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Abstract

In various areas of numerical analysis, there are several possible algorithms for solving a prob-
lem. In such cases, each method potentially solves the problem, but the runtimes can widely
differ, and breakdown is possible. Also, there is typically no governing theory for finding
the best method, or the theory is in essence uncomputable. Thus, the choice of the optimal
method is in practice determined by experimentation and ‘numerical folklore’. However, a
more systematic approach is needed, for instance since such choices may need to be made in
a dynamic context such as a time-evolving system.
Thus we formulate this as a classification problem: assign each numerical problem to a class
corresponding to the best method for solving that problem.
What makes this an interesting problem for Machine Learning, is the large number of classes,
and their relationships. A method is a combination of (at least) a preconditioner and an itera-
tive scheme, making the total number of methods the product of these individual cardinalities.
Since this can be a very large number, we want to exploit this structure of the set of classes,
and find a way to classify the components of a method separately.
We have developed various techniques for such multi-stage recommendations, using auto-
matic recognition of super-clases. These techniques are shown to pay off very well in our
application area of iterative linear system solvers.
We present the basic concepts of our recommendation strategy, and give an overview of
the software libraries that make up the Salsa (Self-Adapting Large-scale Solver Architecture)
project.

1. Introduction

In various areas of numerical analysis, there are several possible algorithms for solving a prob-
lem. Examples are the various direct and iterative solvers for sparse linear systems, or rou-

*This work was funded in part by the Los Alamos Computer Science Institute through the subcontract
# R71700J- 29200099 from Rice University, and by the National Science Foundation under grants 0203984
and 0406403.
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tines for eigenvalue computation or numerical optimization. Typically, there is no governing
theory for finding the best method, or the theory is too expensive to compute. For instance,
in iterative linear system solving, there are many preconditioners and iterative schemes; the
convergence behaviour is determined by the decomposition of the right-hand side in terms of
the eigenvectors of the preconditioned operator. However, computing this spectrum is expen-
sive, in fact more expensive than solving the problem to begin with, and the dependency of
the iterative scheme on this decomposition is not known in explicit form.
Thus, the choice of the optimal method is in practice determined by experimentation and ‘nu-
merical folklore’. However, a more systematic approach is needed, for instance since such
choices may need to be made in a dynamic context such as a time-evolving system. Certain
recent efforts have tried to tackle this situation by the application of various automatic learn-
ing techniques Arnold et al. (2000); Bhowmick et al. (2006); Dongarra et al. (2006); Houstis
et al. (2000); Ramakrishnan & Ribbens (2000); Wilson et al. (2000). Such methods extract the
problem features, typically relying on a database of prior knowledge, in order to recommend
a suitable method. However, we may characterize this earlier research as either being too
general and lacking in specific implementations, or being too limited to one area, lacking the
conceptual necessary for generalization to other areas.
In this paper we present a theoretical framework for such recommender systems, as well as
libraries that we have developed that embody these concepts. Our framework is more gen-
eral than what has been studied before, in that we consider methods to be structured objects,
consisting of a composition of algorithms. Correspondingly, we describe strategies for rec-
ommending methods that acknowledge this structure, rather than considering methods to be
elements out of a flat set of elements.
In addition to the abstract mathematical description, we propose software interfaces imple-
menting the various entities in the framework. Some of this software has been realized in our
Salsa (Self-Adapting large-scale Solver Architecture) project; see Salsa Project (n.d.a;n).
We start by giving a brief introduction to our field in section 2, after which we formalize the
problem in sections 3 and 4. Section 5 has a general discussion of intelligent method selec-
tion, while section 6 details strategies for recommending composite method objects. Practical
experiments are reported in section 7.

2. Application: linear system solving

Many problems in engineering and in sciences such as physics, astronomy, climate modeling,
reduce to a few basic numerical problems:

• Linear system solving: given a square, nonsingular, matrix A and a vector f , find a
vector x such that Ax = f . Linear system solving also appears as a subproblem in
nonlinear systems and in time-dependent problems.

• Eigenvalue calculations: given a matrix A, find the pairs 〈u, λ〉 such that Au = λu.
Some eigenvalue calculations again lead to linear systems.

• Numerical optimization: find the vector x that maximizes a function f (x), often linear:
f (x) = atx, under certain constraints on x: g(x) = 0.

For each of these numerical problems, more than one solution algorithm exists, often without
a sufficient theory that allows for easy selection of the fastest or most accurate algorithm. This
can be witnessed in the NEOS server Czyzyk et al. (1996; 1998), where a user can choose from
various optimization algorithm, or the PETSc numerical toolkit Balay et al. (1999); Gropp &
Smith (n.d.) which allows the user to combine various predefined solver building blocks. The

www.intechopen.com



Machine Learning for Multi-stage Selection of Numerical Methods 119

aim is then to find an algorithm that will reliably solve the problem, and do so in the minimum
amount of time.

Since several algorithm candidates exist, without an analytic way of decid-
ing on the best algorithm in any given instance, we are looking at the classifi-
cation problem of using non-numerical techniques for recommending the best
algorithm for each particular problem instance.

In this chapter we will focus on linear system solving. The textbook algorithm, Gaussian
elimination, is reliable, but for large problems it may be too slow or require too much memory.
Instead, often one uses iterative solution methods, which are based on a principle of successive
approximation. Rather than computing a solution x directly, we compute a sequence n �→ xn

that we hope converges to the solution. (Typically, we have residuals rn that converge to zero,
rn ↓ 0, but this behaviour may not be monotone, so no decision method can be based on its
direct observation.)

2.1 Feature selection

As noted above, there is no simple, efficiently computable, way of deciding on the best al-
gorithm for solving a linear system. Theoretically it is known that the behaviour of iterative
solvers depends on the expansion of the right hand side in the eigenvector basis, but comput-
ing this expansion is far more expensive than solving the linear system to begin with. Also,
there are a few negative results Greenbaum & Strakos (1996) that stand in the way of easy
solutions.
However, using a statistical approach, we have no lack of features. For instance, we typically
are concerned with sparse matrices, that is, matrices for which only a few elements per row
are nonzero. Thus, we can introduce features that describe the sparsity structure of the ma-
trix. From a theoretical point of view, the sparsity structure is not relevant, but in practice, it
can correlate to meaningful features. For instance, high order finite element methods lead to
larger numbers of nonzeros per row, and are typically associated with large condition num-
bers, which are an indication of slow convergence. Thus, indirectly, we can correlate these
structural features with solver performance.

2.2 Multilevel decisions

As we remarked above, in essence we are faced with a classification problem: given a linear
system and its features, what is the best method for solving it. However, the set of classes, the
numerical methods, has structure to it that makes this a challenging problem.
It is a truism among numerical mathematicians that an iterative method as such is virtually
worthless; it needs to be coupled to a ‘preconditioner’: a transformation B of the linear sys-
tem that tames some of the adverse numerical properties. In its simplest form, applying a
preconditioner is equivalent to solving the equivalent system

Ãx = f̃ , where Ã = BA and f̃ = B f

or
Ãx̃ = f , where Ã = AB and x̃ = B−1x so x = Bx̃.

Since there are many choices for the preconditioner, we now have a set of classes of cardinality
the number of preconditioners times the number of iterative schemes.
Additionally, there are other transformations such as permutations Pt AP that can be applied
for considerations such as load balancing in parallel calculations. In all, we are faced with a
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large number of classes, but in a set that is the cartesian product of sets of individual decisions
that together make up the definition of a numerical method. Clearly, given this structure,
treating the set of classes as just a flat collection will be suboptimal. In this chapter we consider
the problem of coming up with better strategies, and evaluating their effectiveness.

2.3 Software aspects

The research reported in this paper has led to the development of a set of software libraries,
together called the SALSA project, for Self-Adapting Large-scale Solver Architecture. The
components here are

• Feature extraction. We have written a custom library, AnaMod, for Analysis Modules
for this.

• Storage of features and runtime results. During runtime we use our NMD, for Numeri-
cal MetaData, library. For permanent storage we are using a standard MySQL database.

• Learning. We use various Matlab toolboxes here, though ultimately we want to move
to an open source infrastructure.

• Process control. The overall testbed that controls feature extraction, decision making,
and execution of the chosen algorithms, is a custom library named SysPro, for System
preProcessors.

Since the overall goal is to optimize solution time, the feature extraction and process control
software need to be fast. Though we will not elaborate on this point, this means that we
occasionally have to trade accuracy for speed.

3. Formalization

In this section we formalize the notion of numerical problems and numerical methods for
solving problems. Our formalization will also immediately be reflected in the design of the
libraries that make up the Salsa project.

3.1 Numerical Problems and Solution Methods

The central problem of this paper, selecting the optimal algorith for a numerical problem,
implies that we have a specific problem context in mind. That can be linear system solving,
eigenvalue computations, numerical quadrature, et cetera. For each of these areas, there is a
definition of a numerical problem: in the case of linear systems, a problem will be a pair 〈A, b〉
of matrix and righthand side; for eigenvalue problems it denotes a matrix plus optionally an
interval for the eigenvalues, et cetera.
It would be pointless to capture this diversity of problems in a rigorous definition, so we will
use a leave the concept of ‘numerical problem’ largely undefined. We denote the space of
numerical problems by

A: the set of numerical problems in a class

where the exact definition of this will depend on the problem area.
The implementation of numerical problems is similarly domain-specific. As an example, we
give the following possible definition in the area of linear system solving: 1:

1 After this example we will tacitly omit the typedef line and only give the structure definition.
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struct Problem_ {

LinearOperator A;

Vector RHS,KnownSolution,InitialGuess;

DesiredAccuracy constraint;

};

typedef struct Problem_* Problem;

Corresponding to the problem space, there is a result space

R = S × T: results, the space of solutions plus performance mea-
surements

(1)

containing computed solutions and performance measurements of the computing process.
The following is an illustration of results and performance measurements for the case of linear
system solving.

struct PerformanceMeasurement_ {

int success;

double Tsetup,Tsolve;

double *ConvergenceHistory;

double BackwardError,ForwardError;

}

struct Result_ {

Vector ComputedSolution;

PerformanceMeasurement performance;

}

Some component of the performance measurement, typically a timing measurement, will be
used to judge optimality of solution methods.
Having defined problems and results, we define the space of methods as the mappings from
problems to results.

M = {A �→ R}: the space of methods (potentially) solving the class of
numerical problems

We allow for methods to fail to compute the solution, for instance by the divergence of an
iterative method, or exceeding a set runtime limit. We formalize this by introducing a timing
function T(A, M), denoting the time that it takes method M to solve the problem A, where in
case of failure we set T(A, M) = ∞.
We will defer further discussion of the method space M for section 4.

3.2 Features and features extraction

As in natural in any Machine Learning context, we introduce the concept of problem features,
which will be the basis for any recommendation strategy.

F: the space of feature vectors of the numerical problems

and

Φ : A �→ F: a function that extracts features of numerical problems
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where Φ(A) = x̄ ∈ F is the feature vector describing the numerical problem.
Feature space can be complicated in structure: elements of x̄ can be real numbers (for instance
matrix elements), positive real (norms), integer (quantities related to matrix size and sparsity
pattern), or elements of a finite set of choices. They can even be array-valued in any of these
types.
The NMD (Numerical MetaData) library Eijkhout & Fuentes (2007) provides an API for fea-
ture storage, including various utility functions.
We posit the existence of a parametrized function that can compute one feature at a time:

ComputeQuantity(Problem problem,

char *feature,ReturnValue *result,TruthValue *success);

Here, the ReturnValue type is a union of all returnable types, and the success parameter
indicates whether the quantity was actually computed. Computation can fail for any number
of reasons: if sequential software is called in parallel, if properties such as matrix bandwidth
are asked of an implicitly given operator, et cetera. Failure is not considered catastrophic, and
the calling code should allow for this eventuality.
For a general and modular setup, we do not hardwire the existence of any module. Instead,
we use a function

DeclareModule(char *feature,ReturnType type,

void(*module)(Problem,char*,ReturnValue*,TruthValue*));

to add individual feature computations to a runtime system.
The AnaMod (Analysis Modules) library Eijkhout & Fuentes (2007) implements the above
ideas, though in a slightly different form.

4. Numerical methods

In a simple-minded view, method space can be considered as a finite, unordered, collection
of methods {M1, . . . , Mk}, and in some applications this may even be the most appropriate
view. However, in the context of linear system solving a method is a more structured entity:
each method consists at least of the choice of a preconditioner and the choice of an iterative
scheme (QMR, GMRES, et cetera), both of which are independent of each other. Other possi-
ble components of a method are scaling of the system, and permutations for improved load
balancing. Thus we arrive at a picture of a number of preprocessing steps that transform the
original problem into another one with the same solution – or with a different solution that
can easily be transformed into that of the original problem – followed by a solver algorithm
that takes the transformed problem and yields its solution.
This section will formalize this further structure of the method space.

4.1 Formal definition

Above, we had defined M as the set of mappings A �→ R. We now split that as the prepro-
cessors

P = {A �→ A}: the set of all mappings from problems into problems

and the solvers2

2 In the context of linear system solving, these will be Krylov methods, hence the choice of the letter ‘K’.
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K = {A �→ R}: the set of all solvers

To illustrate the fact that the preprocessing stages are really mappings A �→ A, consider
a right scaling D of a linear system, which maps the problem/solution tuple 〈A, b, x̄〉 to
〈AD, b, D−1x〉.
To model the fact that we have different kinds of preprocessors, we posit the existence of
subsets

Pi ⊂ P,

and we will assume that the identity mapping is contained in each. For instance, one Pi could
be the set of scalings of a linear system:

P4 = {′none′, ′left′, ′right′, ′symmetric′}

Other possibilities are permutations of the linear system, or approximations of the coeffient
matrix prior to forming the preconditioner.
Applying one preprocessor of each kind then gives us the definition of a method:

m ∈ M : m = k ◦ pn ◦ · · · ◦ p1, k ∈ K, pi ∈ Pi (2)

We leave open the possibility that certain preprocessors can be applied in any sequence (for
instance scaling and permuting a system commute), while for others different orderings are
allowed but not equivalent. Some preprocessors may need to be executed in a fixed location;
for instance, the computation of a preconditioner will usually come last in the sequence of
preprocessors.
Typically, a preprocessed problem has a different solution from the original problem, so each
preprocessor has a backtransformation operation, to be applied to the preprocessed solution.

4.2 Implementation

The set of system preprocessors, like that of the analysis modules above, has a two level struc-
ture. First, there is the preprocessor type; for instance ‘scaling’. Then there is the specific
choice within the type; for instance ‘’left scaling’. Additionally, but not discussed here, there
can be parameters associated with either the type or the specific choice; for instance, we can
scale by a block diagonal, with the parameter indicating the size of the diagonal blocks.
We implement the sequence of preprocessors by a recursive routine:

PreprocessedSolving

(char *method,Problem problem,Result *solution)

{

ApplyPreprocessor(problem,&preprocessed_problem);

if ( /* more preprocessors */ )

PreprocessedSolving(next_method,

preprocessed_problem,&preprocessed_solution);

else

Solve(final_method,

preprocessed_problem,&preprocessed_solution);

UnApplyPreprocessor(preprocessed_solution,solution);

}

The actual implementation is more complicated, but this pseudo-code conveys the essence.
We again adopt a modular approach where preprocessors are dynamically declared:
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DeclarePreprocessor(char *type,char *choice,

void(*preprocessor)(Problem,Problem*));

The SysPro (System Preprocessor) library provides a number of preprocessors, including the
forward and backward transformation of the systems. It also includes a framework for loop-
ing over the various choices of a preprocessor type, for instance for an exhaustive test.

5. Method selection

Our method selection problem can be formalized as of constructing a function

Π : A �→ M: the problem classification function

that maps a given problem to the optimal method. Including feature extraction, we can also
define

Π : F �→ M: the classification function in terms of features

We start with a brief discussion of precisely what is meant by ‘optimal’. After that, we will
refine the definition of Π to reflect the preprocessor/solver structure, and we will address the
actual construction of Π.

5.1 Different classification criteria

The simplest (non-constructive) definition of the method selection function Π is:

Π(A) = M ≡ ∀M′∈M : T(A, M) ≤ T(A, M
′) (3)

Several variant definitions are possible. Often, we are already satisfied if we can construct a
function that picks a working method. For that criterium, we define Π non-uniquely as

Π
′(A) = M where M is any method such that T(A, M) < ∞ (4)

Also, we usually do not insist on the absolutely fastest method: we can relax equation (3) to

Π(A) = M ≡ ∀M′∈M : T(A, M) ≤ (1 − ǫ)T(A, M
′) (5)

which, for sufficient values of ǫ, also makes the definition non-unique. In both of the previous
cases we do not bother to define Π as a multi-valued function, but implicitly interpret Π(A) =
M to mean ‘M is one possible method satisfying the selection criterion’.
Formally, we define two classification types:

classification for reliability This is the problem equation (4) of finding any method that will
solve the problem, that is, that will not break down, stall, or diverge.

classification for performance This is the problem equation (3) of finding the fastest method
for a problem, possibly within a certain margin.

In a logical sense, the performance classification problem also solves the reliability problem.
In practice, however, classifiers are not infallible, so there is a danger that the performance
classifier will mispredict, not just by recommending a method that is slower than optimal, but
also by possibly recommending a diverging method. Therefore, in practice a combination of
these classifiers may be preferable.
We will now continue with discussing the practical construction of (the various guises of) the
selection function Π.
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5.2 Examples

Let us consider some adaptive systems, and the shape that F, M, and Π take in them.

5.2.1 Atlas

Atlas Whaley et al. (2001) is a system that determines the optimal implementation of Blas
kernels such as matrix-matrix multiplication. One could say that the implementation chosen
by Atlas is independent of the inputs3 and only depends on the platform, which we will
consider a constant in this discussion. Essentially, this means that F is an empty space. The
number of dimensions of M is fairly low, consisting of algorithm parameters such unrolling,
blocking, and software pipelining parameters.
In this case, Π is a constant function defined by

Π( f ) ≡ min
M∈M

T(A, M)

where A is a representative problem. This minimum value can be found by a sequence of line
searches, as done in Atlas, or using other minimization techniques such a modified simplex
method Yi et al. (2004).

5.2.2 Scalapack/LFC

The distributed dense linear algebra library Scalapack Choi et al. (1992) gives in its manual a
formula for execution time as a function of problem size N, the number of processors Np, and
the block size Nb. This is an example of a two-dimensional feature space (N, Np), and a one-
dimensional method space: the choice of Nb. All dimensions range through positive integer
values. The function involves architectural parameters (speed, latency, bandwidth) that can
be fitted to observations.
Unfortunately, this story is too simple. The LFC software Roche & Dongarra (2002) takes
into account the fact that certain values of Np are disadvantageous, since they can only give
grids with bad aspect ratios. A prime number value of Np is a clear example, as this gives a
degenerate grid. In such a case it is often better to ignore one of the available processors and
use the remaining ones in a better shaped grid. This means that our method space becomes
two-dimensional with the addition of the actually used number of processors. This has a
complicated dependence on the number of available processors, and this dependence can
very well only be determined by exhaustive trials of all possibilities.

5.2.3 Collective communication

Collective operations in MPI Otto et al. (1995) can be optimized by various means. In work by
Vadhyar et al. Vadhiyar et al. (2000), the problem is characterized by the message size and the
number of processors, which makes F have dimension 2. The degrees of freedom in M are
the segment size in which messages will be subdivided, and the ‘virtual topology’ algorithm
to be used.
Assume for now that the method components can be set independently. The segment size
is then computed as s = Πs(m, p). If we have an a priori form for this function, for instance
Πs(m, p) = α + βm + γp, we can determine the parameters by a least squares fit to some
observations.
Suppose the virtual topology depends only on the message size m. Since for the virtual topol-
ogy there is only a finite number of choices, we only need to find the crossover points, which

3 There are some very minor caveats for special cases, such as small or ‘skinny’ matrices.
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can be done by bisection. If the topology depends on both m and p, we need to find the areas
in (m, p) space, which can again be done by some form of bisection.

5.3 Database

In our application we need to be explicit about the database on which the classification is
based. That issue is explored in this section.

5.3.1 General construction

The function Π is constructed from a database of performance results that results from solving
a set of problems A ⊂ A by each of a collection of methods M ⊂ M, each combination
yielding a result r ∈ R (equation (1)). Thus we store features of the problem, an identifier of
the method used, and the resulting performance measurement:

D ⊂ D = {F × M → T}: the database of features and performance results of
solved problems

We posit a mechanism (which differs per classifcation strategy) that constructs Π from a
database D. Where needed we will express the dependency of Π on the database explicitly
as ΠD . In the case of Bayesian classification the construction of Π from D takes a particularly
elegant form, which we will discuss next.

5.3.2 Bayesian classification; method suitability

In methods like Bayesian classification, we take an approach to constructing Π where we
characterize each method individually, and let Π be the function that picks the most suitable
one.
Starting with the database D as defined above, We note for each problem – and thus for each
feature vector – which method was the most successful:

D′ : F × M → {0, 1} defined by D′( f , m) = 1 ≡ m = arg min
m

D( f , m)

This allows us to draw up indicator functions for each method4:

B
′ : M → pow(F) defined by f ∈ B

′(m) ⇔ D
′( f , m) = 1 (6)

These functions are generalized (multi-dimensional) histograms: for each method they plot
the feature (vector) values of sample problems for which this method is was found to be opti-
mal. However, since these functions are constructed from a set of experiments we have that,
most likely, ∪m∈MB′(m) � F. Therefore, it is not possible to define

Π( f ) = m ≡ f ∈ B
′(m),

since for many values of f , the feature vector may not be in any B′(m). Conversely, it could
also be in B′(m) for several values of m, so the definition is not well posed.
Instead, we use a more general mechanism. First we define suitability functions:5

S = {F → [0, 1]}: the space of suitability measurements of feature vectors (7)

4 There is actually no objection to having D( f , m) return 1 for more than one method m; this allows us to
equivocate methods that are within a few percent of each other’s performance. Formally we do this by
extending and redefining the arg min function.

5 Please ignore the fact that the symbol S already had a meaning, higher up in this story.
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This is to be interpreted as follows. For each numerical method there will be one func-
tion σ ∈ S, and σ( f ) = 0 means that the method is entirely unsuitable for problems with
feature vector f , while σ( f ) = 1 means that the method is eminently suitable.
We formally associate suitability functions with numerical methods:

B : M → S: the method suitability function (8)

and use the function B to define the selection function:

Π( f ) = arg max
m

B(m)( f ). (9)

Since elements of S are defined on the whole space F, this is a well-posed definition.
The remaining question is how to construct the suitability functions. For this we need con-
structor functions

C : P(F) → S: classifier constructor functions (10)

The mechanism of these can be any of a number of standard statistical techniques, such as
fitting a Gaussian distribution through the points in the subset ∪ f∈F f where F ∈ P(F).

Clearly, now B = C ◦ B′, and with the function B defined we can construct the selection
function Π as in equation (9).

5.4 Implementation of Bayesian classification

Strictly speaking, the above is a sufficient description of the construction and use of the Π

functions. However, as defined above, they use the entire feature vector of a problem, and
in practice a limited set of features may suffice for any given decision. This is clear in such
cases as when we want to impose “This method only works for symmetric problems”, where
clearly only a single feature is needed. Computing a full feature vector in this case would be
wasteful. Therefore, we introduce the notation FI where I ⊂ {1, . . . , k}. This corresponds to
the subspace of those vectors in F that are null in the dimensions not in I.
We will also assume that for each method m ∈ M there is a feature set Im that suffices to eval-
uate the suitability function B(m). Often, such a feature set will be common for all methods
in a set Pi of preprocessors. For instance, graph algorithms for fill-in reduction only need
structural information on the matrix.
Here is an example of the API (as used in the Salsa system) that defines and uses feature sets.
First we define a subset of features:

FeatureSet symmetry;

NewFeatureSet(&symmetry);

AddToFeatureSet(symmetry,

"simple","norm-of-symm-part",&sidx);

AddToFeatureSet(symmetry,

"simple","norm-of-asymm-part",&aidx);

After problem features have been computed, a suitability function for a specific method can
then obtain the feature values and use them:
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FeatureSet symmetry; // created above

FeatureValues values;

NewFeatureValues(&values);

InstantiateFeatureSet(problem,symmetry,values);

GetFeatureValue(values,sidx,&sn,&f1);

GetFeatureValue(values,aidx,&an,&f2);

if (f1 && f2 && an.r>1.e-12*sn.r)

printf("problem too unsymmetric\n");

6. Classification of composite methods

In section 4 we showed how, in our application area of linear system solving, the space of
methods has a structure where a method is a composite of a sequence of preprocessing steps
and a concluding solver; equation equation (2). Accordingly, our recommendation function Π

will be a composite:
Π = 〈Πk, {Πi}i∈P〉.

In the previous section, we posited a general mechanism (which we described in detail for
methods like Bayesian classification) of deriving ΠD from a database D ⊂ {F × M → T}.
In this section we will consider ways of defining databases DK ,DP and attendant functions
ΠK , ΠP, and of combining these into an overall recommendation function.
For simplicity of exposition, we restrict our composites to a combination of one preprocessor
(in practice, the preconditioner), and one solver (the iterative method); that is M = P × K.
At first we consider the performance problem, where we recommend a method that will mini-
mize solution time (refer to section 5.1 for a definition of the two types of classification). Then,
in section 6.4 we consider the reliability problem of recommending a method that will con-
verge, no matter the solution time.

6.1 Combined recommendation

In this strategy, we ignore the fact that a method is a product of constituents, and we simply
enumerate the elements of M. Our function Π is then based on the database

D = {
〈

f , 〈p, k〉, t
〉

| ∃a∈A : t = T(p, k, a)}

and the recommendation function is a straightforward mapping Π
combined( f ) = 〈p, k〉.

For Bayesian classification we get for each 〈p, k〉 ∈ M the class

Cp,k = {A ∈ A : T(p, k, A) is minimal}

and corresponding function σp,k. We can then define

Π
combined( f ) = arg max

p,k

σp,k( f )

The main disadvantage to this approach is that, with a large number of methods to choose
from, some of the classes can be rather small, leading to insufficient data for an accurate clas-
sification.
In an alternative derivation of this approach, we consider the Cp,k to be classes of preproces-
sors, but conditional upon the choice of a solver. We then recommend p and k, not as a pair
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but sequential: we first find the k for which the best p can be found:

Π
conditional =

{

let k := arg maxk maxp σp,k( f )

return 〈arg maxp σp,k( f ), k〉

However, this is equivalent to the above combined approach.

6.2 Orthogonal recommendation

In this strategy we construct separate functions for recommending elements of P and K, and
we put together their results.
We define two derived databases that associate a solution time with a feature vector and a
preprocessor or solver separately, even though strictly speaking both are needed to solve a
problem and thereby produce a solution time. For solvers:

DK =

{

〈 f , k, t〉 | k ∈ K, ∃a∈A : f = φ(a), t = min
p∈P

T(p, k, a)

}

and for preprocessors:

DP =

{

〈 f , p, t〉 | p ∈ P, ∃a∈A : f = φ(a), t = min
k∈K

T(p, k, a)

}

.

From these, we derive the functions ΠK , ΠP and we define

Π
orthogonal( f ) = 〈ΠP( f ), ΠK( f )〉

In Bayesian classification, the classes here are

Ck = {A : minp T(p, k, A) is minimal over all k}

and
Cp = {A : mink T(p, k, A) is minimal over all p},

giving functions σp, σk. (Instead of classifying by minimum over the other method component,
we could also use the average value.) The recommendation function is then

Π
orthogonal( f ) = 〈arg max

p
σp( f ), arg max

k

σk( f )〉

6.3 Sequential recommendation

In the sequential strategy, we first recommend an element of P, use that to transform the
system, and recommend an element of K based on the transformed features.
Formally, we derive ΠP as above from the derived database

DP =

{

〈 f , p, t〉 | p ∈ P, ∃a∈A : f = φ(a), t = min
k∈K

T(p, k, a)

}

.

but ΠK comes from the database of all preprocessed problems:

DK = ∪p∈PDK,p,

DK,p = {〈 f , k, t〉 | k ∈ K, ∃a∈A : f = φ(p(a)), t = T(p, k, a)}
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which gives us a single function ΠP and individual functions ΠK,p. This gives us

Π
sequential( f ) = 〈let p :=ΠP( f ), k :=ΠK(p( f )) or ΠK,p(p( f ))〉

For Bayesian classification, we define the classes Cp as above:

Cp = {A : mink T(p, k, A) is minimal over all p},

but we have to express that Ck contains preconditioned features:

Ck = {A ∈
⋃

p

p(A) : T(p, k, A) is minimal, where p is such that A ∈ p(A)}

Now we can define

Π
sequential( f ) = 〈let p := arg maxp σp( f ), k := arg max

k

σk(p( f ))〉

This approach to classification is potentially the most accurate, since both the preconditioner
and iterator recommendation are made based on the features of the actual problem they apply
to. This also means that this approach is the most expensive; both the combined and the or-
thogonal approach require only the features of the original problem. In practice, with a larger
number of preprocessors, one can combine these approaches. For instance, if a preprocessor
such as scaling can be classified based on some easy to compute features, it can be tackled
sequentially, while the preconditioner and iterator are then recommended with the combined
approach based on a full feature computation of the scaled problem.

6.4 The reliability problem

In the reliability problem we classify problems by whether a method converges on them or
not. The above approaches can not be used directly in this case, for several reasons.

• The above approaches are based on assigning each problem to a single classes based on
minimum solution time. In the reliability problem each problem would be assigned to
multiple classes, since typically more than one method would converge on the problem.
The resulting overlapping classes would lead to a low quality of recommendation.

• The sequential and orthogonal approaches would run into the additional problem that,
given a preconditioner, there is usually at least one iterative method that gives a con-
verging combination. Separate recommendation of the preconditioner is therefore im-
possible.

Instead, we take a slightly different approach. For each method m we define a function Π
(m) :

F �→ {0, 1} which states whether the method will converge given a feature vector of a prob-
lem. We can then define

Π( f ) = a random element of {m : Π
(m)( f ) = 1}

For Bayesian classification, we can adopt the following strategy. For each M ∈ M, define the
set of problems on which it converges:

CM = {A : T(M, A) < ∞}
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and let C̄M be its complement:

C̄M = {A : T(M, A) = ∞}.

Now we construct functions σM, σ̄M based on both these sets. This gives a recommendation
function:

Π( f ) = {M : σM( f ) > σ̄M( f )}

This function is multi-valued, so we can either pick an arbitrary element from Π( f ), or the
element for which the excess σM( f )− σ̄M( f ) is maximized.
The above strategies give only a fairly weak recommendation from the point of optimizing
solve time. Rather than using reliability classification on its own, we can use it as a preliminary
step before the performance classification.

7. Experiments

In this section we will report on the use of the techniques developed above, applied to the
problem of recommending a preconditioner and iterative method for solving a linear system.
The discussion on the experimental setup and results will be brief; results with much greater
detail can be found in Fuentes (2007).
We start by introducing some further concepts that facilitate the numerical tests.

7.1 Experimental setup

We use a combination of released software from the Salsa project Salsa Project (n.d.a;n) and
custom scripts. For feature computation we use AnaMod Eijkhout & Fuentes (2007); The Salsa
Project (n.d.); storage and analysis of features and timings is done with MySQL and custom
scripting in Matlab and its statistical toolbox.
The AnaMod package can compute 45 features, in various categories, such as structural fea-
tures, norm-like features, measures of the spectrum and of the departure from normality. The
latter two are obviously approximated rather than computed exactly.
The Salsa testbed gives us access to the iterative methods and preconditioners of the Petsc
package. including the preconditioners of externally interfaced packages such as Hypre Fal-
gout et al. (2006); Lawrence Livermore Lab, CASC group (n.d.).

7.2 Practical issues

The ideas developed in the previous sections are sufficient in principle for setting up a prac-
tical application of machine learning to numerical method selection. However, in practice we
need some auxiliary mechanisms to deal with various ramifications of the fact that our set of
test problems is not of infinite size. Thus, we need

• A way of dealing with features that can be invariant or (close to) dependent in the test
problem collection.

• A way of dealing with methods that can be very close in their behaviour.

• An evaluation of the accuracy of the classifiers we develop.

7.2.1 Feature analysis

There are various transformations we apply to problem features before using them in various
learning methods.
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Scaling Certain transformations on a test problem can affect the problem features, without
affecting the behaviour of methods, or being of relevance for the method choice. For
instance, scaling a linear system by a scalar factor does not influence the convergence
behaviour of iterative solvers. Also, features can differ in magnitude by order of mag-
nitude. For this reason, we normalize features, for instance scaling them by the largest
diagonal element. We also mean-center features for classification methods that require
this.

Elimination Depending on the collection of test problems, a feature may be invariant, or
dependent on other features. We apply Principal Component Analysis Jackson (2003)
to the set of features, and use that to weed out irrelevant features.

7.2.2 Hierarchical classification

It is quite conceivable that certain algorithms are very close in behaviour. It then makes sense
to group these methods together and first construct a classifier that can recommend first such
a group, and subsequently a member of the group. This has the advantage that the classifiers
are build from a larger number of observations, giving a higher reliability.
The algorithm classes are built by computing the independence of methods. For two algo-
rithms x and y, the ‘independence of method x from method y’ is defined as

Iy(x) =
#cases where x works and y not

#cases where x works

The quantity Iy(x) ∈ [0, 1] describes how much x succeeds on different problems from y. Note
that Iy(x) �= Ix(y) in general; if x works for every problem where y works (but not the other
way around), then Iy(x) = 0, and Ix(y) > 0.

7.2.3 Evaluation

In order to evaluate a classifier, we use the concept of accuracy. The accuracy α of a classifier
is defined as

α =
#problems correctly classified

total #problems

A further level of information can be obtained looking at the details of misclassification:
a ‘confusion matrix’ is defined as A = (αij) where αij is the ratio of problems belonging in
class i, classified in class j, to those belonging in class i. With this, αii is the accuracy of classi-
fier i, so, for an ideal classifier, A is a diagonal matrix with a diagonal ≡ 1; imperfect classifiers
have more weight off the diagonal.
A further measure of experimental results is the confidence interval z, which indicates an
interval in which the resulting accuracy for a random trial will be away for the presented
average accuracy α by ±z Douglas & Montgomery (1999) of the time. We use z to delimit the
confidence interval since we have used the Z-test Douglas & Montgomery (1999), commonly
used in statistics. The confidence interval is a measure of how ‘stable’ the resulting accuracy
is for an experiment.

7.3 Numerical test

We tested a number of iterative methods and preconditioners on a body of test matrices, col-
lected from Matrix Market and a few test applications. The iterative methods and precondi-
tioners are from the PETSc library.
As described above, we introduced superclasses, as follows:
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• B={ bcgs, bcgsl, bicg }, where bcgs is BiCGstab van der Vorst (1992), and bcgsl is
BiCGstab(ℓ) Sleijpen et al. (n.d.) with ℓ ≥ 2.

• G={ gmres, fgmres } where fgmres is the ‘flexible’ variant of GMRES Saad (1993).

• T={ tfqmr }

• C={ cgne }, conjugate gradients on the noral equations.

for iterative methods and

• A = { asm, rasm, bjacobi }, where asm is the Additive Schwarz method, and rasm is its
restricted variant Cai & Sarkis (1999); bjacobi is block-jacobi with a local ILU solve.

• BP = { boomeramg, parasails, pilut }; these are three preconditioners from the hypre pack-
age Falgout et al. (2006); Lawrence Livermore Lab, CASC group (n.d.)

• I = { ilu, silu }, where silu is an ILU preconditioner with shift Manteuffel (1980).

for preconditioners.

(a) Iterative Methods

ksp α ± z

bcgsl 0.59±0.02
bcgs 0.71±0.03
bicg 0.68±0.06
fgmres 0.80±0.02
gmres 0.59±0.04
lgmres 0.81±0.03
tfqmr 0.61±0.05

(b) Preconditioners

pc α ± z

asm 0.72±0.05
bjacobi 0.11±0.11
boomeramg 0.71±0.06
ilu 0.66±0.02
parasails 0.46±0.12
pilut 0.80±0.06
rasm 0.70±0.04
silu 0.83±0.02

Table 1. Accuracy of classification using one class per available method

(a) Iterative methods

Super Class α Compound

B 0.95
bcgs 0.93 0.87
bcgsl 0.92 0.87
bicg 0.89 0.84

G 0.98
fgmres 0.96 0.94
gmres 0.91 0.89
lgmres 0.94 0.93

T 0.91
tfqmr − 0.91

(b) Preconditioners

Super Class α Compound

A 0.95
asm 0.98 0.93

bjacobi 0.67 0.64
rasm 0.82 0.78

BP 0.99
boomeramg 0.80 0.80

parasails 0.78 0.77
pilut 0.97 0.96

I 0.94
ilu 0.82 0.75
silu 0.97 0.91

Table 2. Hierarchical classification results
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strategy average std.dev.

combined .3 .15
orthogonal .78 .04

Table 3. Average and standard deviation of the correct classification rate

In table 1 we report the accuracy (as defined above) for a classification of all individual meth-
ods, while table 2 gives the result using superclasses. Clearly, classification using superclasses
is superior. All classifiers were based on decision trees Breiman et al. (1983); Dunham (2002).

Fig. 1. Confusion matrix for combined approach for classifying (pc, ksp).

Finally, in figures 1, 2 we give confusion matrices for two different classification strategies for
the preconditioner / iterative method combination. The orthogonal approach gives superior
results, as evinced by the lesser weight off the diagonal. For this approach, there are fewer
classes to build classifiers for, so the modeling is more accurate. As a quantative measure of
the confusion matrices, we report in table 3 the average and standard deviation of the fraction
of correctly classified matrices.

7.4 Reliability and Performance

Above (section 5.1) we defined the Performance recommendation problem of finding the
fastest method, and the Reliability recommendation problem of finding one that works at
all. Since orthogonal recommendation is not possible for the reliability problem (section 6.4),
we use combined recommendation there. In our tests, this strategy turns out to recommend a
subset of the actually converging methods, so it is indeed a valuable preprocessing step.
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Fig. 2. Confusion matrix for orthogonal approach for classifying (pc, ksp).

8. Conclusion

We have defined the relevant concepts for the use of machine learning for algorithm selection
in various areas of numerical analysis, in particular iterative linear system solving. An innova-
tive aspect of our approach is the multi-leveled approach to the set of objects (the algorithms)
to be classified. An important example of levels is the distinction between the iterative process
and the preconditioner in iterative linear system solvers. We have defined various strategies
for classifying subsequent levels. A numerical test testifies to the feasibility of using machine
learning to begin with, as well as the necessity for our multi-leveled approach.
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