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1. Introduction  

As computer-based applications receive increasing attention in the real world and in our 
daily life, the Human-Computer Interaction (HCI) technology has also advanced rapidly 
over the recent decades. One essential enabler of natural interaction between human and 
computers is the computers’ ability to understand the emotional states expressed by the 
human subjects (so that personalized responses can be delivered accordingly).  This is not 
surprising as it is well known that emotion plays an important role in human-human 
communications. Emotions are mental and physiological states associated with feelings, 
thoughts, and behaviors of human subjects. The emotional state expressed by a human 
subject reflects not only the mood but also the personality of the human subject. 
Automatic recognition of emotional states from cues expressed by human subjects, such as 
face expression or tone of voice, has found increasing applications in security, learning, 
medicine, entertainment, etc. For example, detecting abnormal emotions, such as stress or 
nervousness, helps to detect lie or identify suspicious human subjects. Emotion recognition 
in automatic tutoring systems, such as web-based e-learning, can adjust the tutoring content 
and delivery speed according to users’ responses. Automatically recognizing emotions from 
patients could also be helpful in clinical studies as well as in psychosis monitoring and 
diagnosis assistance. Emotion classification has been applied in the customer service sector 
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too, where machines at call centers adjust their responses automatically according to the 
emotions expressed by the customers (e.g. anger, frustration, satisfaction, etc.). In the 
entertainment sector, interactive games have been developed that can interact adaptively 
with human players too. All these examples clearly illustrate that the demand for natural 
human-like machines is the major motivation or driving factor for the increasing research 
effort invested in automatic identification of the emotional states of human subjects.  
Speech conversation is an important way for natural and effective communications between 
humans and computers. Over the past decades, advancement in robust speech recognition 
and synthesis techniques has contributed significantly in making such communications 
natural and effective. Human speech conveys not only the linguistic content but also the 
emotion of the speaker. Although the emotion does not alter the linguistic content, it carries 
important information on the speaker’s desire and intent (Cowie et al., 2001; Ververidis & 
Kotropoulos, 2006). As such, it is important that computers understand the emotional states 
conveyed in human speech for effective human-computer interaction applications.  
Modeling and analysis of emotions from human speech span across several fields, including 
psychology, linguistics, and engineering. As there is a lack of precise definition and models 
for emotions, automatic recognition of emotions has been a challenging task to researchers. 
Indeed, research on speech based emotion recognition has been undertaken by many for 
around two decades (Amir, 2001; Clavel et al., 2004; Cowie & Douglas-Cowie, 1996; Cowie 
et al., 2001; Dellaert et al., 1996; Lee & Narayanan, 2005; Morrison et al., 2007; Nguyen & 
Bass, 2005; Nicholson et al., 1999; Petrushin, 1999; Petrushin, 2000; Scherer, 2000; Ser et al., 
2008; Ververidis &  Kotropoulos, 2006; Yu et al., 2001; Zhou et al., 2006). In engineering, 
speech emotion recognition has been formulated as a pattern recognition problem that 
involves feature extraction and emotion classification. This is the model adopted in this 
chapter. In particular, this chapter discusses the designs and performances of several 
popular classification techniques namely, the Probabilistic Neural Network (PNN), the 
Universal Background Model - Gaussian Mixture Model (UBM-GMM), the Support Vector 
Machines (SVMs), and the Hidden Markov model (HMM), for emotion classifications. For 
completeness, a hybrid technique that combines the strengths of multiple classifiers (Ser et 
al., 2008) will also be discussed. Experimental results using the LDC database (University of 
Pennsylvania) will be presented and discussed in the chapter too, to provide a feel of the 
recognition accuracies for the various emotion recognition techniques described above. 
The remaining part of this chapter is organized as follows. Some related works are briefly 
presented in Section 2. The acoustic feature extraction process is discussed in Section 3. In 
Section 4, several popular classifiers, including a hybrid method, for emotion recognition are 
discussed. Experimental results and performance comparison are shown in Section 5 and 
the concluding remarks are given in Section 6. 

 
2. Related Works  

Speech emotion recognition can be formulated as a pattern recognition problem. Such 
pattern recognition machines consist of two major modules, i.e. feature extraction (including 
speech signal pre-processing) and emotion classification. Fig. 1 shows a typical structure of 
the speech emotion recognition system.  

  
Fig. 1. Typical structure of a speech emotion recognition system 
 
Feature extraction is an important module that provides the acoustic correlates of emotions 
in human speech for emotion classification. The basic acoustic features extracted directly 
from the original speech signals, e.g. pitch and intensity related features, are widely used in 
speech emotion recognition (Ververidis & Kotropoulos, 2006; Lee & Narayanan, 2005; 
Dellaert et al., 1996; Petrushin, 2000; Amir, 2001). Some features derived from mathematical 
transformation of basic acoustic features, e.g. Mel-Frequency Cepstral Coefficients” (MFCC) 
(Specht, 1988; Reynolds et al., 2000) and Linear Prediction-based Cepstral Coefficients 
(LPCC) (Specht, 1988), are also employed in some studies. The pitch of speech is the main 
acoustic correlate of tone and intonation, which represents the highness or lowness of a tone 
as perceived by the ear. It depends on the number of vibrations per second produced by the 
vocal cords. As the pitch is related to the tension of the vocal folds and the subglottal air 
pressure, it can provide the information about the emotions of speakers (Ververidis & 
Kotropoulos, 2006). The energy related features are also commonly used in emotion 
recognition. As the pitch and energy are calculated on a frame basis, statistics of the 
extracted features are usually used, such as mean, median, range, standard deviation, 
maximum, minimum, and linear regression coefficient (Lee & Narayanan, 2005; Ververidis 
& Kotropoulos, 2006). Speech rate and ratio of duration of voiced and unvoiced are 
considered to indicate emotional states of speakers too (Lee & Narayanan, 2005; Ververidis 
& Kotropoulos, 2006).  
The behavior of the acoustic features in different emotional states has been studied in the 
literature (Davitz, 1964; Huttar, 1968; Fonagy, 1978; Moravek, 1979; Van Bezooijen, 1984; 
Havrdova & McGilloway et al., 1995, Ververidis & Kotropoulos, 2006). Anger is associated 
with the highest energy and pitch level among anger, disgust, fear, joy and sadness. Disgust 
has a lower mean pitch level, a lower intensity level and a slower speech rate than the 
neutral state. Low levels of the mean intensity and mean pitch are measured with sadness. 
A high pitch level and a raised intensity level are found in speech expressed with fear. The 
pitch contour trend separates fear from joy. A downwards slope in the pitch contour can be 
observed in speech expressed with fear and sadness, while the speech with joy shows a 
rising slope. Observable variance on speech rate is found in different emotions. More 
detailed information can be found in (Ververidis & Kotropoulos, 2006). However, even 
though many researches have been carried out to find acoustic features suitable for emotion 
recognition, there is still no conclusive evidence to show which set of features can provide 
the best recognition accuracy (Zhou, 2006).  
After the acoustic features are extracted and processed, they are sent to emotion 
classification module. Many popular classifiers are employed in the literature. Dellaert et al. 
(1996) used K-nearest neighbor (k-NN) classifier and majority voting of subspace specialists 
for the recognition of sadness, anger, happiness and fear and the maximum accuracy 
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too, where machines at call centers adjust their responses automatically according to the 
emotions expressed by the customers (e.g. anger, frustration, satisfaction, etc.). In the 
entertainment sector, interactive games have been developed that can interact adaptively 
with human players too. All these examples clearly illustrate that the demand for natural 
human-like machines is the major motivation or driving factor for the increasing research 
effort invested in automatic identification of the emotional states of human subjects.  
Speech conversation is an important way for natural and effective communications between 
humans and computers. Over the past decades, advancement in robust speech recognition 
and synthesis techniques has contributed significantly in making such communications 
natural and effective. Human speech conveys not only the linguistic content but also the 
emotion of the speaker. Although the emotion does not alter the linguistic content, it carries 
important information on the speaker’s desire and intent (Cowie et al., 2001; Ververidis & 
Kotropoulos, 2006). As such, it is important that computers understand the emotional states 
conveyed in human speech for effective human-computer interaction applications.  
Modeling and analysis of emotions from human speech span across several fields, including 
psychology, linguistics, and engineering. As there is a lack of precise definition and models 
for emotions, automatic recognition of emotions has been a challenging task to researchers. 
Indeed, research on speech based emotion recognition has been undertaken by many for 
around two decades (Amir, 2001; Clavel et al., 2004; Cowie & Douglas-Cowie, 1996; Cowie 
et al., 2001; Dellaert et al., 1996; Lee & Narayanan, 2005; Morrison et al., 2007; Nguyen & 
Bass, 2005; Nicholson et al., 1999; Petrushin, 1999; Petrushin, 2000; Scherer, 2000; Ser et al., 
2008; Ververidis &  Kotropoulos, 2006; Yu et al., 2001; Zhou et al., 2006). In engineering, 
speech emotion recognition has been formulated as a pattern recognition problem that 
involves feature extraction and emotion classification. This is the model adopted in this 
chapter. In particular, this chapter discusses the designs and performances of several 
popular classification techniques namely, the Probabilistic Neural Network (PNN), the 
Universal Background Model - Gaussian Mixture Model (UBM-GMM), the Support Vector 
Machines (SVMs), and the Hidden Markov model (HMM), for emotion classifications. For 
completeness, a hybrid technique that combines the strengths of multiple classifiers (Ser et 
al., 2008) will also be discussed. Experimental results using the LDC database (University of 
Pennsylvania) will be presented and discussed in the chapter too, to provide a feel of the 
recognition accuracies for the various emotion recognition techniques described above. 
The remaining part of this chapter is organized as follows. Some related works are briefly 
presented in Section 2. The acoustic feature extraction process is discussed in Section 3. In 
Section 4, several popular classifiers, including a hybrid method, for emotion recognition are 
discussed. Experimental results and performance comparison are shown in Section 5 and 
the concluding remarks are given in Section 6. 

 
2. Related Works  

Speech emotion recognition can be formulated as a pattern recognition problem. Such 
pattern recognition machines consist of two major modules, i.e. feature extraction (including 
speech signal pre-processing) and emotion classification. Fig. 1 shows a typical structure of 
the speech emotion recognition system.  

  
Fig. 1. Typical structure of a speech emotion recognition system 
 
Feature extraction is an important module that provides the acoustic correlates of emotions 
in human speech for emotion classification. The basic acoustic features extracted directly 
from the original speech signals, e.g. pitch and intensity related features, are widely used in 
speech emotion recognition (Ververidis & Kotropoulos, 2006; Lee & Narayanan, 2005; 
Dellaert et al., 1996; Petrushin, 2000; Amir, 2001). Some features derived from mathematical 
transformation of basic acoustic features, e.g. Mel-Frequency Cepstral Coefficients” (MFCC) 
(Specht, 1988; Reynolds et al., 2000) and Linear Prediction-based Cepstral Coefficients 
(LPCC) (Specht, 1988), are also employed in some studies. The pitch of speech is the main 
acoustic correlate of tone and intonation, which represents the highness or lowness of a tone 
as perceived by the ear. It depends on the number of vibrations per second produced by the 
vocal cords. As the pitch is related to the tension of the vocal folds and the subglottal air 
pressure, it can provide the information about the emotions of speakers (Ververidis & 
Kotropoulos, 2006). The energy related features are also commonly used in emotion 
recognition. As the pitch and energy are calculated on a frame basis, statistics of the 
extracted features are usually used, such as mean, median, range, standard deviation, 
maximum, minimum, and linear regression coefficient (Lee & Narayanan, 2005; Ververidis 
& Kotropoulos, 2006). Speech rate and ratio of duration of voiced and unvoiced are 
considered to indicate emotional states of speakers too (Lee & Narayanan, 2005; Ververidis 
& Kotropoulos, 2006).  
The behavior of the acoustic features in different emotional states has been studied in the 
literature (Davitz, 1964; Huttar, 1968; Fonagy, 1978; Moravek, 1979; Van Bezooijen, 1984; 
Havrdova & McGilloway et al., 1995, Ververidis & Kotropoulos, 2006). Anger is associated 
with the highest energy and pitch level among anger, disgust, fear, joy and sadness. Disgust 
has a lower mean pitch level, a lower intensity level and a slower speech rate than the 
neutral state. Low levels of the mean intensity and mean pitch are measured with sadness. 
A high pitch level and a raised intensity level are found in speech expressed with fear. The 
pitch contour trend separates fear from joy. A downwards slope in the pitch contour can be 
observed in speech expressed with fear and sadness, while the speech with joy shows a 
rising slope. Observable variance on speech rate is found in different emotions. More 
detailed information can be found in (Ververidis & Kotropoulos, 2006). However, even 
though many researches have been carried out to find acoustic features suitable for emotion 
recognition, there is still no conclusive evidence to show which set of features can provide 
the best recognition accuracy (Zhou, 2006).  
After the acoustic features are extracted and processed, they are sent to emotion 
classification module. Many popular classifiers are employed in the literature. Dellaert et al. 
(1996) used K-nearest neighbor (k-NN) classifier and majority voting of subspace specialists 
for the recognition of sadness, anger, happiness and fear and the maximum accuracy 
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achieved was 79.5%. Neural network (NN) was employed to recognize eight emotions, i.e. 
happiness, teasing, fear, sadness, disgust, anger, surprise and neutral and an accuracy of 
50% was achieved (Nicholson et al. 1999). The linear discrimination, k-NN classifiers, and 
SVM were used to distinguish negative and non-negative emotions and a maximum 
accuracy of 75% was achieved (Lee & Narayanan, 2005). Petrushin (1999) developed a real-
time emotion recognizer using Neural Networks for call center applications, and achieved 
77% classification accuracy in recognizing agitation and calm emotions using eight features 
chosen by a feature selection algorithm. Yu, et.al. (2001) used SVMs to detect anger, happy, 
sadness, and neutral with an average accuracy of 73%. Scherer (2000) explored the existence 
of a universal psychobiological mechanism of emotions in speech by studying the 
recognition of fear, joy, sadness, anger and disgust in nine languages, obtaining 66% of 
overall accuracy. Two hybrid classification schemes, stacked generalization and the un-
weighted vote, were proposed and accuracies of 72.18% and 70.54% were achieved 
respectively, when they were used to recognize anger, disgust, fear, happiness, sadness and 
surprise (Morrison, 2007). Hybrid classification methods that combined the Support Vector 
Machines and the Decision Tree were proposed (Nguyen & Bass, 2005). The best accuracies 
for classifying neutral, anger, lombard and loud was 72.4%.  

 
3. Acoustic Feature Extraction for Emotion Recognition  

In this section, the features used in our work and the process involved are briefly described. 
In the experiments given below, three short time cepstral features are extracted, which are 
Perceptual Linear Prediction (PLP) Cepstral Coefficients, Mel-Frequency Cepstral 
Coefficients (MFCC), and Linear Prediction-based Cepstral Coefficients (LPCC).  Before 
extracting the raw features, the speech data are first high-pass filtered by a FIR filter given 
by 
 

                            
1( ) 1 0.9375 .H z z                                                            (1) 

 
Signal frames of length 25 msec are then extracted from the filtered speech signal at an 
interval of 10 msec. A Hamming window is applied to each signal frame to reduce signal 
discontinuity.  The list below shows the feature set used in this chapter. 
 
1) PLP - 54 features  
18 PLP cepstral coefficients 
18 Delta PLP cepstral coefficients 
18 Delta Delta PLP cepstral coefficients.  
 
2) MFCC - 39 features  
12 MFCC features  
12 delta MFCC features 
12 Delta Delta MFCC features 
1 (log) frame energy 
1 Delta (log) frame energy 
1 Delta Delta (log) frame energy 
 

3) LPCC – 39 features 
13 LPCC features 
13 delta LPCC features 
13 Delta Delta LPCC features 
 
Fusing the PLP, MFCC and LPCC features, a vector with dimension of  MR  is achieved, 
where M = 132 is the total number of the features extracted for each frame.   

 
4. Classifiers for Emotion Recognition  

The features extracted from the speech samples as described in the previous section, are sent 
to the emotion classification module. The module output is the estimated emotion category 
of an utterance. Before a classifier can be used to automatically label the emotion categories, 
a training process has to be carried out. The speech samples in the whole database are 
divided into two parts. One is used to train the classifiers, and the other is for the test use. In 
the below sub-sections, we will introduce several popular classification methods used in 
emotion classification.  

 
4.1 Probabilistic Neural Network (PNN) 
The Probabilistic Neural Network (PNN) (Specht, 1988) has been employed as an excellent 
pattern classifier in many applications due to its excellent characteristics such as simple 
training, quick convergence and easy implementation. The PNN solves classification 
problems using Bayesian classifiers. A basic structure of a PNN is shown in Fig. 2. It consists 
of 4 network layers, i.e. input layer, pattern layer, summation layer and output layer.  
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Fig. 2. Structure of a Probabilistic Neural Network  
 

As shown in Fig. 2, the input of the PNN, 
T

1 2[ , ,..., ]Mx x xx  is the M-dimension feature 
vector. The distribution function that estimates the likelihood of an input feature vector 
belonging to a learned category is developed in the pattern layer via supervised training 
using a given training set. This layer works in the same way as a Bayes classifier, where the 
class dependent Probability Density Functions (PDF) are approximated using a Parzen 
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achieved was 79.5%. Neural network (NN) was employed to recognize eight emotions, i.e. 
happiness, teasing, fear, sadness, disgust, anger, surprise and neutral and an accuracy of 
50% was achieved (Nicholson et al. 1999). The linear discrimination, k-NN classifiers, and 
SVM were used to distinguish negative and non-negative emotions and a maximum 
accuracy of 75% was achieved (Lee & Narayanan, 2005). Petrushin (1999) developed a real-
time emotion recognizer using Neural Networks for call center applications, and achieved 
77% classification accuracy in recognizing agitation and calm emotions using eight features 
chosen by a feature selection algorithm. Yu, et.al. (2001) used SVMs to detect anger, happy, 
sadness, and neutral with an average accuracy of 73%. Scherer (2000) explored the existence 
of a universal psychobiological mechanism of emotions in speech by studying the 
recognition of fear, joy, sadness, anger and disgust in nine languages, obtaining 66% of 
overall accuracy. Two hybrid classification schemes, stacked generalization and the un-
weighted vote, were proposed and accuracies of 72.18% and 70.54% were achieved 
respectively, when they were used to recognize anger, disgust, fear, happiness, sadness and 
surprise (Morrison, 2007). Hybrid classification methods that combined the Support Vector 
Machines and the Decision Tree were proposed (Nguyen & Bass, 2005). The best accuracies 
for classifying neutral, anger, lombard and loud was 72.4%.  

 
3. Acoustic Feature Extraction for Emotion Recognition  

In this section, the features used in our work and the process involved are briefly described. 
In the experiments given below, three short time cepstral features are extracted, which are 
Perceptual Linear Prediction (PLP) Cepstral Coefficients, Mel-Frequency Cepstral 
Coefficients (MFCC), and Linear Prediction-based Cepstral Coefficients (LPCC).  Before 
extracting the raw features, the speech data are first high-pass filtered by a FIR filter given 
by 
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Signal frames of length 25 msec are then extracted from the filtered speech signal at an 
interval of 10 msec. A Hamming window is applied to each signal frame to reduce signal 
discontinuity.  The list below shows the feature set used in this chapter. 
 
1) PLP - 54 features  
18 PLP cepstral coefficients 
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3) LPCC – 39 features 
13 LPCC features 
13 delta LPCC features 
13 Delta Delta LPCC features 
 
Fusing the PLP, MFCC and LPCC features, a vector with dimension of  MR  is achieved, 
where M = 132 is the total number of the features extracted for each frame.   

 
4. Classifiers for Emotion Recognition  

The features extracted from the speech samples as described in the previous section, are sent 
to the emotion classification module. The module output is the estimated emotion category 
of an utterance. Before a classifier can be used to automatically label the emotion categories, 
a training process has to be carried out. The speech samples in the whole database are 
divided into two parts. One is used to train the classifiers, and the other is for the test use. In 
the below sub-sections, we will introduce several popular classification methods used in 
emotion classification.  
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The Probabilistic Neural Network (PNN) (Specht, 1988) has been employed as an excellent 
pattern classifier in many applications due to its excellent characteristics such as simple 
training, quick convergence and easy implementation. The PNN solves classification 
problems using Bayesian classifiers. A basic structure of a PNN is shown in Fig. 2. It consists 
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As shown in Fig. 2, the input of the PNN, 
T

1 2[ , ,..., ]Mx x xx  is the M-dimension feature 
vector. The distribution function that estimates the likelihood of an input feature vector 
belonging to a learned category is developed in the pattern layer via supervised training 
using a given training set. This layer works in the same way as a Bayes classifier, where the 
class dependent Probability Density Functions (PDF) are approximated using a Parzen 
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estimator. Each unit in the pattern layer represents an exemplar in the training set. The 
activated function in this layer can be a Gaussian function given by 
 
       2( ) exp 1 / ,  for 1,2,..., ,j jf z z j N    

             (2) 

 
where σ, which is also called smoothing factor, is the variance of the Gaussians, N is the 
number of the exemplars in the training set (equal to the number of the units in this layer), 
and zj is the weighted input of the jth unit expressed as 
 

                .j jz  x w                      (3) 

 
Here, T

1 2[ , ,..., ]j j j jMw w ww  is the M-dimensional weighting vector for the jth exemplar in 

the training set. Let ic
jx  for j = 1,…,Ni  denote the Ni training exemplars belonging to 

emotion ci (
ic C , where C is the vector of class labels under reorganization). The 

probability density function,  ip cx , is expressed as 

 

 
   T

2
1

1 1( | ) exp .
22

i ii
c cN
j j

i M M i j
p c

N   

     
 
 


x x x x

x                                  (4) 

 
Via training process, the outputs from the units that belong to one emotion category are 
combined in the summation layer. Each unit in the summation layer is associated to one 
emotion category. The output layer works in a competitive way, where only one category is 
generated for any given input vector. The output  1 2, ,..., T

Ly y yy  is an L-dimension 

vector, where L is the number of emotion categories. The output of the unit related to the 
predicted category has the value of “1” and the others have “0”.  

 
4.2 Universal Background Model - Gaussian Mixture Model (UBM-GMM) 
The Gaussian Mixture Model (GMM) assumes that the observed variables are generated via 
a probability density distribution that is the weighed linear combination of a set of Gaussian 
PDF. It is considered as a single-state HMM with a Gaussian mixture observation density 
and has been shown to be the most successful probability density function in text-
independent speaker recognition, where no prior knowledge is available on what the 
speaker will say (Reynolds, 2000).   
In the GMM, the distribution of a random variable MRx  is a mixture of G Gaussians given 
as 

1

( | ) ( ),
i

G

c g g
g

p w p


x x                              (5) 

where 
ic

  is the density model related to the class, ci, G is the number of the Gaussian 

components, and wg is the mixture weights satisfying the constraint 
1

1
G

g
g
w



 . The 

Gaussian densities, pg, is shown as 
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where 

g  and g are the M-dimension mean vector and M M -dimension covariance 

matrix, respectively. The density model, 
ic

 is denoted as   1
, , ,

i

G

c g g g g
w 


   which 

represents the probability density distribution of the feature vectors (x) for the category ci.  
The optimum set of parameters of 

ic
  can be identified in an iterative manner using the 

Maximal likelihood Principle (MLP) and Expectation-Maximization (EM) algorithm. The 
likelihood of 

1 2, ,...,
iN

x x x  is defined as 

                  1 2
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where  1, 2 ,...,
iN

x x x  are the exemplars in the training set belonging to the category, ci. The 

EM algorithm iteratively updates , ,g g gw   for g = 1,…,G, in order to monotonically 

increase the likelihood in (7).  
 
The EM algorithm consists of two steps: Expectation Step and Maximization Step. In the 
Expectation Step, we calculate   
 

     
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1
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             (8) 

 
Then in the Maximization Step, , ,g g gw   for g = 1,…,G, are updated as 
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estimator. Each unit in the pattern layer represents an exemplar in the training set. The 
activated function in this layer can be a Gaussian function given by 
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where σ, which is also called smoothing factor, is the variance of the Gaussians, N is the 
number of the exemplars in the training set (equal to the number of the units in this layer), 
and zj is the weighted input of the jth unit expressed as 
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Via training process, the outputs from the units that belong to one emotion category are 
combined in the summation layer. Each unit in the summation layer is associated to one 
emotion category. The output layer works in a competitive way, where only one category is 
generated for any given input vector. The output  1 2, ,..., T

Ly y yy  is an L-dimension 

vector, where L is the number of emotion categories. The output of the unit related to the 
predicted category has the value of “1” and the others have “0”.  

 
4.2 Universal Background Model - Gaussian Mixture Model (UBM-GMM) 
The Gaussian Mixture Model (GMM) assumes that the observed variables are generated via 
a probability density distribution that is the weighed linear combination of a set of Gaussian 
PDF. It is considered as a single-state HMM with a Gaussian mixture observation density 
and has been shown to be the most successful probability density function in text-
independent speaker recognition, where no prior knowledge is available on what the 
speaker will say (Reynolds, 2000).   
In the GMM, the distribution of a random variable MRx  is a mixture of G Gaussians given 
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represents the probability density distribution of the feature vectors (x) for the category ci.  
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where  1, 2 ,...,
iN

x x x  are the exemplars in the training set belonging to the category, ci. The 

EM algorithm iteratively updates , ,g g gw   for g = 1,…,G, in order to monotonically 

increase the likelihood in (7).  
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Then in the Maximization Step, , ,g g gw   for g = 1,…,G, are updated as 
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By iteratively performing the above steps, the EM algorithm is able to find an optimum set 
of parameters for the GMM.      
In order to handle mismatches more effectively, the Universal Background Model (UBM) is 
incorporated into the GMM, and the resultant model is denoted as UBM-GMM (Reynolds, 
2000). In the UBM-GMM, not only the hypothesis that an utterance belongs to an emotion 
category, but also the hypothesis that it does not belong to this category, are tested. Each of 
the categories is trained with two models. The emotion model,

ic
 is trained using the 

training samples belonging to the emotion class ic , and a background model, 
ic

  is 

meantime trained using those samples that do not belong to  ic .  When the emotional state 

of a new utterance with feature vector x is recognized, both
ic

 and 
ic

  are used to generate 

the PDF of the feature vector,  icp x  and  icp x  as illustrated in Fig. 3. The emotion 

category of the utterance is determined using the likelihood ratio 
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where  is a predetermined threshold. In UBM-GMM, the log-likelihood ratio, 

ic
S , is often  

used, given as  
 

     log log ', ' log .
i i ic c cS p p       x x                    (11) 

 
Highest 

ic
S determines the emotion class of x, which implies higher  icp x and 

lower  icp x .   
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Fig. 3. Output Probability Density of UBM-GMM 

 
4.3 Hidden Markov Model (HMM)  
The HMM has a good representation of the temporal behavior of signals being modeled. As 
such, it is commonly used in temporal based pattern recognition applications (e.g. speech 
recognition, handwriting recognition, gesture recognition, etc.). In HMM, the system to be 
modeled is assumed to be a Markov process with a finite set of concatenated states. The 
states cannot be observed directly, while the observation that is generated in the states 
according to the associated probability distribution is visible, from which the model is 
named as Hidden Markov Model.  
Assume that there are N states, S={S1, S2, …, SN}, and M distinct observation symbols per 
state, V={v1, v2, …, vM}, in the model. Each of these states is associated with a probability 
distribution over the possible outcome. Transition among the states is controlled by a set of 
transition probabilities. Let   ija   represent the state transition probabilities given as   

  
          1 ,  for 1 , ,ij t j t ia p q S q S i j N                           (12) 

 
where tq  is the state at time t and ija  satisfies  
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The observation symbols correspond to the physical output of the system being modeled. 
Let   jB b k  denote the observation symbol probability distribution in state j, where 

 
      ,  for 1 ,  1 ,j t k t jb k p O v q S j N k M                       (14) 

 
and to is the observation in time t and kv is the kth observation.  

The distribution  kb j  satisfies 
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Assume that the initial state distribution  i   is given as  
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such, it is commonly used in temporal based pattern recognition applications (e.g. speech 
recognition, handwriting recognition, gesture recognition, etc.). In HMM, the system to be 
modeled is assumed to be a Markov process with a finite set of concatenated states. The 
states cannot be observed directly, while the observation that is generated in the states 
according to the associated probability distribution is visible, from which the model is 
named as Hidden Markov Model.  
Assume that there are N states, S={S1, S2, …, SN}, and M distinct observation symbols per 
state, V={v1, v2, …, vM}, in the model. Each of these states is associated with a probability 
distribution over the possible outcome. Transition among the states is controlled by a set of 
transition probabilities. Let   ija   represent the state transition probabilities given as   
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The observation symbols correspond to the physical output of the system being modeled. 
Let   jB b k  denote the observation symbol probability distribution in state j, where 
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Assume that the initial state distribution  i   is given as  
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 ,1 ii Sqp    for .1 Ni                   (16) 
 
An HMM can then be represented as  , ,B   . Given a suitable set of the values of N, 

M and the initial state distribution, the model can be trained to solve the three fundamental 
problems (Rabiner, 1989).  The process involved is summarized below. 
 
1) Given an observation sequence with the following T observations 
 

1 2... ,  ,  1,2,..., ,T tO OO O O V t T        (17) 
 
and the model  , ,B   , evaluate  Op , i.e. the probability of the observation 

sequence. As the calculation of enumerating every possible state sequence of length T for 
calculating  Op  involves on the order of TNT 2  calculations, the problem can be solved 

efficiently using the forward algorithm that requires on only the order of TN 2 calculations. 
Consider forward variable )(it  that is defined as the probability of the partial observation 

sequence (until time t), ,...21 tOOO and the state iS  at time t, given the model   , expressed 
as 
 

).|,...()( 21  ittt SqOOOPi                          (18) 
 

This can be solved inductively, as follows: 
 
Initialization 
 

1 1( ) ( ), 1 .i ii b O i N                                  (19) 
 
Induction 
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                   (20) 

 
Termination 
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1
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i
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2) Given the observation sequence 1 2... TO OO O  and the model  , determine the optimum 
sequence of the model states. There is no exact and unique solution for this problem. 
Optimality criteria are applied to find optimal state sequence. The Viterbi algorithm (Viterbi, 
1967; Forney, 1973) that finds the single best state sequence based on dynamic programming 
methods is commonly used to solve this problem.  

3) Estimate the model parameters  , ,B    that best match the observed signal, i.e. 

maximizing the probability of the observation sequence given the model,  Op . As there is 

no analytical approach to solve the problem,   is usually chosen such that  Op  is locally 

maximized using an iterative procedure such as the Baum-Welch method. 
 
In the above, we have briefly introduced the algorithm for solving the first problem as 
speech emotion recognition belongs to this problem and can be solved efficiently using 
HMMs. The observation sequence is the feature vector of an utterance. Through training 
process, one HMM is established for each emotion category. If an individual training is 
carried out for each speaker, S HMMs are trained for each emotion, where S is the number 
of speakers. With the trained HMMs, estimating the emotion category of an utterance is 
equivalent to calculating the probability of  Op  for the given observation sequence. It can 

be solved using the forward algorithm described above. The HMM with the highest 
probability determines the emotion category of the utterance.  

 
4.4 Support Vector Machines (SVMs) 
SVMs that developed by Vladimir Vapnik (1995) and his colleagues at AT&T Bell Labs in 
the mid 90’s, have become of increasing interest in classification (Steinwart and Christmann, 
2008). It has shown to have better generalization performance than traditional techniques in 
solving classification problems. In contrast to traditional techniques for pattern recognition 
that are based on the minimization of empirical risk learned from training dataset, it aims to 
minimize the structural risk to achieve optimum performance.  
It is based on the concept of decision planes that separates the objects belonging to different 
categories. In the SVMs, the input data are separated as two sets using a separating 
hyperplane that maximizes the margin between the two data sets. Assuming the training 
data samples are in the form of 
 

   , ,  1,..., ,  , 1,1M
i i i ic i N c   x x R     (22) 

 
where  1 2, ,...,i Mx x xx  is the M-dimension feature vector of the ith samples, N is the 

number of samples and ic  is the category to which ix  belongs. Suppose there is a 

hyperplane that the separates feature vectors ( )i x  with positive category from the 

negative one, here ( )  is a nonlinear mapping of the input space into higher dimensional 

feature space. The set of points ( ) x  that lie on the hyperplane is expressed as 
 

   ( ) 0,b  w x                             (23) 
 
where w and b are the two parameters. For the training data that are linearly seperable, two 
hyperplanes are selected to yield maximum margin. Suppose ,  1,...,i i Nx  satisfies  
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It can be re-written as  
 

        ( ) 1 0,  1,2,..., .i ic b i N      x w             (25) 

 
Searching a pair of hyperplanes that gives the maximum margin can be achieved by solving 
the following optimization problem  
 

     
 

2Minimize 

subject ( ) 1, 1, 2,..., .i ic b i N     

w

x w
          (26) 

where w  represents the Euclidean norm of w . This can be formulated as a quadratic 

programming optimization problem and be solved by standard quadratic programming 
techniques. 
 
Using the Lagrangian methodology, the dual problem of (26) is given as 
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where i is the Lagrangian variable.  
 
The simplest case is that ( ) x is a linear function. If the data cannot be separated in a linear 
way, non-linear mappings are performed from the original space to a feature space via 
kernels. This aims to construct a linear classifier in the transformed space, which is the so-
called “kernel trick”. It can be seen from (27) that the training points are appeared as their 
inner products in the dual formulation. According to Mercer’s theorem, any symmetric 
positive semi-definite function  ,i jk x x  implicitly defines a mapping into a feature space 
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such that the function is an inner product in the feature space given as 
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The function   ,i jk x x  is called kernels. The dual problem in the kernel form  is then given 
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By replacing the inner product in (27) with a kernel and solving for  , a maximal margin 
separating hyperplane can be obtained in the feature space defined by a kernel.   Choosing 
suitable non-linear kernels, therefore, classifiers that are non-linear in the original space can 
become linear in the feature space. Some common kernel functions are shown in below: 
Polynomial (homogeneous) kernel:    , ' ' ,dk  x x x x  

Polynomial (inhomogeneous) kernel:    , ' ' 1 ,dk   x x x x  

Radial basis  kernel:    2, ' exp ' ,  for 0,k     x x x x  
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A single SVM itself is a classification method for 2-category data. In speech emotion 
recognition, there are usually multiple emotion categories. Two approaches are commonly 
used to solve the problem, namely one-versus-all and one-versus-one (Fradkin and 
Muchnik, 2006). In the first approach, one SVM is built for each emotion.  In the second 
approach, one SVM is built to distinguish between every pair of categories. The final 
classification decision is made according to the results from all the SVMs with the majority 
rule. In the one-versus-all way, the emotion category of an utterance is determined by the 
classifier with the highest output based on the winner-takes-all strategy. In the one-versus-
one way, every classifier assigns  the utterance to one of the two  emotion categories, then 
the vote for the assigned category is increased by one vote, and the emotion class is the one 
with most votes based on a max-wins voting strategy.  

 
4.5. A Hybrid Classification Method 
In the previous studies, most emotion recognition schemes use a single classifier, and very 
few have considered hybrid classification methods (Morrison, 2007). Intuitively, if the 
individual schemes can be suitably combined, an improvement in accuracy can be expected. 
This section describes a recently reported hybrid scheme that combines the strengths of 
multiple classifiers (Ser et al., 2008).  
The structure of the hybrid scheme is shown in Fig. 4, which consists of two basic classifiers, 
i.e. the PNN classifier and the UBM-GMM classifier. The outcomes of these two classifiers 
are fused together to generate the final result by the Fusion Look-Up Table (LUT)  approach.  
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It can be re-written as  
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where w  represents the Euclidean norm of w . This can be formulated as a quadratic 

programming optimization problem and be solved by standard quadratic programming 
techniques. 
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where i is the Lagrangian variable.  
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way, non-linear mappings are performed from the original space to a feature space via 
kernels. This aims to construct a linear classifier in the transformed space, which is the so-
called “kernel trick”. It can be seen from (27) that the training points are appeared as their 
inner products in the dual formulation. According to Mercer’s theorem, any symmetric 
positive semi-definite function  ,i jk x x  implicitly defines a mapping into a feature space 
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By replacing the inner product in (27) with a kernel and solving for  , a maximal margin 
separating hyperplane can be obtained in the feature space defined by a kernel.   Choosing 
suitable non-linear kernels, therefore, classifiers that are non-linear in the original space can 
become linear in the feature space. Some common kernel functions are shown in below: 
Polynomial (homogeneous) kernel:    , ' ' ,dk  x x x x  
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A single SVM itself is a classification method for 2-category data. In speech emotion 
recognition, there are usually multiple emotion categories. Two approaches are commonly 
used to solve the problem, namely one-versus-all and one-versus-one (Fradkin and 
Muchnik, 2006). In the first approach, one SVM is built for each emotion.  In the second 
approach, one SVM is built to distinguish between every pair of categories. The final 
classification decision is made according to the results from all the SVMs with the majority 
rule. In the one-versus-all way, the emotion category of an utterance is determined by the 
classifier with the highest output based on the winner-takes-all strategy. In the one-versus-
one way, every classifier assigns  the utterance to one of the two  emotion categories, then 
the vote for the assigned category is increased by one vote, and the emotion class is the one 
with most votes based on a max-wins voting strategy.  

 
4.5. A Hybrid Classification Method 
In the previous studies, most emotion recognition schemes use a single classifier, and very 
few have considered hybrid classification methods (Morrison, 2007). Intuitively, if the 
individual schemes can be suitably combined, an improvement in accuracy can be expected. 
This section describes a recently reported hybrid scheme that combines the strengths of 
multiple classifiers (Ser et al., 2008).  
The structure of the hybrid scheme is shown in Fig. 4, which consists of two basic classifiers, 
i.e. the PNN classifier and the UBM-GMM classifier. The outcomes of these two classifiers 
are fused together to generate the final result by the Fusion Look-Up Table (LUT)  approach.  
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Fig. 4. Structure of Proposed Hybrid Scheme (LUT: Look Up Table) 
 
In the training stage, the PNN and the UBM-GMM classifiers are firstly trained individually. 
Then the confusion matrices for the two base classifiers and a LUT that is denoted as F, is 
formed using a different part of training data from that used to train the base classifiers. Let 
L be the total number of emotional states to be classified. The L-by-L confusion matrix for 
each of the base classifier takes the following form: 
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In the matrix, pi,j is the probability that the estimated class is cj given that actual class is ci. 
For an effective classifier, the values of the diagonal entries are expected to be much higher 
than those of the non-diagonal entries. 
 
The Fusion LUT, F, a matrix with dimension of 3 4L  , records all possible emotional states 
estimated by the two classifiers, the actual emotional states, and the conditional probability 
of the actual emotion being one of the emotional states. This is elaborated below.  
Let cPNN and cGMM be the emotional states estimated by PNN and UBM-GMM respectively, 
and cr be the actual emotional state. A typical row of F takes the form, 
 
                   [cPNN    cGMM     cr    p(cr) ] 
 
where p(cr) is the conditional probability of the emotional state cr given by 
 

         .| ,r r PNN GMMp c prob c c c c                    (31) 

 
It can be approximated as 
 

  / ,
PNN GMM rc c cr N Np c                                             (32) 

 
where 

r PNN GMMc c cN  
 represents the number of utterances whose emotions being cr given that 

the estimated emotion from the PNN and GMM classifiers being cPNN and cGMM, 
respectively, and 

rc
N  denotes the number of utterances expressed in the emotion cr. Note 

that 
r PNN GMMc c cN  

 and 
rc

N  count only the utterances used to calculate the LUT. In the ideal 

situation when the recognition accuracy of every single classifier is 100%, p(cr) becomes 

        1,     for .0,     otherwise 
PNN GMM r

r
c c cp c                                        (33) 

 
In the testing stage, the emotion of a speech sample is determined by either the Fusion LUT 
or the confusion matrices.  
 
The training-testing process can be summarized into the following 6 steps.  
Step 1 Train each of the two classifiers, PNN and UBM-GMM, independently using the 
training data. 
Step 2 Use the trained classifiers to recognize the emotions of the utterances extracted from 
another speech data training set.  
Step 3 Calculate the confusion matrices for both the base classifiers. 
Step 4 Calculate the fusion LUT, F, according to the process described before. 
Step 5 Apply the two base classifiers to the test data separately, and obtain the estimated 
emotional states, cPNN and cGMM, respectively. 
Step 6 Compare the values of p(cr) in the fusion LUT where the first 2 indices are cPNN and 
cGMM. Determine the fusion output as cfus = cr where the value p(cr) is the highest. In the case 
when p(cr) = 0 (which can happen when the training sample size is too small), compare the 
values of pi,i in the two confusion matrices, where i corresponds to cPNN and cGMM, for the 
respective confusion matrices. The final decision of the emotional state, cfus is then taken to 
be the cr corresponding to the highest pi,i. 

 
5. Experiments  

5.1 Database 
The speech emotion database used in this study is extracted from the Linguistic Data 
Consortium (LDC) Emotional Prosody Speech corpus (catalog number LDC2002S28), which 
was recorded by the Department of Neurology, University of Pennsylvania Medical School. 
It comprises expressions spoken by 3 male and 4 female actors. The speech contents are 
neutral phrases like dates and numbers, e.g. “September fourth” or “eight hundred one”, 
which are expressed in 14 emotional states (including anxiety, boredom, cold anger, hot 
anger, contempt, despair, disgust, elation, happiness, interest, panic, pride, sadness, and 
shame) as well as neutral state. The number of utterances is approximately 2300.  

 
5.2 Experiment Description 
The PNN, UBM-GMM, HMM, SVM and the hybrid classification method are employed to 
automatically recognize emotional states from speech samples. In our experiment, we 
consider the different characteristics of speech among the speakers. The speech data are 
trained in speaker dependent training mode, in which an individual training process is 
carried out for each speaker. In the experiment, the database is divided into two parts, i.e. 
training dataset and testing dataset. For the PNN, GMM, HMM and SVM classifiers used 
individually, three quarters of the data are employed to train the classifiers; for the hybrid 
classification method, half of the data are employed to train the  base classifiers, a quarter of 
the data are used to calculate the Fusion LUT and the confusion matrices. The rest quarter of 
data are used for testing purpose in our methods.   
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In the matrix, pi,j is the probability that the estimated class is cj given that actual class is ci. 
For an effective classifier, the values of the diagonal entries are expected to be much higher 
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Step 2 Use the trained classifiers to recognize the emotions of the utterances extracted from 
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cGMM. Determine the fusion output as cfus = cr where the value p(cr) is the highest. In the case 
when p(cr) = 0 (which can happen when the training sample size is too small), compare the 
values of pi,i in the two confusion matrices, where i corresponds to cPNN and cGMM, for the 
respective confusion matrices. The final decision of the emotional state, cfus is then taken to 
be the cr corresponding to the highest pi,i. 

 
5. Experiments  

5.1 Database 
The speech emotion database used in this study is extracted from the Linguistic Data 
Consortium (LDC) Emotional Prosody Speech corpus (catalog number LDC2002S28), which 
was recorded by the Department of Neurology, University of Pennsylvania Medical School. 
It comprises expressions spoken by 3 male and 4 female actors. The speech contents are 
neutral phrases like dates and numbers, e.g. “September fourth” or “eight hundred one”, 
which are expressed in 14 emotional states (including anxiety, boredom, cold anger, hot 
anger, contempt, despair, disgust, elation, happiness, interest, panic, pride, sadness, and 
shame) as well as neutral state. The number of utterances is approximately 2300.  

 
5.2 Experiment Description 
The PNN, UBM-GMM, HMM, SVM and the hybrid classification method are employed to 
automatically recognize emotional states from speech samples. In our experiment, we 
consider the different characteristics of speech among the speakers. The speech data are 
trained in speaker dependent training mode, in which an individual training process is 
carried out for each speaker. In the experiment, the database is divided into two parts, i.e. 
training dataset and testing dataset. For the PNN, GMM, HMM and SVM classifiers used 
individually, three quarters of the data are employed to train the classifiers; for the hybrid 
classification method, half of the data are employed to train the  base classifiers, a quarter of 
the data are used to calculate the Fusion LUT and the confusion matrices. The rest quarter of 
data are used for testing purpose in our methods.   
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5.3 Results and Discussion 
Numerical results obtained by the PNN, UBM-GMM, HMM, SVM, and the hybrid scheme 
are shown in Tables 1. The average accuracies achieved by PNN, UBM-GMM, HMM, SVM 
and the hybrid scheme are 68.60%, 72.73%, 69.60%, 62.67%, and 75.13%, respectively.  
 

  PNN UBM-
GMM 

HMM SVM Hybrid 

Anxiety  79 77 82 76 80 
Boredom  71 79 76 81 76 
Cold Anger  64 69 58 59 71 
Contempt  73 80 79 58 82 
Despair  65 79 76 71 79 
Disgust  78 89 81 65 84 
Elation  59 81 68 73 72 
Hot Anger  75 85 85 74 77 
Happiness  61 76 49 60 68 
Interest  64 70 63 51 73 
Neutral  80 54 82 61 81 
Panic  62 75 70 52 75 
Pride  72 53 53 54 72 
Sadness  74 63 51 46 74 
Shame  52 61 71 59 63 
Average   68.60 72.73 69.60 62.67 75.13 

Table 1. Recognition accuracies (%) of the PNN, UBM-GMM, HMM, SVM, and the hybrid 
scheme 
 
The accuracies for individual emotion recognition achieved by the PNN, UBM-GMM, HMM 
and SVM are plotted in Fig. 5. It is shown from the experiment results that among the 4 
classifiers, the UBM-GMM has achieved highest average accuracy. The recognition 
performance of the HMM in this experiment is similar to that of the UBM-GMM. For each of 
these emotion categories, the highest recognition accuracy is achieved by different 
classification method, e.g. for anxiety, the highest accuracy of 82% is achieved by the HMM; 
for despair, the accuracy of 79% obtained by the UBM-GMM is the highest; for Neutral, the 
highest accuracy of 82% is achieved by the HMM; and for Pride, the PNN gives the highest 
accuracy of 72%. It indicates that one cannon simply make a conclusion that one classifier is 
better than another classifier.  
It can be seen from Table 1, the hybrid scheme is able to improve the recognition accuracy 
compared to the classification methods used individually. The average accuracy is 75.13%, 
which is 6.53% and 2.40% higher than the PNN and UBM-GMM individually used, 
respectively. In the literature, usually only 2-6 different emotional states are classified. 
Considering the difficulties encountered due to the facts that the number of emotional states 
is as large as 15, the results are rather satisfying.  
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Fig. 5. Recognition accuracies of PNN, UBM-GMM, HMM and SVM 

 
6. Conclusions 

Over the recent decades, automatic recognition of emotional states has attracted increasing 
interest among the researchers. This chapter addresses the problem of emotion recognition 
from human speech cues. The processes involved and some popular methods for feature 
extraction and emotion classification have been discussed in the chapter. In particular, 
acoustic features such as the short time cepstral features, i.e. Perceptual Linear Prediction 
(PLP) Cepstral Coefficients, the Mel-Frequency Cepstral Coefficients (MFCC), and the 
Linear Prediction-based Cepstral Coefficients (LPCC), have been discussed in the chapter. 
Several popular classification methods, including the Probabilistic Neural Network (PNN), 
the Universal Background Model -Gaussian Mixture Model (UBM-GMM), the Hidden 
Markov model (HMM), the Support Vector Machines (SVMs), and a recently proposed 
hybrid method have been discussed too. Experimental results, in terms of recognition 
accuracies, obtained by using the LDC database (University of Pennsylvania) have been 
included and discussed in the chapter too.  
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