor Algorithm 
When dmax(Eq.75)is used to measure the distance between subsets, the algorithm is 
sometimes called the farthest-neighbor clustering algorithm, or maximum algorithm. If it is 
terminated when the distance between nearest clusters exceeds an arbitrary threshold, it is 
called the complete-linkage algorithm. The farthest-neighbor algorithm discourages the 
growth of elongated clusters. Application of the procedure can be thought of as producing a 
graph in which edges connect all of the nodes in a cluster. In the terminology of graph 
theory, every cluster constitutes a complete subgraph. The distance between two clusters is 
determined by the most distant nodes in the two clusters. When the nearest clusters are 
merged, the graph is changed by adding edges between every pair of nodes in the two 
clusters. 
Unsupervised learning and clustering seek to extract information from unlabeled samples. If 
the underlying distribution comes from a mixture of component densities described by a set 
of unknown parameters  , then   can be estimated by Bayesian or maximum- likelihood 
methods. A more general approach is to define some measure of similarity between two 
clusters, as well as a global criterion such as a sum-squared- error or trace of a scatter matrix. 
Since there are only occasionally analytic methods for computing the clustering which 
optimizes the criterion, a number of greedy(locally step-wise optimal)iterative algorithms 
can be used, such as k-means and fuzzy k-means clustering. 
If we seek to reveal structure in the data at many levels—i.e., clusters with sub-clusters and 
sub-subcluster—then hierarchical methods are needed. Agglomerative or bottom-up 
methods start with each sample as a singleton cluster and iteratively merge clusters that are 
“most similar” according to some chosen similarity or distance measure.Conversely, 
divisive or top-down methods start with a single cluster  representing the full data set and 

iteratively splitting into smaller clusters, each time seeking the subclusters that are most 
dissimilar. The resulting hierarchical structure 
is revealed in a dendrogram. A large disparity in the similarity measure for successive 
cluster levels in a dendrogram usually indicates the “natural” number of clusters. 
Alternatively, the problem of cluster validity—knowing the proper number of clusters —can 
also be addressed by hypothesis testing. In that case the null hypothesis is that there are 
some number c  of clusters; we then determine if the reduction of the cluster criterion due to 
an additional cluster is statistically significant. 
Competitive learning is an on-line neural network clustering algorithm in which the cluster 
center most similar to an input pattern is modified to become more like that pattern. In 
order to guarantee that learning stops for an arbitrary data set, the learning rate must decay. 
Competitive learning can be modified to allow for the creation of new cluster centers, if no 
center is sufficiently similar to a particular input pattern, as in leader-follower clustering and 
Adaptive Resonance. While these methods have many advantages, such as computational 
ease and tracking gradual variations in the data, they rarely optimize an easily specified 
global criterion such as sum-of-squared error. 
Component analysis seeks to find directions or axes in feature space that provide an 
improved, lower-dimensional representation for the full data space. In(linear) principal 
component analysis, such directions are merely the largest eigenvectors of the covariance 
matrix of the full data; this optimizes a sum-squared-error criterion. Nonlinear principal 
components, for instance as learned in an internal layer an auto- encoder neural network, 
yields curved surfaces embedded in the full d -dimensional feature space, onto which an 
arbitrary pattern x is projected. The goal in independent component analysis—which uses 
gradient descent in an entropy criterion—is to determine the directions in feature space that 
are statistically most independent. Such directions may reveal the true sources(assumed 
independent)and can be used for segmentation and blind source separation. 
Two general methods for dimensionality reduction is self-organizing feature maps and 
multidimensional scaling. Self-organizaing feature maps can be highly nonlinear, and 
represents points close in the source space by points close in the lower-dimensional target 
space. In preserving neighborhoods in this way, such maps also called “topologically 
correct.” The source and target spaces can be of very general shapes, and the mapping will 
depend upon the the distribution of samples within the source space. Multidimensional 
scaling similarly learns a nonlinear mapping that, too, seeks to preserve neighborhoods, and 
is often used for data visualization. Because the basic method requires all the inter-point 
distances for minimizing a global criterion function, its space complexity limits the 
usefulness of multidimensional scaling to problems of moderate size. 

 
9. Conclusion 
 

One approach to this problem is to use the samples to estimate the unknown probabilities 
and probability densities, and to use the resulting estimates as if they were the true values. 
In typical supervised pattern classification problems, the estimation of the prior probabilities 
presents no serious difficulties. However, estimation of the class-conditional densities is 
quite another matter. The number of available samples always seems too small, and serious 
problems arise when the dimensionality of the feature vector x  is large. If we know the 
number of parameters in advance and our general knowledge about the problem permits us 
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values for the levels corresponding to c =3 and to c =4 clusters. In such a case, one can 
argue that c =3 is the most natural number of clusters. 

 
8.3.1 The Nearest-Neighbor Algorithm 
When maxd  is used to measure the distance between clusters the algorithm is sometimes 
called the nearest-neighbor cluster algorithm, or minimum algorithm Moreover, if it is 
terminated when the distance between nearest clusters exceeds an arbitrary threshold, it is 
called the single-linkage algorithm. Suppose that we think of the data points as being nodes 
of a graph, with edges forming a path between the nodes in the same subset iD . When dmin 
is used to measure the distance between subsets, the nearest neighbor nodes determine the 
nearest subsets. The merging of iD  and jD  corresponds to adding an edge between the 
nearest pair of nodes in iD  and jD . Since edges linking clusters always go between distinct 
clusters, the resulting graph never has any closed loops or circuits;in the terminology of 
graph theory, this procedure generates a tree. If it is allowed to continue until all of the 
subsets are linked, the result is a spanning tree—a tree with a path from any node to any 
other node. Moreover,it can be shown that the sum of the edge lengths of the resulting tree 
will not exceed the sum of the edge lengths for any other spanning tree for that set of 
samples. Thus, with the use of mind  as the distance measure, the agglomerative clustering 
procedure becomes an algorithm for generating a minimal spanning tree. 

 
8.3.2 The Farthest-Neighbor Algorithm 
When dmax(Eq.75)is used to measure the distance between subsets, the algorithm is 
sometimes called the farthest-neighbor clustering algorithm, or maximum algorithm. If it is 
terminated when the distance between nearest clusters exceeds an arbitrary threshold, it is 
called the complete-linkage algorithm. The farthest-neighbor algorithm discourages the 
growth of elongated clusters. Application of the procedure can be thought of as producing a 
graph in which edges connect all of the nodes in a cluster. In the terminology of graph 
theory, every cluster constitutes a complete subgraph. The distance between two clusters is 
determined by the most distant nodes in the two clusters. When the nearest clusters are 
merged, the graph is changed by adding edges between every pair of nodes in the two 
clusters. 
Unsupervised learning and clustering seek to extract information from unlabeled samples. If 
the underlying distribution comes from a mixture of component densities described by a set 
of unknown parameters  , then   can be estimated by Bayesian or maximum- likelihood 
methods. A more general approach is to define some measure of similarity between two 
clusters, as well as a global criterion such as a sum-squared- error or trace of a scatter matrix. 
Since there are only occasionally analytic methods for computing the clustering which 
optimizes the criterion, a number of greedy(locally step-wise optimal)iterative algorithms 
can be used, such as k-means and fuzzy k-means clustering. 
If we seek to reveal structure in the data at many levels—i.e., clusters with sub-clusters and 
sub-subcluster—then hierarchical methods are needed. Agglomerative or bottom-up 
methods start with each sample as a singleton cluster and iteratively merge clusters that are 
“most similar” according to some chosen similarity or distance measure.Conversely, 
divisive or top-down methods start with a single cluster  representing the full data set and 

iteratively splitting into smaller clusters, each time seeking the subclusters that are most 
dissimilar. The resulting hierarchical structure 
is revealed in a dendrogram. A large disparity in the similarity measure for successive 
cluster levels in a dendrogram usually indicates the “natural” number of clusters. 
Alternatively, the problem of cluster validity—knowing the proper number of clusters —can 
also be addressed by hypothesis testing. In that case the null hypothesis is that there are 
some number c  of clusters; we then determine if the reduction of the cluster criterion due to 
an additional cluster is statistically significant. 
Competitive learning is an on-line neural network clustering algorithm in which the cluster 
center most similar to an input pattern is modified to become more like that pattern. In 
order to guarantee that learning stops for an arbitrary data set, the learning rate must decay. 
Competitive learning can be modified to allow for the creation of new cluster centers, if no 
center is sufficiently similar to a particular input pattern, as in leader-follower clustering and 
Adaptive Resonance. While these methods have many advantages, such as computational 
ease and tracking gradual variations in the data, they rarely optimize an easily specified 
global criterion such as sum-of-squared error. 
Component analysis seeks to find directions or axes in feature space that provide an 
improved, lower-dimensional representation for the full data space. In(linear) principal 
component analysis, such directions are merely the largest eigenvectors of the covariance 
matrix of the full data; this optimizes a sum-squared-error criterion. Nonlinear principal 
components, for instance as learned in an internal layer an auto- encoder neural network, 
yields curved surfaces embedded in the full d -dimensional feature space, onto which an 
arbitrary pattern x is projected. The goal in independent component analysis—which uses 
gradient descent in an entropy criterion—is to determine the directions in feature space that 
are statistically most independent. Such directions may reveal the true sources(assumed 
independent)and can be used for segmentation and blind source separation. 
Two general methods for dimensionality reduction is self-organizing feature maps and 
multidimensional scaling. Self-organizaing feature maps can be highly nonlinear, and 
represents points close in the source space by points close in the lower-dimensional target 
space. In preserving neighborhoods in this way, such maps also called “topologically 
correct.” The source and target spaces can be of very general shapes, and the mapping will 
depend upon the the distribution of samples within the source space. Multidimensional 
scaling similarly learns a nonlinear mapping that, too, seeks to preserve neighborhoods, and 
is often used for data visualization. Because the basic method requires all the inter-point 
distances for minimizing a global criterion function, its space complexity limits the 
usefulness of multidimensional scaling to problems of moderate size. 

 
9. Conclusion 
 

One approach to this problem is to use the samples to estimate the unknown probabilities 
and probability densities, and to use the resulting estimates as if they were the true values. 
In typical supervised pattern classification problems, the estimation of the prior probabilities 
presents no serious difficulties. However, estimation of the class-conditional densities is 
quite another matter. The number of available samples always seems too small, and serious 
problems arise when the dimensionality of the feature vector x  is large. If we know the 
number of parameters in advance and our general knowledge about the problem permits us 
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to parameterize the conditional densities, then the severity of these problems can be reduced 
significantly. Suppose, for example, that we can reasonably assume that )|( ixp   is a normal 
density with mean i  and covariance matrix i , although we do not know the exact values 
of these quantities. This knowledge simplifies the problem from one of estimating an 
unknown function )|( ixp   to one of estimating the parameters i  and i . 
In general there are two approaches to develop classifiers: a parametric approach and a 
nonparametric approach. in a parametric approach, a priori knowledge of data distributions 
is assumed, otherwise, a nonparametric approach will be employed. Neural networks, fuzzy 
systems, and support vector machines are typical nonparametric classifiers. 
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