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1. Introduction   
  

The overwhelming amount of data that is available nowadays in any field of research poses 
new problems for machine learning methods. This huge amount of data makes most of the 
existing algorithms inapplicable to many real-world problems. Two approaches have been 
used to deal with this problem: scaling up machine learning algorithms and data reduction. 
Nevertheless, scaling up a certain algorithm is not always feasible. On the other hand, data 
reduction consists of removing from the data missing, redundant and/or erroneous data to 
get a tractable amount of data. The most common methods for data reduction are instance 
selection and feature selection.  
However, these algorithms for data reduction have the same scaling problem they are trying 
to solve. For example, in the best case, most existing instance selection algorithms are

 2O n , n being the number of instances. For huge problems, with hundreds of thousands or 

even millions of instances, these methods are not applicable. The same happens with feature 
selection algorithms. 
The alternative is scaling up the machine learning algorithm itself. In the best case, this is an 
arduous task, and in the worst case and impossible one. In this chapter we present a new 
paradigm for scaling up machine learning algorithms based on the philosophy of divide-
and-conquer. One natural way of scaling up a certain algorithm is dividing the original 
problem into several simpler subproblems and applying the algorithm separately to each 
subproblem. In this way we might scale up instance selection dividing the original dataset 
into several disjoint subsets and performing the instance selection process separately on 
each subset. However, this method does not work well, as the application of the algorithm 
to a subset suffers from the partial knowledge it has of the dataset. However, if we join this 
divide-and-conquer approach with the basis of the construction of ensembles of classifiers, 
the combination of weak learners into a strong one, we obtain a very powerful and fast 
method, applicable to almost any machine learning algorithm. This method can be applied 
in different ways. In this chapter we propose two algorithms, recursive divide-and-conquer 
and democratization, that are able to achieve very good performance and a dramatic 
reduction in the execution time of the instance selection algorithms. 

13
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We will describe these methods and we will show how they can achieve very good results 
when applied to instance selection. Furthermore, the methodology is applicable to other 
machine learning algorithms, such as feature selection and cluster analysis.  
Instance selection (Liu & Motoda, 2002) consists of choosing a subset of the total available 
data to achieve the original purpose of the data mining application as if the whole data were 
used. Different variants of instance selection exist. Many of the approaches are based on 
some form of sampling (Cochran, 1997) (Kivinen & Mannila, 1994). There are other more 
modern methods that are based on different principles, such as, Modified Selective Subset 
(MSS) (Barandela et al., 2005), entropy-based instance selection (Son & Kim, 2006), 
Intelligent Multiobjective Evolutionary Algorithm (IMOEA) (Chen et al., 2005), and 
LVQPRU method (Li et al., 2005). 
The problem of instance selection for instance based learning can be defined as (Brighton & 
Mellish, 2002) “the isolation of the smallest set of instances that enable us to predict the class 
of a query instance with the same (or higher) accuracy than the original set”. It has been 
shown that different groups of learning algorithms need different instance selectors in order 
to suit their learning/search bias (Brodley, 1995). This may render many instance selection 
algorithm useless, if their philosophy of design is not suitable to the problem at hand. 
We can distinguish two main models of instance selection (Cano et al., 2003): instance 
selection as a method for prototype selection for algorithms based on prototypes (such as k-
Nearest Neighbors) and instance selection for obtaining the training set for a learning 
algorithm that uses this training set (such as decision trees or neural networks). This chapter 
is devoted to the former methods. 
Regarding complexity, in the best case, most existing instance selection algorithms are of 

efficiency  2O n , n being the number of instances. For huge problems, with hundreds of 

thousands or even millions of instances, these methods are not applicable. Trying to develop 
algorithms with a lower efficiency order is likely to be a fruitless search. Obtaining the 
nearest neighbor of a given instance is  O n . To test whether removing an instance affects 
the accuracy of the nearest neighbor rule, we must measure the effect on the other instances 
of the absence of the removed one. Measuring this effect involves recalculating, directly or 

indirectly, the nearest neighbors of the instances. The result is a process of  2O n . In this 

way, the attempt to develop algorithms of an efficiency order below this bound is not very 
promising. 
Thus, the alternative is reducing the size n of the set to which instance selection algorithms 
are applied. In the construction of ensembles of classifiers the problem of learning from 
huge datasets has been approached by means of learning many classifiers from small 
disjoint subsets (Chawla et al., 2004). In that paper, the authors showed that it is also 
possible to learn an ensemble of classifiers from random disjoint partitions of a dataset, and 
combine predictions from all those classifiers to achieve high classification accuracies. They 
applied their method to huge datasets with very good results. Furthermore, the usefulness 
of applying instance selection to disjoint subsets has also been shown in (García-Pedrajas et 
al., 2009). In that work, a cooperative evolutionary algorithm was used. The training set was 
divided into several disjoint subsets and an evolutionary algorithm was performed on each 
subset of instances. The fitness of the individuals was evaluated only taking into account the 
instances in the subset. To account for the global view needed by the algorithm a global 

population was used. This method is scalable to medium/large problems but cannot be 
applied to huge problems. Zhu & Wu (2006) also used disjoint subsets in a method for 
ranking representative instances. 
Following this idea, we will present in this chapter two approaches for scaling up instance 
selection algorithms that are based on a divide-and-conquer approach. The presented 
methods are able to achieve very good performance with a drastic reduction in the time 
needed for the execution of the algorithms. The general idea underlying this work is 
dividing the original dataset into subsets and performing the instance selection process in 
each subset separately. Then, we must find a method for combining the separate 
applications of the instance selection algorithm to a final global result. 
The rest of this paper is organized as follows: Section 2 revised some related work; Section 3 
describes in depth our proposal; Section 4 shows the experiments performed with our 
methods; and finally Section 5 states the conclusions of our work. 

 
2. Related work 
 

As stated in the previous section, scaling up instance selection algorithms is a very relevant 
issue. The usefulness of applying instance selection to disjoint subsets has also been shown 
in (García-Pedrajas et al., 2009). In this work a cooperative evolutionary algorithm is used. 
Several evolutionary algorithms are performed on disjoint subsets of instances and a global 
population is used to account for the global view. This method is scalable to medium/large 
problems but cannot be applied to huge problems.  
There are not many previous works that have dealt with instance selection for huge 
problems. Cano et al. (2005) proposed an evolutionary stratified approach for large 
problems. Although the algorithm shows very good performance, it is still too 
computationally expensive for huge datasets. Kim & Oommen (2004) proposed a method 
based on a recursive application of instance selection to smaller datasets.  
In a recent paper, De Haro-García and García-Pedrajas (2009) showed that the application of 
a recursive divide-and-conquer approach is able to achieve a good performance while 
attaining a dramatic reduction in the execution time of the instance selection process. 

 
3. Scaling up instance selection algorithms using divide-and-conquer 
philosophy 
 

As stated in the previous section, scaling up instance selection algorithms is a very relevant 
issue. In this section we will discuss our proposals based on a divide-and-conquer approach. 
The two methods aim a general objective of scaling up instance selection algorithms. 
However, individually they have two different aims. The first one, based on recursively 
using the principle of divide-and-conquer, has as main goal the reduction of the time 
needed by the instance selection process. In this way, it trades time for performance, 
allowing a small increase on the testing error achieved by the algorithms. The second one, 
based on combining the divide-and-conquer approach with principles from ensembles of 
classifiers, has as special objective reducing the time of the algorithms, but  keeping their 
performance as much as possible. 
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used. Different variants of instance selection exist. Many of the approaches are based on 
some form of sampling (Cochran, 1997) (Kivinen & Mannila, 1994). There are other more 
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Mellish, 2002) “the isolation of the smallest set of instances that enable us to predict the class 
of a query instance with the same (or higher) accuracy than the original set”. It has been 
shown that different groups of learning algorithms need different instance selectors in order 
to suit their learning/search bias (Brodley, 1995). This may render many instance selection 
algorithm useless, if their philosophy of design is not suitable to the problem at hand. 
We can distinguish two main models of instance selection (Cano et al., 2003): instance 
selection as a method for prototype selection for algorithms based on prototypes (such as k-
Nearest Neighbors) and instance selection for obtaining the training set for a learning 
algorithm that uses this training set (such as decision trees or neural networks). This chapter 
is devoted to the former methods. 
Regarding complexity, in the best case, most existing instance selection algorithms are of 
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way, the attempt to develop algorithms of an efficiency order below this bound is not very 
promising. 
Thus, the alternative is reducing the size n of the set to which instance selection algorithms 
are applied. In the construction of ensembles of classifiers the problem of learning from 
huge datasets has been approached by means of learning many classifiers from small 
disjoint subsets (Chawla et al., 2004). In that paper, the authors showed that it is also 
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instances in the subset. To account for the global view needed by the algorithm a global 

population was used. This method is scalable to medium/large problems but cannot be 
applied to huge problems. Zhu & Wu (2006) also used disjoint subsets in a method for 
ranking representative instances. 
Following this idea, we will present in this chapter two approaches for scaling up instance 
selection algorithms that are based on a divide-and-conquer approach. The presented 
methods are able to achieve very good performance with a drastic reduction in the time 
needed for the execution of the algorithms. The general idea underlying this work is 
dividing the original dataset into subsets and performing the instance selection process in 
each subset separately. Then, we must find a method for combining the separate 
applications of the instance selection algorithm to a final global result. 
The rest of this paper is organized as follows: Section 2 revised some related work; Section 3 
describes in depth our proposal; Section 4 shows the experiments performed with our 
methods; and finally Section 5 states the conclusions of our work. 
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3.1 Recursive divide-and-conquer approach 
As we have said, in the best case, most existing instance selection algorithms are of 

efficiency  2O n . For huge problems, with hundreds of thousands or even millions of 

instances, these methods are not applicable. Trying to develop algorithms with a lower 
efficiency order is likely to be a fruitless search.  
Following the divide-and-conquer philosophy, we can develop a methodology based on 
applying the instance selection algorithm to subsets of the whole training set. A simple 
approach consists of using a stratified random sampling (Liu & Motoda, 2002) (Cano et al., 
2005), where the original dataset is divided into many disjoint subsets, and then apply 
instance selection over each subset independently. However, due to the fact that to select the 
nearest neighbor of an instance we need to know the whole dataset, this method is not likely 
to produce good results. In fact, in practice its performance is poor. However, the divide-
and-conquer principle of this method is an interesting idea for scaling up instance selection 
algorithms. Furthermore, divide-and-conquer methodology has the additional advantage 
that we can adapt the size of the subproblems to the available resources.  
Following this philosophy we start performing a partition of the dataset and then applying 
the instance selection algorithm to every subset independently. This step is able to be 
performed fast and obtains good results in terms of testing error. However, its results in 
terms of storage reduction are poor. To avoid this drawback we apply this method 
recursively. After an instance selection step is performed the remaining instances are 
rejoined to obtain again subsets of approximately the same size and the instance selection 
process is repeated. Fig. 1 shows and outline of the process. 
 

 
Fig. 1. Outline of recursive divide-and-conquer instance selection method 
 
This method is applicable to any instance selection algorithm, as the instance selection 
algorithm is a parameter of the method. More formally, first, our method divides the 

whole training set, T, into disjoint subsets, t i , of size s such as iT = t . s is the only 

parameter of the algorithm. In this study the dataset is randomly partitioned, although 
other methods may be devised. Then, the instance selection algorithm of our choice is 
performed over every subset independently. The selected instances in each subset are 
joined again. With this new training set constructed with the selected instances, the process 
is repeated until a certain stop criterion is fulfilled. The process of combining the instances 
selected by the execution of the instance selection algorithm over each dataset can be 
performed in different ways. We can just repeat the partition process as in the original 
dataset. However, as the first partition is performed we can take advantage of this 
performed task. In this way, instead of repeating the partitioning process, we join together 
the subsets of selected instances until new subsets of approximately size s are obtained. 
The detailed process is shown in Fig. 2. 
 

Data: A training set T={฀x1, y1฀,฀ ,฀xn ,y n฀} , and subset size s. 

Result: The reduced training set S฀T .  
 
S=T  

divide instances into disjoint subsets t i :T=฀t i of size s 
 
repeat until stop criterion 
 

    for each subset t i do 

        apply instance selection algorithm to t i to obtain si฀ ti  

         remove from S the instances removed from t i  
    end for 
 

    fusion subsets si to obtain new subsets t j of size s 
 
end repeat 
 

return S  
 
Fig. 2. Recursive divide-and-conquer instance selection algorithm 
 
The stop criterion may be obtained in different ways. We can have a goal in terms of testing 
error or reduction of storage and stop the algorithm when that goal is achieved. However, to 
avoid the necessity of setting any additional parameter, we obtain the stop criterion by 
means of cross-validation. We apply the algorithm using a cross-validation setup and obtain 
the number of steps before the testing error starts to grow. This number of steps gives the 
stopping criterion. 
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Following this philosophy we start performing a partition of the dataset and then applying 
the instance selection algorithm to every subset independently. This step is able to be 
performed fast and obtains good results in terms of testing error. However, its results in 
terms of storage reduction are poor. To avoid this drawback we apply this method 
recursively. After an instance selection step is performed the remaining instances are 
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process is repeated. Fig. 1 shows and outline of the process. 
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joined again. With this new training set constructed with the selected instances, the process 
is repeated until a certain stop criterion is fulfilled. The process of combining the instances 
selected by the execution of the instance selection algorithm over each dataset can be 
performed in different ways. We can just repeat the partition process as in the original 
dataset. However, as the first partition is performed we can take advantage of this 
performed task. In this way, instead of repeating the partitioning process, we join together 
the subsets of selected instances until new subsets of approximately size s are obtained. 
The detailed process is shown in Fig. 2. 
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The stop criterion may be obtained in different ways. We can have a goal in terms of testing 
error or reduction of storage and stop the algorithm when that goal is achieved. However, to 
avoid the necessity of setting any additional parameter, we obtain the stop criterion by 
means of cross-validation. We apply the algorithm using a cross-validation setup and obtain 
the number of steps before the testing error starts to grow. This number of steps gives the 
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3.2 Democratic instance selection 
The above method is very fast as it will be shown in the experimental results. However, it 
has the drawback of worsening the testing error achieved by some algorithms for certain 
problems. To improve the results of our approach in this aspect, we have developed a 
second method we called democratic instance selection. The method is also based on the 
general divide-and-conquer approach but including ideas from ensembles of classifiers. 
Democratic instance selection is based on repeating several rounds of a fast instance 
selection process. Each round on its own would not be able to achieve a good performance. 
However, the combination of several rounds using a voting scheme is able to match the 
performance of an instance selection algorithm applied to the whole dataset with a large 
reduction in the time of the algorithm. Thus, in a different setup from the case of ensembles 
of classifiers, we can consider our method a form of “ensembling” instance selection. 
 

 
Fig. 3. Outline of democratic instance selection method 
 

In classification, several weak learners are combined into an ensemble which is able to 
improve the performance of any of the weak learners isolated (García-Pedrajas et al., 2007). 
In our method, the instance selection algorithm applied to a partition into disjoint subsets of 
the original dataset can be considered a weak instance selector, as it has a partial view of the 
dataset. The combination of these weak selectors using a voting scheme is similar to the 
combination of different learners in an ensemble using a voting scheme. Fig. 3 shows a 
general outline of the method. 
An important issue in our method is determining the number of votes needed to remove an 
instance from the training set. Preliminary experiments showed that this number highly 
depends on the specific dataset. Thus, it is not possible to set a general pre-established value 
usable in any dataset. On the contrary, we need a way of selecting this value directly from 
the dataset in run time.  
A first natural choice would be the use of a cross-validation procedure. However, this 
method is very time consuming. A second choice is estimating the best value for the number 
of votes from the effect on the training set. This latter method is the one we have chosen. The 
election of the number of votes must take into account two different criteria: training error, 
εt , and storage, or memory, requirements m . Both values must be minimized as much as 

possible. Our method of choosing the number of votes needed to remove an instance is 

based on obtaining the threshold number of votes, v , that minimizes a fitness criterion, 
 f v , which is a combination of these two values:  

 
       1tf v = αε v + α m v ,  (1) 

 

where α is a value in the interval [0, 1] which measures the relative relevance of both 
values. In general, the minimization of the error is more important than storage reduction, 
as we prefer a lesser error even if the reduction is smaller. Thus, we have used a value 

of α=0 .75 . Different values can be used if the researcher is more interested in reduction 

than in error. m is measured as the percentage of instances retained, and εt is the training 
error. However, estimating the training error is time consuming if we have large datasets. 
To avoid this problem the training error is estimated using only a small percentage of the 
whole dataset, which is 1% for medium and large datasets, and 0.1% for huge datasets.  
 

Data: A training set     1, 1 n nT = x y , , x ,y , subset size s, and number of rounds r. 

Result: The set of selected instances .S T  
 
for i = 1 to r do  
    divide instances into disjoint subsets :i it t = T of size s 

    for each t i do 

        apply instance selection algorithm to t i  

        store votes of removed instances from t i  
    end for 
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obtain threshold of votes, v , to remove an instance 
S=T  

remove from S all instances with a number of votes above or equal to v  
 

return S  
Fig. 4. Democratic instance selection algorithm 
 
More formally, the process is the following: We perform r rounds of the algorithm and store 
the number of votes received by each instance. Then, we must obtain the threshold number 
of votes, v, to remove an instance. This value must be 1,v r   . We calculate the criterion

 f v  (eq. 1) for all the possible threshold values from 1 to r, and assign v to the value which 
minimizes the criterion. After that, we perform the instance selection removing the instances 
whose number of votes is above or equal to the obtained threshold v. Fig. 4 shows the steps 
of this algorithm. 

 
4. Experimental setup and results 
 

In order to make a comprehensive comparison between the standard algorithms and our 
proposal we have selected a set of 30 problems from the UCI Machine Learning Repository 
(Hettich et al., 1998). A summary of these data sets is shown in Table 1. We have selected 
datasets with, at least, 1000 instances. For estimating the storage reduction and 
generalization error we used a k-fold cross-validation method. In this method the available 
data is divided into k approximately equal subsets. Then, the method is learned k times, 
using, in turn, each one of the k subsets as testing set, and the remaining k-1 subsets as 
training set. The estimated error is the average testing error of the k subsets. A fairly 
standard value for k is k = 10.  

 
4.1 Evaluating instance selection methods 
The evaluation of a certain instance selection algorithm is not a trivial task. We can 
distinguish two basic approaches: direct and indirect evaluation (Liu & Motoda, 2002). 
Direct evaluation evaluates a certain algorithm based exclusively on the data. The objective 
is to measure at which extent the selected instances reflect the information present in the 
original data. Some proposed measures are entropy (Cover & Thomas, 1991), moments 
(Smith, 1998), and histograms (Chaudhuri et al., 1998). 
Indirect methods evaluate the effect of the instance selection algorithm on the task at hand. 
So, if we are interested in classification we evaluate the performance of the used classifier 
when using the reduced set obtained after instance selection as learning set. 

Fe a ture s

Da ta  se t Ins ta nc e s Re a l Bina ry Nomina l Cla s s e s 1-NN e rror

a ba lone 4 17 7 7 - 1 29 0 .8 0 34

a dult 4 8 8 4 2 6 1 7 2 0 .20 0 5
c a r 17 28 - - 6 4 0 .158 1

ge ne 317 5 - - 6 0 3 0 .27 6 7

ge rma n 10 0 0 6 3 11 2 0 .3120
hypothyro id 37 7 2 7 20 2 4 0 .0 6 9 2

is o le t 7 7 9 7 6 17 - - 26 0 .14 4 3

krkopt 28 0 56 6 - - 18 0 .4 356

kr vs . kp 319 6 - 34 2 2 0 .0 8 28
le tte r 20 0 0 0 16 - - 26 0 .0 4 54

ma gic 0 4 19 0 20 10 - - 2 0 .20 8 4

mfe a t-fa c 20 0 0 216 - - 10 0 .0 350
mfe a t-fou 20 0 0 7 6 - - 10 0 .20 8 0

mfe a t-ka r 20 0 0 6 4 - - 10 0 .0 4 35

mfe a t-mor 20 0 0 6 - - 10 0 .29 25

mfe a t-pix 20 0 0 24 0 - - 10 0 .0 27 0
mfe a t-ze r 20 0 0 4 7 - - 10 0 .214 0

nurs e ry 129 6 0 - 1 7 5 0 .250 2

optdigits 56 20 6 4 - - 10 0 .0 256
pa ge -bloc ks 54 7 3 10 - - 5 0 .0 36 9

pe ndigits 10 9 9 2 16 - - 10 0 .0 0 6 6

phone me 54 0 4 5 - - 2 0 .0 9 52
s a tima ge 6 4 35 36 - - 6 0 .0 9 39

s e gme nt 2310 19 - - 7 0 .0 39 8

s huttle 58 0 0 0 9 - - 7 0 .0 0 10

s ic k 37 7 2 7 20 2 2 0 .0 4 30
te xture 550 0 4 0 - - 11 0 .0 10 5

wa ve form 50 0 0 4 0 - - 3 0 .28 6 0

ye a s t 14 8 4 8 - - 10 0 .4 8 7 9
 

Table 1. Summary of datasets used in our experiments 
 
Therefore, when evaluating instance selection algorithms for instance learning, the most 
usual way of evaluation is estimating the performance of the algorithms on a set of 
benchmark problems. In those problems several criteria can be considered, such as (Wilson 
& Martínez, 2000): storage reduction, generalization accuracy, noise tolerance, and learning 
speed. Speed considerations are difficult to measure, as we are evaluating not only an 

www.intechopen.com



Scaling up instance selection algorithms by dividing-and-conquering 197

 

obtain threshold of votes, v , to remove an instance 
S=T  

remove from S all instances with a number of votes above or equal to v  
 

return S  
Fig. 4. Democratic instance selection algorithm 
 
More formally, the process is the following: We perform r rounds of the algorithm and store 
the number of votes received by each instance. Then, we must obtain the threshold number 
of votes, v, to remove an instance. This value must be 1,v r   . We calculate the criterion

 f v  (eq. 1) for all the possible threshold values from 1 to r, and assign v to the value which 
minimizes the criterion. After that, we perform the instance selection removing the instances 
whose number of votes is above or equal to the obtained threshold v. Fig. 4 shows the steps 
of this algorithm. 

 
4. Experimental setup and results 
 

In order to make a comprehensive comparison between the standard algorithms and our 
proposal we have selected a set of 30 problems from the UCI Machine Learning Repository 
(Hettich et al., 1998). A summary of these data sets is shown in Table 1. We have selected 
datasets with, at least, 1000 instances. For estimating the storage reduction and 
generalization error we used a k-fold cross-validation method. In this method the available 
data is divided into k approximately equal subsets. Then, the method is learned k times, 
using, in turn, each one of the k subsets as testing set, and the remaining k-1 subsets as 
training set. The estimated error is the average testing error of the k subsets. A fairly 
standard value for k is k = 10.  

 
4.1 Evaluating instance selection methods 
The evaluation of a certain instance selection algorithm is not a trivial task. We can 
distinguish two basic approaches: direct and indirect evaluation (Liu & Motoda, 2002). 
Direct evaluation evaluates a certain algorithm based exclusively on the data. The objective 
is to measure at which extent the selected instances reflect the information present in the 
original data. Some proposed measures are entropy (Cover & Thomas, 1991), moments 
(Smith, 1998), and histograms (Chaudhuri et al., 1998). 
Indirect methods evaluate the effect of the instance selection algorithm on the task at hand. 
So, if we are interested in classification we evaluate the performance of the used classifier 
when using the reduced set obtained after instance selection as learning set. 

Fe a ture s

Da ta  se t Ins ta nc e s Re a l Bina ry Nomina l Cla s s e s 1-NN e rror

a ba lone 4 17 7 7 - 1 29 0 .8 0 34

a dult 4 8 8 4 2 6 1 7 2 0 .20 0 5
c a r 17 28 - - 6 4 0 .158 1

ge ne 317 5 - - 6 0 3 0 .27 6 7

ge rma n 10 0 0 6 3 11 2 0 .3120
hypothyro id 37 7 2 7 20 2 4 0 .0 6 9 2

is o le t 7 7 9 7 6 17 - - 26 0 .14 4 3

krkopt 28 0 56 6 - - 18 0 .4 356

kr vs . kp 319 6 - 34 2 2 0 .0 8 28
le tte r 20 0 0 0 16 - - 26 0 .0 4 54

ma gic 0 4 19 0 20 10 - - 2 0 .20 8 4

mfe a t-fa c 20 0 0 216 - - 10 0 .0 350
mfe a t-fou 20 0 0 7 6 - - 10 0 .20 8 0

mfe a t-ka r 20 0 0 6 4 - - 10 0 .0 4 35

mfe a t-mor 20 0 0 6 - - 10 0 .29 25

mfe a t-pix 20 0 0 24 0 - - 10 0 .0 27 0
mfe a t-ze r 20 0 0 4 7 - - 10 0 .214 0

nurs e ry 129 6 0 - 1 7 5 0 .250 2

optdigits 56 20 6 4 - - 10 0 .0 256
pa ge -bloc ks 54 7 3 10 - - 5 0 .0 36 9

pe ndigits 10 9 9 2 16 - - 10 0 .0 0 6 6

phone me 54 0 4 5 - - 2 0 .0 9 52
s a tima ge 6 4 35 36 - - 6 0 .0 9 39

s e gme nt 2310 19 - - 7 0 .0 39 8

s huttle 58 0 0 0 9 - - 7 0 .0 0 10

s ic k 37 7 2 7 20 2 2 0 .0 4 30
te xture 550 0 4 0 - - 11 0 .0 10 5

wa ve form 50 0 0 4 0 - - 3 0 .28 6 0

ye a s t 14 8 4 8 - - 10 0 .4 8 7 9
 

Table 1. Summary of datasets used in our experiments 
 
Therefore, when evaluating instance selection algorithms for instance learning, the most 
usual way of evaluation is estimating the performance of the algorithms on a set of 
benchmark problems. In those problems several criteria can be considered, such as (Wilson 
& Martínez, 2000): storage reduction, generalization accuracy, noise tolerance, and learning 
speed. Speed considerations are difficult to measure, as we are evaluating not only an 

www.intechopen.com



New Advances in Machine Learning198

algorithm but also a certain implementation. However, as the main aim of our work is 
scaling up instance selection algorithms, execution time is a basic issue. To allow a fair 
comparison, we have performed all the experiments in the same machine, a bi-processor 
computer with two Intel Xeon QuadCore at 1.60GHz. 
One of the advantages of our approach is that it can be applied to any kind of instance 
selection method. As the instance selection method to apply is just a parameter of the 
algorithm, there is no restriction in the algorithm selected. In the experiments we have used 
several of the most widely used instance selection methods. 
In order to obtain an accurate view of the usefulness of our method, we must select some of 
the most widely used instance selection algorithms. We have chosen to test our model using 
several of the most successful state-of-the-art algorithms. Initially, we used the algorithm 
ICF (Brighton & Mellish, 2002). ICF (Iterative Case Filtering) is based on the concepts of 
coverage and reachability of an instance c, which are defined as follows: 
 

Coverage(c) =  :c' T c LocalSet c'   

Reachable(c) =  :c' T c' LocalSet c   
 

The local-set of a case c is defined as “the set of cases contained in the largest hypersphere 
centered on c such that only cases in the same class as c are contained in the hypersphere” 
(Brighton & Mellish, 2002) so the hypersphere is bounded by the first instance of different 
class. The coverage set of an instance includes the instances that have this as one of their 
neighbors and the reachable set is formed by the instances that are neighbors to this 
instance. The algorithm is based on repeatedly applying a deleting rule to the set of retained 
instances until no more instances fulfill the deleting rule. 
In addition to this method, it is worth mentioning Reduced Nearest Neighbor (RNN) rule 
(Gates, 1972). This method is extremely simple, but it also shows an impressive performance 
in terms of storage reduction. In fact, it is the best of the methods used in these experiments 
in reducing storage requirements, as will be shown in the next section. However, it has a 
serious drawback, its computational complexity. Among the standard methods used this is 
the one that shows a worst scalability, taking several hundreds hours in the worst case. 
Therefore, RNN is the perfect target for our methodology, an instance selection method 
highly efficient but with a serious scalability problem. So we have also tested our approach 
using RNN, as base instance selection method.  
The same parameters were used for the standard version of every algorithm and its 
application within our methodology. All the standard methods have no relevant 
parameters, the only value we must set is k, the number of nearest neighbors. Both, for ICF 
and RNN, we used k = 3 neighbors. This is a fairly standard value (Cano et al., 2003). Our 
method has two parameters: subset size, s, for both methods, and number of rounds, r, for 
the democratic approach. Regarding subset size we must use a value large enough to allow 
for a meaningful application of the instance selection algorithm on the subset, and small 
enough to allow a fast execution, as the time used by our method grows with s. As a 
compromise value we have chosen s = 100. For the number of rounds we have chosen a 
small value to allow for a fast execution, r = 10. The application of our recursive divide-and-
conquer method with a certain instance selection algorithm X will be named RECURIS.X and 
the democratic approach named DEMOIS.X.  
 

4.2 Recursive divide-and-conquer approach 
In this section we show the results using the recursive approach. First, we compare the 
proposed approach against standard instance selection methods in terms of testing error 
and storage requirements. In the next section we will show execution time results. 
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Fig. 5. Results of standard ICF method and its recursive counterpart for testing error and 
storage requirements 
 
Fig. 5 shows the results comparing standard ICF and its recursive counterpart. The figure 
(as well as the following ones) shows for each dataset the difference between the standard 
method and our approach, a negative value meaning a better results of our proposal. The 
figure shows that in terms of storage reduction our method is better in general, achieving for 
some datasets, namely car, gene, german, krkopt, krvskp and nursery, significant 
improvements over the standard method. In terms of testing error RECURIS.ICF is slightly 
worse than standard ICF. 
Fig. 6 shows the results for RNN as base instance selection method. This a very good test of 
our approach, as RNN is able to achieve very good results in terms of storage reduction 
while keeping testing error in moderate bounds. However, RNN has a big problem of 
scalability. The results show that our method is able to mostly keep the good performance 
of RNN in terms of storage requirements, although with a general worst behavior. 
However, this is compensated by a better testing error for most datasets. 
 

www.intechopen.com



Scaling up instance selection algorithms by dividing-and-conquering 199

algorithm but also a certain implementation. However, as the main aim of our work is 
scaling up instance selection algorithms, execution time is a basic issue. To allow a fair 
comparison, we have performed all the experiments in the same machine, a bi-processor 
computer with two Intel Xeon QuadCore at 1.60GHz. 
One of the advantages of our approach is that it can be applied to any kind of instance 
selection method. As the instance selection method to apply is just a parameter of the 
algorithm, there is no restriction in the algorithm selected. In the experiments we have used 
several of the most widely used instance selection methods. 
In order to obtain an accurate view of the usefulness of our method, we must select some of 
the most widely used instance selection algorithms. We have chosen to test our model using 
several of the most successful state-of-the-art algorithms. Initially, we used the algorithm 
ICF (Brighton & Mellish, 2002). ICF (Iterative Case Filtering) is based on the concepts of 
coverage and reachability of an instance c, which are defined as follows: 
 

Coverage(c) =  :c' T c LocalSet c'   

Reachable(c) =  :c' T c' LocalSet c   
 

The local-set of a case c is defined as “the set of cases contained in the largest hypersphere 
centered on c such that only cases in the same class as c are contained in the hypersphere” 
(Brighton & Mellish, 2002) so the hypersphere is bounded by the first instance of different 
class. The coverage set of an instance includes the instances that have this as one of their 
neighbors and the reachable set is formed by the instances that are neighbors to this 
instance. The algorithm is based on repeatedly applying a deleting rule to the set of retained 
instances until no more instances fulfill the deleting rule. 
In addition to this method, it is worth mentioning Reduced Nearest Neighbor (RNN) rule 
(Gates, 1972). This method is extremely simple, but it also shows an impressive performance 
in terms of storage reduction. In fact, it is the best of the methods used in these experiments 
in reducing storage requirements, as will be shown in the next section. However, it has a 
serious drawback, its computational complexity. Among the standard methods used this is 
the one that shows a worst scalability, taking several hundreds hours in the worst case. 
Therefore, RNN is the perfect target for our methodology, an instance selection method 
highly efficient but with a serious scalability problem. So we have also tested our approach 
using RNN, as base instance selection method.  
The same parameters were used for the standard version of every algorithm and its 
application within our methodology. All the standard methods have no relevant 
parameters, the only value we must set is k, the number of nearest neighbors. Both, for ICF 
and RNN, we used k = 3 neighbors. This is a fairly standard value (Cano et al., 2003). Our 
method has two parameters: subset size, s, for both methods, and number of rounds, r, for 
the democratic approach. Regarding subset size we must use a value large enough to allow 
for a meaningful application of the instance selection algorithm on the subset, and small 
enough to allow a fast execution, as the time used by our method grows with s. As a 
compromise value we have chosen s = 100. For the number of rounds we have chosen a 
small value to allow for a fast execution, r = 10. The application of our recursive divide-and-
conquer method with a certain instance selection algorithm X will be named RECURIS.X and 
the democratic approach named DEMOIS.X.  
 

4.2 Recursive divide-and-conquer approach 
In this section we show the results using the recursive approach. First, we compare the 
proposed approach against standard instance selection methods in terms of testing error 
and storage requirements. In the next section we will show execution time results. 
 

a b
a

ad
u

ca
r

ge
n

ge
r

hy
p

is
o

kr
k kr
 

le
t

m
ag f a

c
fo

u
ka

r
m

or pi
x

ze
r

nu
r

op
t

pa
g

pe
n

ph
o

s a
t

se
g

sh
u

si
c

te
x

w
av ye
a

zi
p

-0.8

-0.6

-0.4

-0.2

0.0

0.2

Storage Error

 
Fig. 5. Results of standard ICF method and its recursive counterpart for testing error and 
storage requirements 
 
Fig. 5 shows the results comparing standard ICF and its recursive counterpart. The figure 
(as well as the following ones) shows for each dataset the difference between the standard 
method and our approach, a negative value meaning a better results of our proposal. The 
figure shows that in terms of storage reduction our method is better in general, achieving for 
some datasets, namely car, gene, german, krkopt, krvskp and nursery, significant 
improvements over the standard method. In terms of testing error RECURIS.ICF is slightly 
worse than standard ICF. 
Fig. 6 shows the results for RNN as base instance selection method. This a very good test of 
our approach, as RNN is able to achieve very good results in terms of storage reduction 
while keeping testing error in moderate bounds. However, RNN has a big problem of 
scalability. The results show that our method is able to mostly keep the good performance 
of RNN in terms of storage requirements, although with a general worst behavior. 
However, this is compensated by a better testing error for most datasets. 
 

www.intechopen.com



New Advances in Machine Learning200

ab
a

ad
u

ca
r

g e
n

ge
r

hy
p

is
o

k r
k kr
 

le
t

m
ag fa

c
fo

u
ka

r
m

or pi
x

ze
r

nu
r

op
t

pa
g

pe
n

ph
o

s a
t

se
g

sh
u

si
c

te
x

w
av ye
a

zi
p

-0.1

0.0

0.1

Storage Error

Fig. 6. Results of standard RNN and its recursive counterpart in terms of testing error and 
storage requirements 
 
As an alternative to these standard methods, genetic algorithms have been applied to 
instance selection, considering this task to be a search problem. The application is easy and 
straightforward. Each individual is a binary vector that codes a certain sample of the 
training set. The evaluation is usually made considering both data reduction and 
classification accuracy. Examples of applications of genetic algorithms to instance selection 
can be found in (Kuncheva, 1995), (Ishibuchi & Nakashima, 2000) and (Reeves & Bush, 
2001). Cano et al. (2003) performed a comprehensive comparison of the performance of 
different evolutionary algorithms for instance selection. They compared a generational 
genetic algorithm (Goldberg, 1989), a steady-state genetic algorithm (Whitley, 1989), a CHC 
genetic algorithm (Eshelman, 1990), and a population based incremental learning algorithm 
(Baluja, 1994). They found that evolutionary based methods were able to outperform 
classical algorithms in both classification accuracy and data reduction. Among the 
evolutionary algorithms, CHC was able to achieve the best overall performance. 
In evolutionary computation, a population (set) of individuals (solutions to the problem 
faced) are codified following a code similar to the genetic code of plants and animals. This 
population of solutions is evolved (modified) over a certain number of generations 
(iterations) until the defined stop criterion is fulfilled. Each individual is assigned a real 
value that measures its ability to solve the problem, which is called its fitness. 
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Fig. 7. Results of standard CHC and its recursive counterpart in terms of testing error and 
storage requirements 
 
In each iteration new solutions are obtained combining two or more individuals (crossover 
operator) or randomly modifying one individual (mutation operator). After applying these 
two operators a subset of individuals is selected to survive to the next generation, either by 
sampling the current individuals with a probability proportional to their fitness, or by 
selecting the best ones (elitism). The repeated processes of crossover, mutation and selection 
are able to obtain increasingly better solutions for many problems of Artificial Intelligence. 
Nevertheless, the major problem addressed when applying genetic algorithms to instance 
selection is the scaling of the algorithm. As the number of instances grows, the time needed 
for the genetic algorithm to reach a good solution increases exponentially, making it totally 
useless for large problems. As we are concerned with this problem, we have used as fifth 
instance selection method a genetic algorithm using CHC methodology. The execution time 
of CHC is clearly longer than the time spent by ICF, so it gives us a good benchmark to test 
our methodology on an algorithm that, as RNN, has a big scalability problem. 
For CHC, see Fig. 7, the results show that the recursive approach is able to improve the 
results of the standard algorithm in terms of storage requirements but the error is worse 
than when using the whole dataset. However, the achieved storage reduction is relevant, 
and our method is clearly worse than standard CHC only in magic04 problem.  
An interesting side result is the problem of scalability of CHC algorithm, which is more 
marked for this algorithm than for the previous ones. In other works, (Cano et al., 2003) 
(García-Pedrajas et al., 2009), CHC algorithm was compared with standard methods in small 
to medium problems. For those problems, the performance of CHC was better than the 
performance of other methods. However, as the datasets are larger, the scalability problem 
of CHC manifests itself. In our set of problems, CHC clearly performs worse than ICF and 
RNN in terms of storage reduction. We must take into account that for CHC we need a bit in 
the chromosome for each instance in the dataset. This means that for large problems, such as 
adult, krkopt, letter, magic or shuttle, the chromosome has more than 10000 bits, making the 
convergence of the algorithm problematic. Thus, CHC is, together with RNN, an excellent 
example of the applicability of our approach.  
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Fig. 6. Results of standard RNN and its recursive counterpart in terms of testing error and 
storage requirements 
 
As an alternative to these standard methods, genetic algorithms have been applied to 
instance selection, considering this task to be a search problem. The application is easy and 
straightforward. Each individual is a binary vector that codes a certain sample of the 
training set. The evaluation is usually made considering both data reduction and 
classification accuracy. Examples of applications of genetic algorithms to instance selection 
can be found in (Kuncheva, 1995), (Ishibuchi & Nakashima, 2000) and (Reeves & Bush, 
2001). Cano et al. (2003) performed a comprehensive comparison of the performance of 
different evolutionary algorithms for instance selection. They compared a generational 
genetic algorithm (Goldberg, 1989), a steady-state genetic algorithm (Whitley, 1989), a CHC 
genetic algorithm (Eshelman, 1990), and a population based incremental learning algorithm 
(Baluja, 1994). They found that evolutionary based methods were able to outperform 
classical algorithms in both classification accuracy and data reduction. Among the 
evolutionary algorithms, CHC was able to achieve the best overall performance. 
In evolutionary computation, a population (set) of individuals (solutions to the problem 
faced) are codified following a code similar to the genetic code of plants and animals. This 
population of solutions is evolved (modified) over a certain number of generations 
(iterations) until the defined stop criterion is fulfilled. Each individual is assigned a real 
value that measures its ability to solve the problem, which is called its fitness. 
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Fig. 7. Results of standard CHC and its recursive counterpart in terms of testing error and 
storage requirements 
 
In each iteration new solutions are obtained combining two or more individuals (crossover 
operator) or randomly modifying one individual (mutation operator). After applying these 
two operators a subset of individuals is selected to survive to the next generation, either by 
sampling the current individuals with a probability proportional to their fitness, or by 
selecting the best ones (elitism). The repeated processes of crossover, mutation and selection 
are able to obtain increasingly better solutions for many problems of Artificial Intelligence. 
Nevertheless, the major problem addressed when applying genetic algorithms to instance 
selection is the scaling of the algorithm. As the number of instances grows, the time needed 
for the genetic algorithm to reach a good solution increases exponentially, making it totally 
useless for large problems. As we are concerned with this problem, we have used as fifth 
instance selection method a genetic algorithm using CHC methodology. The execution time 
of CHC is clearly longer than the time spent by ICF, so it gives us a good benchmark to test 
our methodology on an algorithm that, as RNN, has a big scalability problem. 
For CHC, see Fig. 7, the results show that the recursive approach is able to improve the 
results of the standard algorithm in terms of storage requirements but the error is worse 
than when using the whole dataset. However, the achieved storage reduction is relevant, 
and our method is clearly worse than standard CHC only in magic04 problem.  
An interesting side result is the problem of scalability of CHC algorithm, which is more 
marked for this algorithm than for the previous ones. In other works, (Cano et al., 2003) 
(García-Pedrajas et al., 2009), CHC algorithm was compared with standard methods in small 
to medium problems. For those problems, the performance of CHC was better than the 
performance of other methods. However, as the datasets are larger, the scalability problem 
of CHC manifests itself. In our set of problems, CHC clearly performs worse than ICF and 
RNN in terms of storage reduction. We must take into account that for CHC we need a bit in 
the chromosome for each instance in the dataset. This means that for large problems, such as 
adult, krkopt, letter, magic or shuttle, the chromosome has more than 10000 bits, making the 
convergence of the algorithm problematic. Thus, CHC is, together with RNN, an excellent 
example of the applicability of our approach.  
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4.3 Democratic approach 
In this section we show the results using the democratic approach. Results for ICF and 
DEMOIS.ICF are plotted in Fig. 8.  
In terms of testing error, DEMOIS.ICF is able to match the results of ICF for most of the 
datasets. In terms of storage reduction the average performance of both algorithms is 
similar, with a remarkably good performance of DEMOIS.ICF for nursery and car datasets. 
The next experiment is conducted using as base instance selection algorithm RNN. The 
results are plotted in Fig. 9. As we stated in the previous section, this is a perfect example of 
the potentialities of our approach. In our experiments RNN showed the best performance in 
terms of storage reduction. However, the algorithm has a very serious problem of 
scalability. As an extreme example, for adult problem it took more than 500 hours per 
experiment. This scalability problem prevents is application in those problems where it 
would be most useful. 
Fig. 8. Results of standard ICF method and its democratic counterpart for testing error and 
storage requirements 
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Fig. 9. Results of standard RNN method and its democratic counterpart for testing error 
and storage requirements 

The figure shows how DEMOIS.RNN is able to solve the scalability problem of RNN. In terms 
of testing error, it is able to achieve a similar performance as standard RNN. In terms of 
storage reduction our algorithm performs worse than RNN. However, the performance of 
DEMOIS.RNN is still very good, in fact, better than any other of the previous algorithms. So, 
our approach is able to scale RNN to complex problems, improving its results in terms of 
testing error, but with a small worsening of the storage reduction. In terms of execution time 
the results are remarkable, the reduction of the time consumed by the selection process is 
large, with the extreme example of the two most time consuming datasets, adult and krkopt, 
where the speed-up is more than a hundred times (see next section). 
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Fig. 10. Results of standard CHC method and its democratic counterpart for testing error 
and storage requirements 
 
Fig. 10 plots the results of CHC algorithm. For this method, the scaling up of CHC provided 
by DEMOIS.CHC is evident not only in terms of running time, with a large reduction in all 30 
datasets, but also in terms of storage reduction. DEMOIS.CHC is able to improve the 
reduction of CHC in all 30 datasets, with an average improvement of more than 20%, from 
an average storage of CHC of 31.83% to an average storage of 11.58%. The bad side effect is 
a worse testing error, which is however not very marked and compensated by the 
improvement in running time and storage reduction. As a summary, for CHC the results 
show that the democratic approach is able to improve the results of the standard algorithm 
in terms of storage requirements but the error is worse than when using the whole dataset. 
However, as it was the case for the recursive approach, there is a clear gaining in storage 
reduction with a moderately worse testing error. 

 
4.4 Time 
As we have estated our main aim is the scaling up of instance selection algorithms. In the 
previous sections we have shown that our methodology is able to match the performance of 
standard instance selection algorithms. In this section we show the results of execution time 
spent by each algorithm, showing a dramatic advantage of our approach. Fig. 11, 12 and 13 
show the execution time of ICF, RNN and CHC methods respectively. The figures show 
execution time, in seconds, plotted against problem size. 
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4.3 Democratic approach 
In this section we show the results using the democratic approach. Results for ICF and 
DEMOIS.ICF are plotted in Fig. 8.  
In terms of testing error, DEMOIS.ICF is able to match the results of ICF for most of the 
datasets. In terms of storage reduction the average performance of both algorithms is 
similar, with a remarkably good performance of DEMOIS.ICF for nursery and car datasets. 
The next experiment is conducted using as base instance selection algorithm RNN. The 
results are plotted in Fig. 9. As we stated in the previous section, this is a perfect example of 
the potentialities of our approach. In our experiments RNN showed the best performance in 
terms of storage reduction. However, the algorithm has a very serious problem of 
scalability. As an extreme example, for adult problem it took more than 500 hours per 
experiment. This scalability problem prevents is application in those problems where it 
would be most useful. 
Fig. 8. Results of standard ICF method and its democratic counterpart for testing error and 
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Fig. 9. Results of standard RNN method and its democratic counterpart for testing error 
and storage requirements 

The figure shows how DEMOIS.RNN is able to solve the scalability problem of RNN. In terms 
of testing error, it is able to achieve a similar performance as standard RNN. In terms of 
storage reduction our algorithm performs worse than RNN. However, the performance of 
DEMOIS.RNN is still very good, in fact, better than any other of the previous algorithms. So, 
our approach is able to scale RNN to complex problems, improving its results in terms of 
testing error, but with a small worsening of the storage reduction. In terms of execution time 
the results are remarkable, the reduction of the time consumed by the selection process is 
large, with the extreme example of the two most time consuming datasets, adult and krkopt, 
where the speed-up is more than a hundred times (see next section). 
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Fig. 10. Results of standard CHC method and its democratic counterpart for testing error 
and storage requirements 
 
Fig. 10 plots the results of CHC algorithm. For this method, the scaling up of CHC provided 
by DEMOIS.CHC is evident not only in terms of running time, with a large reduction in all 30 
datasets, but also in terms of storage reduction. DEMOIS.CHC is able to improve the 
reduction of CHC in all 30 datasets, with an average improvement of more than 20%, from 
an average storage of CHC of 31.83% to an average storage of 11.58%. The bad side effect is 
a worse testing error, which is however not very marked and compensated by the 
improvement in running time and storage reduction. As a summary, for CHC the results 
show that the democratic approach is able to improve the results of the standard algorithm 
in terms of storage requirements but the error is worse than when using the whole dataset. 
However, as it was the case for the recursive approach, there is a clear gaining in storage 
reduction with a moderately worse testing error. 

 
4.4 Time 
As we have estated our main aim is the scaling up of instance selection algorithms. In the 
previous sections we have shown that our methodology is able to match the performance of 
standard instance selection algorithms. In this section we show the results of execution time 
spent by each algorithm, showing a dramatic advantage of our approach. Fig. 11, 12 and 13 
show the execution time of ICF, RNN and CHC methods respectively. The figures show 
execution time, in seconds, plotted against problem size. 
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Fig. 11. Execution time using ICF as base instance selection algorithm 
 
All the three figures show the excellent behavior of the two described methods. Both behave 
almost linearly as the problem size grows. On the other hand, ICF shows it is a quadratic 
complexity method and RNN and CHC behave far worse. 
From a theoretical point of view the two algorithms presented in this chapter are of linear 

complexity. For the recursive approach we divide the dataset into ns subsets of size s. Then, 
we apply the instance selection algorithm to each subset. The time needed for performing 
the selection in each subset will be fixed as the size of each subset is always s, regardless the 

number of instances of the datasets. More instances means a larger ns . Thus, the 

complexity of each step of the recursive algorithm will be linear as ns depends linearly on 
n, the size of the dataset. The algorithm performs a few of these steps before reaching the 
stopping criterion, and thus the whole method is of linear complexity. 
The democratic approach also divides the dataset into partitions of disjoint subsets of size s. 
Thus, the chosen instance selection algorithm is always applied to a subset of fixed size, s, 
which is independent from the actual size of the dataset. The complexity of this application 
of the algorithm depends on the base instance selection algorithm we are using, but will 
always be small, as the size sis always small. Let K be the number of operations needed by 
the instance selection algorithm to perform its task in a dataset of size s. For a dataset of n 
instances we must perform this instance selection process once for each subset, that is n/s 
times, spending a time proportional to (n/s)K. The total time needed by the algorithm to 
perform r rounds will be proportional to r(n/s)K, which is linear in the number of instances, 
as K is a constant value.  
 

 
Fig. 12. Execution time using RNN as base instance selection algorithm. 
 
Thus, the gaining in execution time would be greater as the size of the datasets is larger. If 
the complexity of the instance selection algorithm is greater, the reduction of the execution 
will be even better. The method has the additional advantage of allowing an easy parallel 
implementation. As the application of the instance selection algorithm to each subset is 
independent from all the remaining subsets, all the subsets can be processed at the same 
time, even for different rounds of votes. Also, the communication between the nodes of the 
parallel execution is small. 
 

 
Fig. 13. Execution time using CHC as base instance selection algorithm 
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An additional process completes the method, the determination of the number of votes. 
Regarding the determination of the number of votes, the process can be made in different 

ways. If we consider all the training instances, the cost of this step would be  2O n .  

However, to keep the complexity linear we use a random subset of the training set for 
determining the number of votes, with a limit on the maximum size of this subset that is 
fixed for any dataset. In this way, from medium to large datasets we use the 10% of the 
training set, for huge problems the 1%, and the percentage is further reduced as the size of 
the dataset grows. In fact, we have experimentally verified that we can consider any 
reasonable bound1 in the number of instances without damaging the performance of the 
algorithm. Using a small percentage does not harm the estimation of the threshold of votes. 
With this method the complexity of this step is  1O as the number of instances used is 
bounded regardless the size of the dataset. 
Finally, we consider the partition of the dataset apart from the algorithm as many different 
partition methods can be devised. The performed random partition is of complexity  O n .  

 
7. Conclusions 
 

In this chapter we have shown two new methods for scaling up instance selection 
algorithms. These methods are applicable to any instance selection method without any 
modification. The methods consist of a recursive procedure, where the dataset is partitioned 
into disjoint subsets, an instance selection algorithm is applied to each subset, and then the 
selected instances are rejoined to repeat the process, and a democratic approach where 
several rounds of approximate instance selection are performed and the result is obtained by 
a voting scheme. 
Using three well-known instance selection algorithms, ICF, RNN and a CHC genetic 
algorithm, we have shown that our method is able to match the performance of the original 
algorithms with a considerable reduction in execution time. In terms of reduction of storage 
requirements, our approach is even better than the use of the original instance selection 
algorithm over the whole dataset. Additionally, our method is straightforwardly 
parallelizable without modifications. 
The proposed methods allow the application of instance selection algorithms to almost any 
problem size. The behavior is linear in the number of instances as it has been shown both 
theoretically and experimentally.  
Furthermore, this philosophy can be extended to other learning algorithms such as feature 
selection or clustering, which means it is a powerful tool for scaling up machine learning 
algorithms. 
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