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1. Introduction  

Epilepsy is a neurological disorder and can be defined as a symptom where a sudden and 
transient disturbance occurs in the normal electrical activity of the brain (İnan & Kuntalp, 
2007). Multiple factors can trigger epilepsy, such as brain injury, disease, light stimulation, 
and genetics. People may be born with the disorder; however, the exact underlying epilepsy 
mechanism is still uncertain.  
Epilepsy affects four to five percent of the world’s population at some point in their lives 
and 1% of the world’s population suffer from chronic epilepsy (Betts, 1998). According to 
the Epilepsy Foundation of America, more than two million people in the United States 
have a seizure disorder. In Taiwan, about 200 thousand people suffer from this disorder 
(Wang, 1998). Alarmingly, the death rate is unacceptably high, as epilepsy increases a 
person’s risk of premature death by about two to three times that of the non-epileptic 
population. The epilepsy-related death rate among patients is about 40%. Causes of death 
include the underlying disease in symptomatic epilepsy, sudden unexpected death in 
epilepsy (SUDEP), accidents during an epileptic attack, status epilepticus, suicide, and 
treatment-related death (Nouri & Balish, 2006). Hence, the unpredictability of seizures still 
overshadows the lives of most epilepsy patients.  
Treatment options for epilepsy may include surgery, a special diet, or a surgically implanted 
device which delivers electrical stimulation to the brain. According to the Epilepsy 
Foundation of America, seizures can be successfully controlled by appropriate medication 
such as anti-epileptic drugs or anti-convulsants in about 50% to 80% of cases. However, for 
patients who do not respond well to medication, surgery is the next best option.  
Due to the risks associated with the unpredictability of epilepsy, epileptic seizure detection 
is critically important to physicians. Nowadays, video- Electroencephalogram (EEG)-
monitoring is the gold standard for the diagnosis of epilepsy.  EEG is the recording of 
electrical activity produced by the firing of neurons within the brain, and has long been 
used as a clinical test in the diagnosis and monitoring of epilepsy. Prior to surgery, 
intracranial electroencephalogram (IEEG) needs to be monitored in order to confirm the 
seizure zone. Unfortunately, analyzing these EEG recordings is a time-consuming task for 
neurology physicians, and patterns indicating epilepsy can sometimes be confused with 
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those of other disorders producing similar seizure-like activity (Kalayc & O¨ zdamar, 1995). 
Hence, there is a strong need to develop an artificial intelligent (AI) system for epileptic 
seizure detection.  
Osorio et al. (Osorio, Frei, & Wilkinson, 1998) developed an algorithm for real-time 
detection of epileptic seizures based on the fast wavelet transform with the Daub 4 family of 
wavelets and a median filter to detect seizures. In their algorithm, power spectral density 
(PSD) in a time sequence played an important role in distinguishing seizures. Their real-
time method achieved high sensitivity and specificity when tested on 125 seizures in short 
time segments from 16 subjects. Tezel (Tezel & o¨zbay, 2009) presented three neural network 
models with different adaptive activation functions (NNAAF) within hidden neurons to 
detect epileptic seizures. Activation functions included the sigmoid function, sum of 
sigmoid function and sinusoidal function, and Morlet Wavelet function. Previous research 
(Wongsawat, 2008) also demonstrated the use of phase congruency to robustly detect 
epileptic seizure, calculated using Log-Gabor wavelets. The number of spikes detected from 
the phase congruency of two classes of EEG data (epilepsy and seizure-free) were used as 
distinctive features. In addition, Worrell et al. (Worrell et al., 2004) suggested that high 
frequency epileptiform oscillation signatures appear highly localized in the seizure onset 
zone. The authors noted that the brief spikes of low amplitude and high frequency energy 
were clinically useful for localizing the seizure onset zone. Kaiser’s (Kaiser, 1990, 1993) 
proposed the Teager energy operator (TEO) to estimate the energy of an oscillating signal. 
Choi et al. (Choi, Jung, & Kim, 2006) modified Kaiser’s TEO method with an improved 
multi-resolution Teager energy operator (MTEO) detector that employs smoothing windows 
normalized by noise power derived from mathematical analyses. Their experimental results 
prove that this detector achieves higher detection ratios at a fixed false alarm ratio than both 
the TEO detector and the discrete wavelet transform detector. 
In response to the need for detecting seizure onset more efficiently, the development of 
spike or seizure detection algorithms has grown rapidly. Abnormal spikes under certain 
conditions in EEG recordings are indicators used for the diagnosis of epilepsy (Kiloh, 
McComas, Osselton, & Upton, 1981; Niedermeyer & Silva, 1993), so abnormal spike 
detection plays a crucial role in epileptic seizure detection. İnan et al. (İnan & Kuntalp, 2007) 
applied the fuzzy C-means (FCM) clustering algorithm on certain epileptic spike features, 
such as time durations. The FCM based two-stage system provides a 93.3% sensitivity and 
74.1% specificity to detect spikes (a total of 166 individual waves with 15 epileptic spike and 
151 non-epileptic spike activities). However, the selectivity of spikes was only 26.4%, which 
means that just over 1/4 of all waves labelled as epileptic spikes were truly epileptic spikes. 
Xu et al. (Xu, Wang, Zhang, Zhang, & Zhu, 2007) tried to solve the same problem by using 
an improved morphological filter and comparing it to the traditional morphological filter 
and wavelet analysis using the Mexican hat function. Their method results in a 7.52% 
overall false detection rate based on 957 spikes. 

 
2. Fusion System Structure of Epileptic Seizure Detection 

In this chapter, the goal is to use fusion technology (Hall & McMullen, 2004) to develop an 
intelligence computing approach to detect seizure onset from intracranial EEG (IEEG), 
which is different from pure spike detection (İnan & Kuntalp, 2007; Xu et al., 2007). The 
fusion technology indicates levels of the Joint Directors Of Laboratories (JDL) data fusion 

 

process through source preprocessing, object refinement, situation refinement, impact 
assessment, process refinement and cognitive refinement (optional (Bosse, 2007)).   
The system structure of seizure detection for the above fusion processing begins with Level 
0 processing, which includes EEG signal processing and filtering. Because of the high 
correlation between EEG channels, Level 1 processing evaluates the number of spikes and 
TEO energy on multiple EEG channels. Back propagation artificial neural network (BPNN), 
fuzzy C-means (FCM),  ant colony k-means (AK) and TEO provide for feature extraction. In 
Level 2 processing, the above values are interpreted to mean seizure onset by meeting a 
certain number of thresholds. Level 3 processing utilizes the expert system to make a 
decision. Level 4 processing measures the performance. However, fusion control is optional 
in this system. The block diagram is shown is fig. 1. In Level 1, Either BPNN, FCM or AK 
was applied and compared to the framework to extract spike patterns in EEG signals 
indicating different types of epileptic conditions. 

Fig. 1. Fusion system structure of seizure detection 

  
3. Methodology 

The methods for implementing the above system structure are listed as follows: 

 
3.1 Experiment Databases 
Our experimental data came from two sources. The training data for spike detection came 
from Tzu Chi Hospital in Taiwan. The raw data of electrocorticography (ECoG) and depth 
EEG from patients who underwent epileptic surgery with chronic intracranial recordings 
were analyzed. The program developers were blind to these files.  
The testing electroencephalography came from the FSPEEG database (Aschenbrenner-
Schiebe et al., 2003; Maiwald et al., 2004; Winterhalder et al., 2003) with authorization. The 
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those of other disorders producing similar seizure-like activity (Kalayc & O¨ zdamar, 1995). 
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seizure detection.  
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detection of epileptic seizures based on the fast wavelet transform with the Daub 4 family of 
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correlation between EEG channels, Level 1 processing evaluates the number of spikes and 
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data were recorded during invasive pre-surgical epilepsy monitoring at the Epilepsy Center 
of the University Hospital of Freiburg, Germany. The EEG database contains invasive EEG 
recordings of 21 patients suffering from medically intractable focal epilepsy. Of the 21 
patients, 11 have their epileptic focus locations in neocortical brain structures, 8 in the 
hippocampus, and 2 in both. Detailed information on the 21 subjects is listed in Table 1. The 
database has a sampling rate of 256 Hz with 16-bit resolution without notch or band pass 
filters applied at the beginning. Matlab 7.x (Mathworks Inc.)  and Visual Studio 2008 C# 
(Microsoft Inc.) were used for implementation. 

Patient Sex Age Seizure 
Types 

Regions Seizures 
Analyzed 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

F 
M 
M 
F 
F 
F 
F 
F 
M 
M 
F 
F 
F 
F 
M 
F 
M 
F 
F 
M 
M 

15 
38 
14 
26 
16 
31 
42 
32 
44 
47 
10 
42 
22 
41 
31 
50 
28 
25 
28 
33 
13 

SP 
SP,CP,GTC 
SP,CP 
SP,CP,GTC 
SP,CP,GTC 
CP,GTC 
SP,CP,GTC 
SP,CP 
CP,GTC 
SP,CP,GTC 
SP,CP,GTC 
SP,CP,GTC 
SP,CP,GTC 
CP,GTC 
SP,CP,GTC 
SP,CP,GTC 
SP,CP,GTC 
SP,CP 
SP,CP,GTC 
SP,CP,GTC 
SP,CP 

Frontal 
Temporal 
Frontal 
Temporal 
Frontal 
Temporo/ Occipital 
Temporal 
Frontal 
Temporo/Occipital 
Temporal 
Parietal 
Temporal 
Temporo/Occipital 
Fronto/Temporal 
Temporal 
Temporal 
Temporal 
Frontal 
Frontal 
Tempro/Parietal 
Temptral 

4 
3 
5 
5 
5 
3 
3 
2 
5 
5 
4 
4 
2 
4 
4 
5 
5 
5 
4 
5 
5 

SP=simple partial CP=complex partial GTC=generalized tonic-clonic 
Table 1. Summary of 21 subjects on FSPEEG database 

 
3.2 Level 0: Filtering and Spike Template Selection for Training Process 
Unlike other databases, the database: was recorded directly from focal areas, benefiting 
from the advantage of a high signal-to-noise ratio. Nonetheless, there was still a need to 
remove power-line interference, signal-line stretch, and baseline wonder artifacts for signal 
quality assurance. Hence, three digital filters were applied, including a 50/60Hz notch filter, 
a 0.1-70Hz band pass filter, and a median filter. 
In general, there are about 10 types of epileptiform discharges. Fig. 2 lists the most common 
types of spikes (spike, sharp wave, spike-and-wave complexes, and polyspike complex). 
Fifty of the most common spike templates and fifty background normal IEEG templates 
were manually selected for training purposes.  
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Fig. 2. Four most common types of spikes (spike, sharp wave, spike-and-wave complexes, 
and polyspike complex)   
 
Our neurology expert carefully marked typical epilepsy spikes and non-spikes for algorithm 
development. In Fig. 3, three types of feature waves were extracted from templates, 
including up waves and down waves from epileptic spikes and background normal IEEG 
waves were extracted, as well as up waves and down waves from epileptic spikes and 
background normal IEEG waves. 
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Fig. 3. Training templates typical spikes (left) and non-spikes (right)  
 
For the following sections, three intelligent computing techniques (BP, FCM and AK) are 
introduced. 

 
3.3 Level 1: Spike Pattern Recognition 
As mentioned, epileptic spike detection methods can be categorized as: (1) morphology-
based and (2) feature-based. The concept of the morphology-based method is to compare the 
entire spike waveform to a spike template. Any spike waveforms close to the template are 
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data were recorded during invasive pre-surgical epilepsy monitoring at the Epilepsy Center 
of the University Hospital of Freiburg, Germany. The EEG database contains invasive EEG 
recordings of 21 patients suffering from medically intractable focal epilepsy. Of the 21 
patients, 11 have their epileptic focus locations in neocortical brain structures, 8 in the 
hippocampus, and 2 in both. Detailed information on the 21 subjects is listed in Table 1. The 
database has a sampling rate of 256 Hz with 16-bit resolution without notch or band pass 
filters applied at the beginning. Matlab 7.x (Mathworks Inc.)  and Visual Studio 2008 C# 
(Microsoft Inc.) were used for implementation. 

Patient Sex Age Seizure 
Types 

Regions Seizures 
Analyzed 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
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F 
M 
M 
F 
F 
F 
F 
F 
M 
M 
F 
F 
F 
F 
M 
F 
M 
F 
F 
M 
M 

15 
38 
14 
26 
16 
31 
42 
32 
44 
47 
10 
42 
22 
41 
31 
50 
28 
25 
28 
33 
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SP 
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SP,CP 
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SP,CP,GTC 
CP,GTC 
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SP,CP 
CP,GTC 
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CP,GTC 
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SP,CP,GTC 
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Temporal 
Temporo/Occipital 
Fronto/Temporal 
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4 
3 
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5 
3 
3 
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5 
4 
4 
2 
4 
4 
5 
5 
5 
4 
5 
5 

SP=simple partial CP=complex partial GTC=generalized tonic-clonic 
Table 1. Summary of 21 subjects on FSPEEG database 
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For the following sections, three intelligent computing techniques (BP, FCM and AK) are 
introduced. 

 
3.3 Level 1: Spike Pattern Recognition 
As mentioned, epileptic spike detection methods can be categorized as: (1) morphology-
based and (2) feature-based. The concept of the morphology-based method is to compare the 
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classified as epileptic spikes. The other distanced waveforms are distinguished as normal 
IEEG. In comparison, the concept of the feature-based method is to extract possible spike 
features from IEEG waveforms for classification.  The following computational intelligence 
methods are able to be applied on both categories.   

 
3.3.1 Back propagation neural network 
Back propagation neural network (BPNN) (Haykin, 2008) is a supervised neural network. 
BPNN is a well-known artificial neural network. BPNN includes three layers: the input layer, 
hidden layer, and output layer as show in fig. 4. 
 

 
Fig. 4. Three layers in BPNN 
 
The sigmoid function was used as an activation function. The output of the j-th neuron in 
the output layer is given by 
  (1) 
where  is the sum of the j-th neuron in the output layer 
 
  (2) 

 
where  is the weight between the h-th neuron in the hidden layer and the j-th neuron in 
the output layer,  is the output of the h-th neuron in the hidden layer,  is the bias of the 
j-th neuron in the output layer. One output neuron indicates epileptic spikes, and the other 
output neuron represents normal EEG rhythms. The output of the h-th neuron in the hidden 
layer is given by 
 
  (3) 

 
where  is the sum of the h-th neuron in the hidden layer 
 
  (4) 

 
where  is the weight between the i-th neuron in the input layer and the h-th neuron in 
the hidden layer,  is the i-dimensional input data,  is the bias of the h-th neuron in the 
hidden layer. Our BPNN structure for epileptic spike detection is N-15-2, meaning that the 
template length is N with 15 neurons in the hidden layer and 2 neurons in the output layer. 

 

3.3.2 Fuzzy C-means clustering 
Fuzzy C-means is an algorithm that follows the same steps as the k-means (Haykin, 2008) 
algorithm. However, instead of binary indicators, FCM applies degrees of memberships as 
indicators. This method finds the minimum distance D between input vector x and specific 
classes. 
 
  (5) 

 
The main procedures are as follows, 
1. Initialize the indicators to make the sum of indicators equal to one 

 
  (6) 

 
2. Calculate the codebook  by using indicators and input vector x 
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where m* is set as 2. 
4. The distance of fuzzy C-means is calculated by  

 
   (9) 
 
Then run steps 1 through 4 until all codebooks are convergent. 

 
3.3.3 Ant K-means clustering (AK) 
Ant colony optimization (ACO) is a recently proposed metaheuristic approach for solving 
hard combinatorial optimization problems (Dorigo & Stiitzle, 2000). In particular, the ant k-
means (AK) clustering method is one branch of the biomimetic approach proposed by R.J. 
Kuo (Kuo, Wang, Hu, & Chou, 2005). Instead of using general clustering methods, 
biomimetic computing is a biology-inspired technology which is flourishingly used in 
system modeling, social science, and artificial intelligence (AI). This method simulates the 
interaction of an ant society to solve clustering problems without using any machine 
training processes. This self-organized structure is based on a certain probability, so-called 
pheromone, and results in a robust clustering method. It is proved that this method can be 
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classified as epileptic spikes. The other distanced waveforms are distinguished as normal 
IEEG. In comparison, the concept of the feature-based method is to extract possible spike 
features from IEEG waveforms for classification.  The following computational intelligence 
methods are able to be applied on both categories.   

 
3.3.1 Back propagation neural network 
Back propagation neural network (BPNN) (Haykin, 2008) is a supervised neural network. 
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hidden layer, and output layer as show in fig. 4. 
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indicators. This method finds the minimum distance D between input vector x and specific 
classes. 
 
  (5) 

 
The main procedures are as follows, 
1. Initialize the indicators to make the sum of indicators equal to one 

 
  (6) 

 
2. Calculate the codebook  by using indicators and input vector x 

 






 n

j

m
ji

n

j
j

m
ji

i

I

xI

w

1

1

 (7) 
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where m* is set as 2. 
4. The distance of fuzzy C-means is calculated by  

 
   (9) 
 
Then run steps 1 through 4 until all codebooks are convergent. 

 
3.3.3 Ant K-means clustering (AK) 
Ant colony optimization (ACO) is a recently proposed metaheuristic approach for solving 
hard combinatorial optimization problems (Dorigo & Stiitzle, 2000). In particular, the ant k-
means (AK) clustering method is one branch of the biomimetic approach proposed by R.J. 
Kuo (Kuo, Wang, Hu, & Chou, 2005). Instead of using general clustering methods, 
biomimetic computing is a biology-inspired technology which is flourishingly used in 
system modeling, social science, and artificial intelligence (AI). This method simulates the 
interaction of an ant society to solve clustering problems without using any machine 
training processes. This self-organized structure is based on a certain probability, so-called 
pheromone, and results in a robust clustering method. It is proved that this method can be 
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applied to many different kinds of clustering problems, or combined with data mining 
techniques to achieve more promising results in other industries (Kuo et al., 2005). 
Ants exhibit many characteristics that solve different problems. As mentioned, ACO is an 
approach for solving optimization problems, and the ant k-means deals with clustering 
problems. The main idea behind the ants algorithm depends on a chemical material called 
“pheromone.” A higher pheromone concentration guides ants toward their clustering 
targets. On the other hand, pheromone naturally evaporates over time, so that longer travel 
paths can cause low pheromone concentration. Hence, the optimal path is guaranteed. This 
kind of self-organized social behavior is applied to solve clustering problems by 
constructing the best pathway for clustering. The AK algorithm assigns each data point to a 
specific cluster (class) and each ant gives its own clustering solution. Ants aggregate to 
centers of classes by a probability P. 

  (10) 

 
where τ is the pheromone, η is the inverse of the distance between the two points, α is the 
relative importance of the trail , β is the relative importance of the visibility , 
c is the cluster, and nc is the number of clusters. After m ants have done their clustering, the 
best solution is chosen and assigned a new pheromone.  
 
  (11) 
 
where ρ is the pheromone decay parameter , Q is a constant, TWCV is the total 
within cluster variance. By continuing this process, the clusters are distinguished. The new 
centers are calculated by Eq. 13. 
                       
  (12) 
where Oi is the i-th data, and Tk is the ant set T within class k. 
 
The steps of the algorithm are described below:: 
1. Initialize pheromone (equal to 1), the number of clusters (k) and number of ants (m). 
2. Initialize m ants to k different random cluster centers. 
3. For each ant, let each input vector x belong to one cluster with the probability given in 

Eq. 10. 
4. Calculate new cluster centers. 
5. If the TWCV is changed, go to next step. Otherwise, go to Step 3. 
6. Update the pheromone level in all data according to the new solution. 
7. Update cluster centers according to the new solution. 
8. If the distances of cluster centers to zero or less than ε, merge the centers. 
9. If the termination criterion is satisfied, go to the next step. Otherwise, go to Step 3. 
10. Output the clustering results. 
Various clustering techniques with no training process required have been widely applied in 
many fields, including gene selection and expression (Liu, Wan, & Wang, 2006; Tseng & Kao, 
2005), artificial intelligence, and epileptic spike detection. Thus, it is necessary to understand 
the advantages and limitations among various clustering techniques (k-means, FCM, and 

 

AK). Hence, the UC Irvine Machine Learning Repository database was tested to compare 
three clustering algorithms (kmeans, FCM, and AK). Table 2 lists the investigated databases 
and their descriptions and Table 3 compares the accuracy among various clustering 
algorithms. Promisingly, the results show that the AK method provided the best overall 
results in those datasets.  
 

Machine learning datasets Number of 
instances 

Number of 
attributes 

Number 
of classes 

Iris 150 4 3 
Lung Cancer 32 56 3 
Breast Cancer Wisconsin (Diagnostic) 569 32 2 
Wine 178 13 3 
Pen-Based Recognition of Handwritten Digits 10992 16 10 

Table 2. Machine learning database description 
 

Name of dataset AK Kmeans FCM 
Iris 90.66% 70.88% 84.64% 
Lung Cancer 62.34% 50% 48.15% 
Breast Cancer Wisconsin (Diagnostic) 90.54% 85.41% 88.05% 
Wine 70.22% 65.36% 69.67% 
Pen-Based Recognition of Handwritten Digits 71.48% 45.24% 28.69% 

Table 3. Accuracy comparison on various clustering algorithms 
 
The Iris dataset, which contains 3 classes, can be used to illustrate an example. One class is 
linearly separable, while the others are non-linearly separable. In this dataset, the AK 
method demonstrated the best performance compared to the k-means and FCM algorithms. 
Both the AK and FCM algorithms process non-linear datasets with a high degree of accuracy. 
Fig. 5 plots the Iris dataset with  two attributes (1&2) for visialization. The k-means 
algorithm works well when handling linearly separable distributions, but the AK and FCM 
algorithms have an advantage by being able to separate non-linearly separable data. Due to 
the pheromone factor, performance of AK improved dramatically. 
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Fig. 5. Comparison of the cluttering results among AK, K-means, and FCM methods 

 
3.4 Level 1 & 2 Teager Energy Operator (TEO) And Smooth Window 
Multi-resolution teager energy operator (MTEO)(Choi et al., 2006) as shown in Eq.13 is one 
kind of filter to enhance action potential.  
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where x(n) is an IEEG signal and k is a constant. MTEO is used here because some 
properties of action potential waves are similar to spikes. It can also change the value of k to 
reduce noise. In addition, smoothing window is used to the enhance signal x* after MTEO as 
follows,  
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where sw denotes length of window (here sw=50). The method is used for distinguishing 
seizure onset by setting the threshold to 1900 μ . 

 
3.5 Level 3:  Reasoning for Data Fusion 
The reasoning behind data fusion is based on the following five principles: 1) sudden 
desynchronization of background EEG pattern, 2) changing of frequency into a distinct 
rhythm, 3) showing the spiky phase of the oncoming rhythmical waves, 4) increasing in 
voltage of the new rhythm, and 5) propagation of the new EEG activity into adjacent regions 
or channels were encoded into the program for seizure onset detection and description of 
the seizure zone. 

  
4. Level 4. Performance Measurement and Results 

Using the training dataset, an accuracy rate of 86.37% and 97.33% for seizure onset detection 
and seizure zone illustration was obtained with the BPNN-based and AK-based systems, 
respectively. It must be noted however, that BPNN was under supervised learning and AK 
was a non-supervised learning process, so the training dataset for the AK-based system is 
for comparison purposes only. Adding more training samples for BPNN is expected to 
increase the system performance. 
In the testing data, all seizure durations within the FSPEEG database were given. There 
were a total of 21 IEEG recordings from different subjects, each with different types of 
epilepsy and varying seizure onset times. For the preformance evaluation purpose, our 
extracted the 2 minutes before and after seizure occurrence (4 minutes total). The data was 
then divided into 10-second segments for evaluating performance of seizure detection.  
After arranging the data, there was a total of 348 minutes of EEG for processing, including 
107 minutes of seizure onset. The ratio of seizure onset time to non-seizure onset time is 
about 1/3. Table 4 shows the morphology-based system performance as an example by 
evaluating each individual’s data.Accuracy, sensitivity, and specificity are general indexes 
for  performance measurement.   
 
  (15) 

 
 

  (16) 
 

where, TP-true positive is the number of epileptic seizure (ES) waves correctly detected by 
the system, TN-true negative is the number of non-ES waves correctly detected by the 
system, FP-false positive is the number of waves incorrectly labeled as ES activity by the 
system, and FN-false negative is the number of waves incorrectly labeled as non-ES activity 
by the system. 
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Patient # Sensitivity Specificity Accuracy 
BPNN AK BPNN AK BPNN AK 

1 50% 66.67% 80% 68.89% 78.13% 68.75% 
2 70.97% 54.84% 95.12% 92.68% 84.72% 76.39% 
3 65.21% 62.79% 100% 97.26% 86.67% 84.48% 
4 53.13% 69.77% 85.71% 87.01% 85.71% 80.83% 
5 0% 15.79% 99.01% 95.05% 83.33% 82.5% 
6 57.89% 35% 100% 100% 88.89% 91.94% 
7 48% 33.33% 95.74% 80.43% 79.17% 59.76% 
8 25% 50% 70.83% 70.83% 47.92% 60.42% 
9 66.67% 16.67% 92.31% 91.03% 83.33% 65% 
10 0% 34.09% 100% 90.79% 63.33% 70% 
11 85% 80% 58.93% 69.64% 69.79% 73.96% 
12 52.38% 45% 78.67% 88.16% 72.92% 79.17% 
13 25% 50% 100% 92.86% 68.75% 75% 
14 46.51% 30.23% 98.11% 90.57% 75% 63.54% 
15 61.11% 19.44% 100% 81.67% 85.42% 58.33% 
16 7.96% 28.85% 100% 97.06% 60% 67.5% 
17 85.71% 33.33% 53.85% 96.15% 65% 47.17% 
18 80% 80% 60.87% 80% 61.67% 80% 
19 20% 40% 91.21% 89.01% 87.5% 86.46% 
20 83.33% 40% 97.62% 95% 93.33% 76.67% 
21 0% 13.95% 100% 93.51% 65% 65% 
Overall 47.3% 40.1% 87.7% 88.2% 74.6% 73.2% 

Table 4. System performance of ten-second window periods for two morphology-based 
methods. 
 
Based on our results, the morphology- AK based method performs the promising results. In 
Fig. 6, upper and lower figures show the spike and normal templates in sequence (250, 500, 
and 1000 epochs if thirty ants were chosen), respectively. Each process loop includes 
random data selecting, centers computing, and pheromone updating. 
 

 
Fig. 6. In AK process, from left to right, it shows the results when 250, 500, and 1000 epochs 
applied. 
 
Hence, the method is also applied on FSPEEG database and the method detects epileptic 
spikes accurately in Fig 7. 

 

 
Fig. 7. Applied morphology-AK based method on FSPEEG database for six-channel IEEG: 
The red waveforms indicate spikes which are detected accurately. 
 
The BPNN based system has an overall accuracy of 74.6%, with a specificity and sensitivity 
of 87.7% and 47.3%, respectively. The AK based system has an overall accuracy of 73.2%, 
with a specificity and sensitivity of 88.2% and 40.1%, respectively. The reason behind low 
sensitivity could be due to the lack of EEG channels. The FSPEEG database provided 6 
channels (instead of the full 20 channels) - 3 infocus and 3 outfocus channels. Because 
epileptic discharges spread, it is hard to make a decision based on just a few channels. 
However, the 74.9% accuracy and 87.7% specificity means that our method can be used as a 
non-seizure eliminator. If the system preformance only considers whether the seizure is 
detected during the ictal stage, the BPNN-based and AK-based systems provide a detection 
rate of 90.5% (19 out of 21) and 100% (21 out of 21), respectively. Fig.8. shows that the fusion 
system for epileptic seizure detection is implemented by Visual Studio 2008 C#. 
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Fig. 8.  System interface: Once seizure is detected, the circle on the right top turns into red 
with sound alert. Spikes also are marked as red. 

 
5. Conclusion and Discussion 

It has to be noted that the BPNN-based system has 0% sensitivity and almost 100% 
specificity for patients #5, 10, and 21. This means that the system missed the seizure 
completely and marked it as a non-seizure. However, in the AK-based system, no 0% 
sensitivity cases appeared. This means that although the system may not detect seizure 
onset during its entire time period, the epileptic seizure can be detected at some point 
during the seizure occurrence. Overall, the two systems have different characteristics in 
seizure detection. Overall, the ant k-means (AK) provide an effective, accurate, and adaptive 
method for spike detection. In addition, no training or pre-knowledge is required on AK 
algorithm. However, unlike traditional k-means, ant k-means reaches higher accuracy 
because ant k-means has the pheromone probability to jump out of the local minima. The 
result shows that AK worked successfully well in our epilepsy patient data. 
In the BPNN training phase, the selected spikes should be increased to improve system 
performance. However, the TEO plus smooth window can detect energy change well, and 
therefore, the non-seizure part is easy to identify. Background EEG must be used for 
calibration to avoid outliers with small background EEG. Small EEG amplitudes cause high 
FP because of the subtle energy change. This caused our system to label all small amplitude 
EEG data as non-seizure events. Moreover, the baseline wander would cause high TN due 
to the sensitivity of TEO. However, the system marked input data with heavy baseline 
wander as seizures. 

 
6. Future research 

Although the epileptic seizure detection system still has room for improvement, the 
preliminary results are encouraging. Future research may focus on predicting anatomic 
seizure in the context of an epilepsy surgical plan. Seizure prediction (Aschenbrenner-
Schiebe et al., 2003; Winterhalder et al., 2003) is essential because of the various aspects 
associated with the disorder, including diagnosis, treatment options, physical risks, social 

 

implications, loss of self-efficacy, depression and anxiety. Risks of delaying a correct 
diagnosis through this method occur among patients who meet a physician infrequently in 
the interictal state. In addition, seizure prediction provides a new way for drug treatment to 
maximize intended drug effects, minimizes possible side-effects, and can serve as a guide 
toward developing an effective acute intervention in the early phase (Schelter, Timmer, & 
Schulze-Bonhage, 2008); Early diagnosis is beneficial, because long-term antieplieptic 
treatment increases a person's risk of premature death, can have hormonal effects on fertile 
females, trigger liver failure, and cause mood disorders. Unfortunately, seizure prediction 
with a time horizon of minutes to hours remains a challenge and a clinically applicable 
solution is still not available. The tools developed for seizure identification should serve in 
future neurological expert system development, brain computer interface (BCI), or 
investigation of mental tasks by a patient. 

 
7. Acknowledgements 

This research is supported by Tzu Chi University / General Hospital and the project serial 
number is TCMRC-P-97006. Thanks to Dr. Yue-Loong Hsin and Dr. Tomor Harnod in the 
Department of Neurology of Tzu Chi Hospital for providing the necessary support. Also 
special thanks to group researchers of the University Freiburg and the University Hospital 
Freiburg in providing the EEG database (https://epilepsy.uni-freiburg.de/) for this 
research. 

 
8. References 

Aschenbrenner-Schiebe, R., Maiwald, T., Winterhalder, M., Voss, H. U., Timmer, J., & 
Schulze-Bonhage, A. (2003). How well can epileptic seizures be predicted? An 
evaluation of a nonlinear method. Brain, 216(2616-2626). 

Betts, T. (1998). What is epilepsy? Electrical Engineering and Epilepsy: A Successful 
Partnership, IEEE Trans. on Biomed. Eng. Savoy Place,London. 

Bosse, E. (2007). Concepts, Models, and Tools for Information. Norwood,MA: Artech House Inc. 
Choi, J. H., Jung, H. K., & Kim, T. (2006). A New Action Potential Detector Using the MTEO 

and Its Effects on Spike Sorting Systems at Low Signal-to-Noise Ratios. IEEE Trans. 
on Biomed. Eng, vol. 53(No. 4), p.p.738-746. 

Dorigo, M., & Stiitzle, T. (2000). The Ant Colony Optimization Metaheuristic: Algorithms, 
Applications, and Advances. Technical Report IRIDIA. 

Hall, D. L., & McMullen, S. A. H. (2004). Mathematical Techniques in Multisensor Data Fusion 
(2nd ed ed.). Norwood, MA,: Artech House Inc. 

Haykin, S. (2008). Neural Networks and Learning Machines (3rd ed.): Prentice Hall. 
İnan, Z. H., & Kuntalp, M. (2007). A study on fuzzy C-means clustering-based systems in 

automatic spike detection. Comput Biol Med, 37(8), 1160-1166. 
Kaiser, J. F. (1990, April 3-6). On a simple algorithm to calculate the energy of a signal. Paper 

presented at the ICASSP, Albuquerque, New Mexico. 
Kaiser, J. F. (1993, April ). Some useful properties of Teager's energy operators. Paper presented 

at the IEEE ICASSP, Minneapolis, Minnesota. 
Kalayc, T., & O¨ zdamar, O. (1995). Wavelet preprocessing for automated neural network 

detection of EEG spikes. IEEE Engineering in Medicine and Biology, 160 - 166. 

www.intechopen.com



Intelligence Computing Approaches for
Epileptic Seizure Detection Based on Intracranial Electroencephalogram (IEEG) 465

 

 
Fig. 8.  System interface: Once seizure is detected, the circle on the right top turns into red 
with sound alert. Spikes also are marked as red. 

 
5. Conclusion and Discussion 

It has to be noted that the BPNN-based system has 0% sensitivity and almost 100% 
specificity for patients #5, 10, and 21. This means that the system missed the seizure 
completely and marked it as a non-seizure. However, in the AK-based system, no 0% 
sensitivity cases appeared. This means that although the system may not detect seizure 
onset during its entire time period, the epileptic seizure can be detected at some point 
during the seizure occurrence. Overall, the two systems have different characteristics in 
seizure detection. Overall, the ant k-means (AK) provide an effective, accurate, and adaptive 
method for spike detection. In addition, no training or pre-knowledge is required on AK 
algorithm. However, unlike traditional k-means, ant k-means reaches higher accuracy 
because ant k-means has the pheromone probability to jump out of the local minima. The 
result shows that AK worked successfully well in our epilepsy patient data. 
In the BPNN training phase, the selected spikes should be increased to improve system 
performance. However, the TEO plus smooth window can detect energy change well, and 
therefore, the non-seizure part is easy to identify. Background EEG must be used for 
calibration to avoid outliers with small background EEG. Small EEG amplitudes cause high 
FP because of the subtle energy change. This caused our system to label all small amplitude 
EEG data as non-seizure events. Moreover, the baseline wander would cause high TN due 
to the sensitivity of TEO. However, the system marked input data with heavy baseline 
wander as seizures. 

 
6. Future research 

Although the epileptic seizure detection system still has room for improvement, the 
preliminary results are encouraging. Future research may focus on predicting anatomic 
seizure in the context of an epilepsy surgical plan. Seizure prediction (Aschenbrenner-
Schiebe et al., 2003; Winterhalder et al., 2003) is essential because of the various aspects 
associated with the disorder, including diagnosis, treatment options, physical risks, social 

 

implications, loss of self-efficacy, depression and anxiety. Risks of delaying a correct 
diagnosis through this method occur among patients who meet a physician infrequently in 
the interictal state. In addition, seizure prediction provides a new way for drug treatment to 
maximize intended drug effects, minimizes possible side-effects, and can serve as a guide 
toward developing an effective acute intervention in the early phase (Schelter, Timmer, & 
Schulze-Bonhage, 2008); Early diagnosis is beneficial, because long-term antieplieptic 
treatment increases a person's risk of premature death, can have hormonal effects on fertile 
females, trigger liver failure, and cause mood disorders. Unfortunately, seizure prediction 
with a time horizon of minutes to hours remains a challenge and a clinically applicable 
solution is still not available. The tools developed for seizure identification should serve in 
future neurological expert system development, brain computer interface (BCI), or 
investigation of mental tasks by a patient. 
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