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1. Introduction

Recently, the linearization of a class of unknown discrete-time dynamic systems has achieved
considerable topics for the controller design. The unknown functions after system lineariza-
tion have been estimated by several methods including artificial intelligence techniques such
as neural networks, fuzzy logic systems and neurofuzzy networks. In a number of published
articles, the issues of system theoretic analysis have been introduced and addressed in the top-
ics of stabilization, tracking performance and the bounded parameters. For all of these cases,
the results are validated in the domain around the equilibrium point or state (9; 11). These
methods of linearization including local linearization, Taylor series expansion and feedback
linearization impose Lipschitz conditions (4; 6; 10; 14; 18). The closed-loop system stability
and tracking error have been analyzed in the case of neural network adaptive control (5; 7)
but during the learning phase the stability and convergence can not be ensured because of the
special conditions. The system stability or bounded signals analysis has been verified (1; 13)
and references therein. However, these nonlinear systems under control should be obtained
in the format as y(k + 1) = f (k) + g(k)u(k) when y(k) and u(k) are the system output and the
control input at time index k, respectively and f (k) and g(k) are unknown nonlinear functions.
The small learning rate is often defined to solve the stability problem but the convergence is
very slow. The discrete-time projection has been introduced for adaptive control systems in
(16). The node number of multi-layer neural networks can take more effect of closed-loop sta-
bility and tracking performance. In (15), the unknown nonlinear part has been compensated
by neural networks and the closed-loop system stability has been also guaranteed for a class
on discrete-time systems. Nevertheless, this algorithm needs the renovation when the oper-
ating point is changed. In the case of robust system, the dead-zone function has been applied
for feedback linearization systems (8) but this control algorithm are only limited for the sys-
tem with slow trajectory tracking. In this chapter, we discuss about the controller for a class of
nonlinear discrete-time systems with estimated unknown nonlinear functions by Muti-input
Fuzzy Rules Emulated Networks (MIFRENs). These nonlinear functions are occurred when
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the control law is constructed and they are completely unknown as a priori. All adjustable
parameters inside MIFRENs are automatically tuned by the proposed leaning algorithm. By
the theoretical analysis, these parameters are all bounded during the system operation with
out any request of off-line learning phase. The closed-loop tracking error is also bounded by
the universal function approximation of MIFREN.

2. Preliminaries

2.1 Formulation of Nonlinear discrete-time systems

In this work, we devote our interest in to the discrete-time systems which can be described by

y(k + 1) = f (p(k),u(k)), (1)

where f (·, ·) is an unknown nonlinear function, k is time index, y(k) ∈ R denotes the mea-
surable output, u(k) ∈ R is the control effort and p(k) = [y(k),y(k − 1), . . . ,y(k − n + 1),u(k −
1),u(k − 2), . . . ,u(k − m + 1)] when m ≤ n. For system design in the next section, these follow-
ing assumptions are still needed

Assumption : System derivative Let define two compact sets Ωy and Ωu for the system out-
put y and the control effort u, respectively. The derivative of f (·, ·) in (1) with respect

to the control effort u(k) is always existed ∀k = 1,2, · · · and 0 < |
∂ f (·,u)

∂u | ≤ ȳu when
y(·) ∈ Ωy and u(·) ∈ Ωu where ȳu is a finite positive value.

Assumption : Existence of controller For any desired trajectories r(k), let the ideal control
effort of the system (1) u∗(k) be existed by

u∗(k) = gu(p(k),r(k + 1)), (2)

when gu(·, ·) is a smooth function.

( )

Fig. 1. Illustration of compact sets

With the ideal control effort obtained by (2), the controlled system can provide the output to
be the desired trajectory as

r(k + 1) = f (p(k),u∗(k)). (3)

Let u∗(k)∈ Ωu∗ and r(k)∈ Ωr, for the output y(k)∈ Ωy such that Ωr ⊂ Ωy. The function gu(−)
is a one-to-one mapping function of Ωr into Ωu∗ , that is Ωu∗ ⊂ Ωu. With the last assumption,
gu(−) is smooth and Ωr is a compact set, then Ωu∗ must be a compact set also. The clearly
illustration is given in Fig. 1.
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2.2 Function Approximation with MIFREN

In (2) and (3), the function approximation MIFREN property had been introduced. An un-
known nonlinear function fu(.) can be estimated by MIFREN as

fu(k) = βT Fµ(y(k), · · · ,y(k − n̂ − 1), · · · ,u(k − m̂ − 1)) + ε(k), (4)

where βT is the target linear parameter of MIFREN, Fµ(.) is the rule vector at MIFREN’s rule-
layer n̂ and m̂ are designed delay-order integers for y and u, respectively and ε(k) stands
for the MIFREN function approximation error. Eventually, the using function approximation
result of MIFREN can be given as

f̂u(k) = β̂T(k)Fµ(y(k), · · · ,y(k − n̂ − 1), · · · ,u(k − m̂ − 1)), (5)

when β̂(k) is the actual linear parameter vector of MIFREN. The vector β̂(k) can be automat-
ically tuned via the proposed algorithm as will be discussed in the next section. In this sub-
section, it will be shown that MIFREN has the property of a universal function approximation
using the Stone-Weierstrass theorem (1; 17).

Theorem 2.1 (Universal function approximation of MIFREN). Let Ω be a compact space of N
dimensions and let F be a set of real functions on a compact set Ω. If

(1) F is an algebra,

(2) F separates points on Ω, and

(3) F vanishes at no point on Ω,

then F is dense in C(Ω), the set of continuous real-valued function on Ω. In other words, for any ε̂ > 0
and any function f in C(Ω), there is a function f̂ in F such that | f (x)− f̂ (x)| < ε̂ for all x ∈ Ω.

Proof: The proof is omitted here moreover for the interested reader can refer to (2) and (3).

✷

3. Controller design

In this section, the controller for system given in (1) is constructed with the approximated
linearization and MIFRENs approximation.

3.1 Control law based on system linearization

From the system equation described in (1), let use the second-order Taylor expansion with the
mean value theorem, we have

y(k + 1) = f (p(k),u(k − 1)) +
∂ f (p(k),u)

∂u

∣∣∣
u=u(k−1)

∆u(k)

+
1

2

∂2 f (p(k),u)

∂u2

∣∣∣
u=ūk

∆u2(k), (6)

where ūk = γu(k) + (1 − γ)u(k − 1) with 0 ≤ γ ≤ 1 and ∆u(k) = u(k)− u(k − 1). To simplify,
(6) can be rewritten as

y(k + 1) = f (p(k),u(k − 1)) + f1(p(k),u(k − 1))∆u(k) + f2(p(k), ūk)∆u2(k), (7)
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when f1(p(k),u(k − 1)) =
∂ f (p(k),u)

∂u

∣∣∣
u=u(k−1)

and f2(p(k), ūk) =
1
2

∂2 f (p(k),u)
∂u2

∣∣∣
u=ūk

. By using (2)

and the second assumption mentioned in the previous section, f2(·, ·) can be given by

f2(p(k), ūk)∆u2(k) = f2(p(k),γu(k) + (1 − γ)u(k − 1))[u(k)− u(k − 1)]2, (8)

when u(k) can be obtained by

u(k) = gu(p(k),y(k + 1)). (9)

Substitute (9) into (8), thus f2(·, ·) can be simplified by

f2(p(k), ūk)∆u2(k) = f2(p(k),γgu(p(k),y(k + 1)) + (1 − γ)u(k − 1)),

×[gu(p(k),y(k + 1))− u(k − 1)]2,

= f̄2(p(k),y(k + 1)). (10)

By substituting (10) into (7), we have

y(k + 1) = f (p(k),u(k − 1)) + f1(p(k),u(k − 1))∆u(k) + f̄2(p(k),y(k + 1)),

= f3(p(k),y(k + 1)) + f1(p(k),u(k − 1))∆u(k), (11)

where f3(p(k),y(k + 1)) = f (p(k),u(k − 1)) + f̄2(p(k),y(k + 1)). In (11), clearly, we have been
forced with the causality problem. Fortunately, with the second assumption, the ideal control
effort u∗(k) can provide r(k + 1) as described in (3), thus we have

r(k + 1) = f3(p(k),r(k + 1)) + f1(p(k),u(k − 1))[u∗(k)− u(k − 1)]. (12)

To continue our design procedure, the ideal control effort u∗(k) can be obtained by

u∗(k) = u(k − 1) +
r(k + 1)− f3(p(k),r(k + 1))

f1(p(k),u(k − 1))
,

= u(k − 1) +
1

f1(p(k),u(k − 1))
r(k + 1)−

f3(p(k),r(k + 1))

f1(p(k),u(k − 1))
, (13)

or
u∗(k) = u(k − 1) + f ∗1 (p(k))r(k + 1)− f ∗2 (p(k),r(k + 1)), (14)

when f ∗1 (p(k)) = 1
f1(p(k),u(k−1))

and f ∗2 (p(k),r(k + 1)) =
f3(p(k),r(k+1))
f1(p(k),u(k−1))

. From the control law

given by (14), the singularity problem of 1
f1(p(k),u(k−1))

can be avoided by MIFREN approx-

imation which will be discussed later. Let us consider the ideal control effort in (14), thus
these nonlinear functions f ∗1 (·, ·) and f ∗2 (·, ·) are unknown. In this work, two MIFRENs are
constructed to approximate f ∗1 (·, ·) and f ∗2 (·, ·) by MIFREN1 and MIFREN2, respectively. We
have

u∗(k) = u(k − 1) + [β∗T
1 F1(p(k)) + ε1(k)]r(k + 1)− β∗T

2 F2(p(k),r(k + 1))− ε2(k), (15)

where F1(·) and F2(·) are rule-functions of MIFREN1 and MIFREN2, respectively, β∗1 =

[β∗1,1 β∗1,2 · · · β∗1,n1
]T , β∗2 = [β∗2,1 β∗2,2 · · · β∗2,n2

]T are ideal weight vectors, n1 and n2

denote number of rules for each MIFREN and ε1(·) and ε2(·) are approximation errors. Let
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us neglect these errors and use the actual weight vector as β1(k) and β2(k) thus the proposed
control law can be given by

u(k) = u(k − 1) + [βT
1 (k)F1(p(k))]r(k + 1)− βT

2 (k)F2(p(k),r(k + 1)). (16)

With this control equation, the causality problem has been solved by the MIFRENs approxi-
mation of unknown nonlinear functions. In the next subsection, the system performance will
be analyzed with the designed parameters and main theorem.

3.2 Feedback system error

To guarantee the system performance, we need to design some parameters and theirs operat-
ing regions. Let the control error be defined by

e(k) = r(k)− y(k), (17)

or
e(k + 1) = r(k + 1)− y(k + 1), (18)

for time index k + 1. Substitute y(k + 1) from (11) into (18), we have

e(k + 1) = r(k + 1)− f3(p(k),y(k + 1))− f1(p(k))∆u(k). (19)

By using Taylor expression and mean value theorem, the control error in (19) can be obtained
as

e(k + 1) = r(k + 1)−
[

f3(p(k),r(k + 1)) +
∂ f3(p(k),y)

∂y

∣

∣

∣

y=ȳk+1

(y(k + 1)

−r(k + 1))
]

− f1(p(k))∆u(k), (20)

where ȳk+1 is between r(k+ 1) and y(k+ 1). Let us consider the system in (11) with the control
effort given by (9), we have

y(k + 1) = f3(p(k),y(k + 1)) + f1(p(k))[gu(p(k),y(k + 1))− u(k − 1)]. (21)

From (21), we can reconsider into two cases as these followings:

Case I In this case, we assume that y(k + 1) = r(k + 1) and take the derivative with respect to
y(k + 1) for the both sides of (21) thus we have

1 =
∂ f3(p(k),y(k + 1))

∂y(k + 1)
+ f1(p(k))

∂gu(p(k),y(k + 1))

∂y(k + 1)
. (22)

Case II For this second case, we reconsider (21) again with y(k + 1) �= r(k + 1), take the
derivative with respect to y(k + 1) for the both sides of (21) and use Tayler expansion
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with the mean value theorem thus we have

y(k + 1) = f3(p(k),y(k + 1)) + f1(p(k))[gu(p(k),y(k + 1))− u(k − 1)],

= f3(p(k),r(k + 1)) +
∂ f3(p(k),y)

∂y

∣∣∣
y=ȳ(k+1)

[y(k + 1)− r(k + 1)]

+ f1(p(k))
[

gu(p(k),r(k + 1)) +
∂gu(p(k),y)

∂y

∣∣∣
y=y̆(k+1)

×[y(k + 1)− r(k + 1)]− u(k − 1)
]
,

= f3(p(k),r(k + 1)) + f1(p(k))[gu(p(k),r(k + 1))− u(k − 1)]

+
∂ f3(p(k),y)

∂y

∣∣∣
y=ȳ(k+1)

[y(k + 1)− r(k + 1)]

+ f1(p(k))
∂gu(p(k),y)

∂y

∣∣∣
y=y̆(k+1)

[y(k + 1)− r(k + 1)]. (23)

From (12) and u∗(k) = gu(p(k),r(k + 1)), we can rearrange (23) to be

y(k + 1)− r(k + 1) = +
∂ f3(p(k),y)

∂y

∣∣∣
y=ȳ(k+1)

[y(k + 1)− r(k + 1)]

+ f1(p(k))
∂gu(p(k),y)

∂y

∣∣∣
y=y̆(k+1)

[y(k + 1)

−r(k + 1)]. (24)

With the previous assumption, we still have ȳ(k + 1) = y̆(k + 1) and y(k + 1) �= r(k + 1)
thus (24) can be rewritten as

1 =
∂ f3(p(k),y(k + 1))

∂y(k + 1)
+ f1(p(k))

∂gu(p(k),y(k + 1))

∂y(k + 1)
. (25)

Taking the results from the both cases, the following relation can be obtained

∂ f3(p(k),y(k + 1))

∂y(k + 1)
= 1 − f1(p(k),u(k − 1))

∂gu(p(k),y(k + 1))

∂y(k + 1)
. (26)

Substitute (26) into (20), we have

e(k + 1) = r(k + 1)− f3(p(k),r(k + 1)) + e(k + 1)− f1(p(k))∆u(k)

− f1(p(k))
∂gu(p(k),y)

∂y

∣∣∣
y=ȳ(k+1)

e(k + 1), (27)

or

f1(p(k))
∂gu(p(k),y)

∂y

∣∣∣
y=ȳ(k+1)

e(k + 1) = r(k + 1)− f3(p(k),r(k + 1))

− f1(p(k))∆u(k). (28)
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For the controllable system in (11), clearly, f1(p(k)) �= 0 and u∗(k) = gu(p(k),r(k + 1)) or

u(k) = gu(p(k),y(k + 1)) thus the system sensibility [
∂y
∂u ]

−1 should be obtained as

∂u(k)

∂y

∣∣∣
y=y(k+1)

=
∂gu(p(k),y)

∂y

∣∣∣
y=y(k+1)

,

=
1

γy(k)
. (29)

The next time-index error can be rewritten again as

e(k + 1) = γy(k)
[ r(k + 1)

f1(p(k))
−

f3(p(k),r(k + 1))

f1(p(k))
− ∆u(k)

]
. (30)

Rearrange (30) with MIFRENs approximation given by (15), we have

e(k + 1) = γy(k)
[

β∗T
1 F1(p(k))r(k + 1)− β∗T

2 F2(p(k),r(k + 1))− ∆u(k)
]

+γy(k)
[
ε1(k)r(k + 1)− ε2(k)

]
. (31)

Substitute the proposed control law (16) into (31), we obtain

e(k + 1) = γy(k)
[

β∗T
1 F1(p(k))r(k + 1)− β∗T

2 F2(p(k),r(k + 1))

−βT
1 (k)F1(p(k))r(k + 1) + βT

2 (k)F2(p(k),r(k + 1))
]

+γy(k)
[
ε1(k)r(k + 1)− ε2(k)

]
,

= γy(k)
[

β̃T
1 (k)F1(k)r(k + 1)− β̃T

2 (k)F2(k)
]
+ γy(k)εt(k), (32)

when β̃T
i (k) = β∗T

i − βT
i (k) for i = 1,2 and εt(k) = ε1(k)r(k + 1)− ε2(k).

3.3 MIFRENs tuning laws

The parameter vectors β1(k) and β2(k) are required to update during the system operation or
on-line learning. To simplify, let us rewrite (32) to be

e(k + 1) = γy(k)
[

β̃T
1 (k) β̃T

2 (k)
]

F(k) + γy(k)εt(k), (33)

where F(k) =

[
F1(k)r(k + 1)

−F2(k)

]
. With (33), we can define the update law as the following:

[
β1(k + 1)
β2(k + 1)

]
=

[
β1(k)
β2(k)

]
+

η

ȳu||F(k)||2
F(k)D(e(k)), (34)

where η is the selected learning rate which will be discussed next and D(·) is the dead-zone
function which can be defined by

D(e(k)) =





e(k)− εm if e(k) > εm

0 if |e(k)| ≤ εm

e(k) + εm if e(k) < −εm,
(35)
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when |γy(k)εt(k)| ≤ εm as a small positive number. In the case of |e(k − 1)| > εm, with the
dead-zone function (35) and the next time-index error (33), we have

D(e(k + 1)) = αDγy(k)
[

β̃T
1 (k) β̃T

2 (k)
]

F(k), (36)

where 0 < αD ≤ 1.

3.4 System analysis

To analyze the system performance and stability, the bounded weight vectors β̃T
i (k) and the

bounded tracking error e(k) are both given in this work.
Lemma 1: For the nonlinear discrete-time system given in (1) with the control law defined in

(16), the error weight vectors β̃T
i (k) for i = 1,2 are bounded by the tuning law in (34) and the

selected learning rate η as the followings:

0 < η <
2ȳu

αDγy(k)
, (37)

when 0 < ȳu, and
2ȳu

αDγy(k)
< η < 0, (38)

when ȳu < 0.
Proof: Let us define a Lyapunov candidate function as

V
β̃
(k) = β̃T

1 (k)β̃1(k) + β̃T
2 (k)β̃2(k). (39)

The first difference can be obtained by

∆V
β̃
(k) = V

β̃
(k + 1)− V

β̃
(k),

= β̃T
1 (k + 1)β̃1(k + 1) + β̃T

2 (k + 1)β̃2(k + 1)− β̃T
1 (k)β̃1(k)

−β̃T
2 (k)β̃2(k). (40)

Let us define β̃Σ(k + 1) = β̃T
1 (k + 1)β̃1(k + 1) + β̃T

2 (k + 1)β̃2(k + 1), from the tuning law given

by (34) and β̃T
i (k) = β∗T

i − βT
i (k), we have

β̃Σ(k + 1) = β̃T
1 (k)β̃1(k) + β̃T

2 (k)β̃2(k)−
2η

ȳu||F(k)||2

[
β1(k)
β2(k)

]T

F(k)

×D(e(k + 1)) +
η2

ȳu
2||F(k)||4

||F(k)||2D2(e(k + 1)). (41)

Substitute (41) into (40) and use (36), we obtain

∆V
β̃
(k) = −

2η

ȳu||F(k)||2

[
β1(k)
β2(k)

]T

F(k)D(e(k + 1)) +
η2

ȳu
2||F(k)||4

||F(k)||2

×D
2(e(k + 1))

= −
2η

αDγy(k)ȳu||F(k)||2
D

2(e(k + 1)) +
η2

ȳu
2||F(k)||2

D
2(e(k + 1))

=
[ −2

αDγy(k)
+

η

ȳu

] η

ȳu||F(k)||2
D

2(e(k + 1)). (42)
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With the selected learning rate defined by (37) and (38) and γy(k) given in (29), the first dif-

ference of Lyapunov function is negative, thus β̃T
i (k) for i = 1,2 are bounded.

✷

Remark: Normally, with out loss of generality, ȳu is assumed to be positive thus γy(k) < ȳu :
∀k. The bounded tracking error for the closed-loop system is introduced by the following
theorem.

Theorem 3.1 (Bounded tracking error). For the nonlinear discrete-time system given in (1) with
the control law defined in (16), let define a compact set Ωε = {e(k)||e(k) ≤ 4εm}, thus the ultimate
boundary on the tracking error is limk→∞ |e(k)| ≤ εm or in a compact set Ωε.

Proof: Let a Lyapunov candidate function be given by

Ve(k) =
η

2ȳu
2F2

o
e2(k) + V

β̃
(k), (43)

when Fo is defined by 0 < ||F(k)|| ≤ F0,∀k. The first difference can be obtained by

∆Ve(k) = Ve(k + 1)− Ve(k),

=
η

2ȳu
2F2

o
[e2(k + 1)− e2(k)] + ∆V

β̃
(k). (44)

Substitute (42) into (44), we have

∆Ve(k) =
η

2ȳu
2F2

o
[e2(k + 1)− e2(k)]−

2ηD2(e(k + 1))

αDγy(k)ȳu||F(k)||2

+
η2

D
2(e(k + 1))

ȳu
2||F(k)||2

. (45)

From the learning rate given by (37- 37), we can rearrange (45) as

∆Ve(k) <
η

2ȳu
2F2

o
e2(k + 1)−

η

αDγy(k)ȳu||F(k)||2
D

2(e(k + 1)),

<
η

2ȳu
2F2

o
e2(k + 1)−

η

ȳu
2F2

o
D

2(e(k + 1)),

=
η

2ȳu
2F2

o
[e2(k + 1)− 2D2(e(k + 1))]. (46)

In this proof, we need to provide only the case when |e(k + 1)|> εm. With |e(k + 1)|> εm, the
dead-zone function in (35) can be obtained as

D(e(k + 1)) = e(k + 1)− εmsign{e(k + 1)} . (47)

Substitute (47) into (46), we have

∆Ve(k) <
η

2ȳu
2F2

o

[
e2(k + 1)− 2[e(k + 1)− εmsign{e(k + 1)}]2

]
,

=
η

2ȳu
2F2

o

[
− e2(k + 1) + 4e(k + 1)εmsign{e(k + 1)} − 2ε2

m

]
,

=
η

2ȳu
2F2

o

[
− e2(k + 1)− 2ε2

m + 4|e(k + 1)|εm

]
,

<
η

2ȳu
2F2

o

[
− e2(k + 1) + 4|e(k + 1)|εm

]
. (48)
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Consider the result in (48), clearly, ∆Ve(k) is always negative where |e(k + 1)| > 4εm, thus
∆Ve(k) < 0 when |e(k + 1)| is out side a compact set Ωε.

✷

4. Computer simulation example

The proposed control algorithm and theorem are verified by the computer simulation. The
selected controllable system is described by

y(k + 1) = sin(y(k)) + cos(y(k)u(k))u(k) + 5u(k). (49)

The system performance can be demonstrated into two cases as the nominal system and the
robust control.

4.1 Nominal system

With the system displayed in (49), the system parameters can be selected as εm = 0.001, η = 0.8
and ȳu = 5. All IF-THEN rules for both MIFRENs are given by the followings:

MIFREN1

Rule 1 If y(k) is N and u(k − 1) is N Then f1,1(k) = β1,1(k)F1,1(k),
Rule 2 If y(k) is N and u(k − 1) is Z Then f1,2(k) = β1,2(k)F1,2(k),
Rule 3 If y(k) is N and u(k − 1) is P Then f1,3(k) = β1,3(k)F1,3(k),
Rule 4 If y(k) is Z and u(k − 1) is N Then f1,4(k) = β1,4(k)F1,4(k),
Rule 5 If y(k) is Z and u(k − 1) is Z Then f1,5(k) = β1,5(k)F1,5(k),
Rule 6 If y(k) is Z and u(k − 1) is P Then f1,6(k) = β1,6(k)F1,6(k),
Rule 7 If y(k) is P and u(k − 1) is N Then f1,7(k) = β1,7(k)F1,7(k),
Rule 8 If y(k) is P and u(k − 1) is Z Then f1,8(k) = β1,8(k)F1,8(k),
Rule 9 If y(k) is P and u(k − 1) is P Then f1,9(k) = β1,9(k)F1,9(k),

MIFREN2

Rule 1 If y(k) is N and r(k + 1) is N Then f2,1(k) = β2,1(k)F2,1(k),
Rule 2 If y(k) is N and r(k + 1) is Z Then f2,2(k) = β2,2(k)F2,2(k),
Rule 3 If y(k) is N and r(k + 1) is P Then f2,3(k) = β2,3(k)F2,3(k),
Rule 4 If y(k) is Z and r(k + 1) is N Then f2,4(k) = β2,4(k)F2,4(k),
Rule 5 If y(k) is Z and r(k + 1) is Z Then f2,5(k) = β2,5(k)F2,5(k),
Rule 6 If y(k) is Z and r(k + 1) is P Then f2,6(k) = β2,6(k)F2,6(k),
Rule 7 If y(k) is P and r(k + 1) is N Then f2,7(k) = β2,7(k)F2,7(k),
Rule 8 If y(k) is P and r(k + 1) is Z Then f2,8(k) = β2,8(k)F2,8(k),
Rule 9 If y(k) is P and r(k + 1) is P Then f2,9(k) = β2,9(k)F2,9(k),

when N, Z and P denote negative, zero and positive linguistic levels respectively. The mem-
bership functions for these rules are illustrated in Fig. (2) and (3). In this work, we use the
same membership functions of y(k) and r(k + 1) because these variables have equality lin-
guistic levels in the sense of human.
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Fig. 2. Membership functions of u(k − 1)

Fig. 3. Membership functions of r(k + 1) and y(k)

The initial setting βi,j(1) for i = 1,2 and j = 1,2, · · · ,9 can be given as

βi,1(1)=-1 βi,2(1)=-0.75 βi,3(1)=-0.5,

βi,4(1)=-0.25 βi,5(1)=0 βi,6(1)=0.25,

βi,7(1)=0.5 βi,8(1)=0.75 βi,9(1)=1.

In Fig. 4, the tracking performance is quite satisfied with out the off-line learning. The control
effort is illustrated in Fig. 5. The convergence of βi(k) is shown by ||βi(k)|| in Fig. 6 for both
MIFRENs.
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Fig. 4. Tracking performance y(k) for nominal plant.

Fig. 5. Control effort u(k) for nominal plant.

www.intechopen.com



On-line learning of fuzzy rule emulated networks for a class of unknown nonlinear discrete-time 
controllers with estimated linearization 263

Fig. 6. ||βi(k)|| for nominal plant.

4.2 Robust control

In the robust system case, the uncertainty terms ∆ f1(k) and ∆ f2(k) are included in the system
(49) as

y(k + 1) = sin(y(k)) + ∆ f1(k) + cos(y(k)u(k))u(k) + 5u(k) + ∆ f2(k)u(k), (50)

when

∆ f1(k) =















1 if 0 < k < 125
0.75 if 125 ≤ k < 325
−1.25 if 325 ≤ k < 425
1.25 if 425 ≤ k < 500,

(51)

and

∆ f2(k) =















−0.5 if 0 < k < 125
1 if 125 ≤ k < 225
−0.75 if 225 ≤ k < 425
−0.5 if 425 ≤ k < 500.

(52)

We use the initial setting IF-THEN rules, membership functions, εm, η, ȳu and parameter
vectors βi, as the same as the previous one. With out any off-line learning for MIFRENs, the
tracking performance is represented in Fig. 8. The control effort u(k) is shown in Fig. 9. The
time variation of ||βi(k)|| can be illustrated in Fig. 10. These uncertainty terms ∆ f1(k) and
∆ f2(k) are varied with time but the tuning vectors are all bounded.
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Fig. 7. Illustration of uncertainty ∆ f1(k) and ∆ f2(k).

Fig. 8. Tracking performance y(k) for robust system.
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Fig. 9. Control effort u(k) for robust system.

Fig. 10. ||βi(k)|| for robust system.
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5. Experimental setup example

In this section, the performance of our proposed controller is demonstrated by an experimen-
tal setup with FESTO mobile robot system called Robotino R© . Our task is to design the con-
troller for moving this Robotino R© to reach the desired position in (x,y) coordinate as xd(i,k)
and yd(i,k), respectively. During the movement, the desired angular of Robotino R© denoted as
φd(i,k) should be maintained as 0◦ for all ith desired position and time index k. The system
configuration can be illustrated in Fig. 12 by the block diagram.

Fig. 11. Robotino.

Fig. 12. Block diagram for experimental setup.
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The commercial Robotino R© needs velocity to control its movement such as velocity in x−axis
vx(i,k) for x−direction, vy(i,k) for y−direction and vφ(i,k) for the rotation. In this work, we
consider these signals as the control efforts which can be generated by the pair of MIFRENs.
The experiment has been demonstrated by 4 desired points and 4 routes as the following:
route 1 [(0.0, 0.5)→(0.5, 0)], route 2 [(0.5, 0)→(0.0, 0.0)], route 3 [(0.0, 0.0)→(0.5, 0.5)] and
route 4 [(0.5, 0.5)→(0.0, 0.5)]. In Fig. 13, the movement of Robotino R© is illustrated in x − y
coordinate with errors in x and y axis as ex and ey shown in Fig. 14. Because of the fixed
angular φd = 0, we need to consider only two control efforts vx and vy as presented in Fig.
15. At the beginning, on route 1 and 2, the movement of robot is not strange line because
MIFRENs need to tune the parameters inside. After that the better results can be obtained in
route 3 and 4. In case of losing the wireless signal, we still have the satisfied result as shown
in Fig. 16.

Fig. 13. Experimental result: position x − y.
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Fig. 14. Experimental result: position errors ex and ey.

Fig. 15. Experimental result: velocity vx and vy.
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Fig. 16. Experimental result: position x − y (in case of loss signal transmission).

6. Conclusion

In this chapter, an adaptive control for a class of nonlinear discrete-time systems based on
multi-input fuzzy rules emulated networks (MIFREN) is introduced by the approximation
with Taylor and mean value theorem. With out the need of mathematical system model, the
approximation can be existed directly to construct the control law. Two MIFRENs are imple-
mented to estimate these unknown functions obtained by the nonaffine linearization. With
the main theorem, the learning algorithm for parameters inside MIFRENs guarantees the con-
vergence of these parameters and the satisfied tracking performance. The computer simula-
tion system demonstrates the accuracy of our mathematic proof. We already consider both
operating cases for the nominal plant and the plant with some uncertainties. The bounded
parameters ||β1|| and ||β2|| and the satisfied tracking performance can be presented for the
both cases with the same initial setting. The experimental setup the commercial mobile robot
system called Robotino R© is given to demonstrate the controller performance.
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