
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322390526?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Tile-based Image Visual Codewords Extraction for Eficient Indexing and Retrieval 235

Tile-based Image Visual Codewords Extraction for Eficient Indexing and
Retrieval

Zhiyong Zhang and Olfa Nasraoui

0

Tile-based Image Visual Codewords Extraction

for Efficient Indexing and Retrieval

Zhiyong Zhang and Olfa Nasraoui
University of Louisville

US

1. Introduction

Inspired by the success of inverted-file indexing in text search engines, content based image
retrieval (CBIR) researchers have begin to consider using inverted indexing for image content
search Squire et al. (1999) Jing et al. (2004). For inverted indexing to be effective in image con-
tent search, two issues need to be addressed. First, the image content features need to follow
a power-law distribution the same way as textual document terms do. Second, a mecha-
nism is needed to textualize the low-level image content features. We addressed these two
constraints. First of all, we tested the sparseness of image content features and our results
confirmed the sparseness assumption. This makes the inverted file indexing on image content
well grounded. However, to translate to image content feature into texts, a vector quantization
(VQ) scheme is needed. K-means (or Generalized Lloyd Algorithm) clustering is usually used
for vector quantization. But for sparse data, K-means algorithm may generate cluster centers
overcrowded in high density area. To solve this problem, we developed a cluster-merge al-
gorithm to guarantee the quality of cluster centers. Based on these preliminary efforts, we
are able to textualize the image content features. More specifically, we developed the textual-
ization procedures for image content features, which include both codebook generation and
codewords extraction process. To better describe image textures and image shapes, we de-
fined three types of tiles: inner tiles, bordering tiles, and crossing tiles. Furthermore, to reduce
the dependence on accurate image segmentation for shape-based retrieval, we propose to use
more basic elements, boundary angles, to represent the shape feature. With these efforts and
methods, we are able to enjoy high level visual codewords representation of low-level image
features, thus making efficient and scalable image content search realizable.
This chapter is organized as follows: in section 2, we discuss related work. In section 3 and
section 4, we discuss the sparseness of image content features and the cluster-merge algorithm
respectively. We focus on image content codewords representation in section 5. After that, we
present our experimental results in section 6, and finally we draw conclusions and give future
works in section 7.

2. Related Works

QBIC Flickner et al. (1995), Blobworld Carson et al. (1999), WALRUS Natsev et al. (2004),
and WBIIS Wang et al. (1997), which uses the QBIC system, all use R*-trees Beckmann et al.
(1990) for indexing. The R*-tree is a variant of the R-tree by Guttman Guttman (1984). These

12

www.intechopen.com

Pattern Recognition, Recent Advances236

tree-based method claim to have good performance for nearest neighbor search. However,
curse of dimensionality spells potential trouble for these tree-based methods. In Weber et al.
(1998), Weber et al showed that the performance of these tree-based methods degrade signifi-
cantly as the number of dimensions increases and is even outperformed by a sequential scan
whenever the dimensionality is above 10. Weber et al then proposed a scheme named vector
approximation file (or ‘VA-file’) and demonstrated that VA-file can offer better performance for
high dimensional similarity search. An OVA-file (Ordered VA-file) structure, which places ap-
proximations that are close to each other in close positions for later fast access, was later used
in Lu et al. (2006) for video retrieval. The VA-file structure adopts a signature-file like filter-
ing method, thus trying to build a mechanism for fast scanning for nearest neighbors search.
However, in Witten et al. (1999) Zobel et al. (1998), Zobel et al showed that signature files
are distinctly inferior to inverted files as data structure methods for indexing. At the same
time, the success of inverted files in texts search engine and scalability concerns have drawn
attention to the potential of using inverted files for multimedia indexing. Viper Squire et al.
(1999) had attempted to use inverted files for indexing image databases and their experiment
results showed their inverted indexing scheme had better performance than the vector space
system used before by the same authors. In Jing et al. (2004), Jing et al tried to use a modified
inverted file for image indexing and showed through experiments that inverted file indexing
is much more efficient than sequential search without much loss of accuracy. In Rahman et al.
(2006), Rahman et al also used inverted files for image indexing and observed comparable
accuracy results for inverted file indexing and sequential search method. In order to build
an inverted index, image content features need to be transformed into textual words. Vector
Quantization (VQ) is usually used to achieve such goal. A Uniform Quantizer has been used
in a image indexing and search system Zhang et al. (2006). However, since there are several
advantages of using Nonuniform Quantization such as an improved Signal to Noise Ratio
(SNR) (see Gersho & Gray (1992)) over Uniform Quantization, Nonuniform quantization are
more widely used. Among the Nonuniform Quantization methods, the Generalized Lloyd
Algorithm (GLA), also known as k-means or LBG algorithm, is widely used for generating
image codebooks for indexing or retrieval. See Ma & Manjunath (1998) Sivic & Zisserman
(2003) Jegou et al. (2007) Mojsilovic et al. (2000) and Malik et al. (1999).
As image segmentation technology develops from theoretical Ncut Shi & Malik (2000) to prac-
tical efficient Kruskal style realization Felzenszwalb & Huttenlocher (2004), people can expect
the successful landing of shape-based image retrieval in real life in the near future. Shape
based image retrieval are divided into two categories: boundary-based and region-based Safar
et al. (2000). Among several different approaches, the grid-based method Lu & Sajjanhar
(1999), which belongs to region-based methods, was later used by Prasad et al. (2004). There
are several factors that make shape-based image retrieval very challenging and that have lim-
ited development of shape-based image retrieval. First, shape-based retrieval relies too much
on an accurate image segmentation, which is not a solved problem yet. Second, it is very
hard to build a shape-based retrieval system which is invariant to transformation, rotation,
and scaling. A few systems like Lu & Sajjanhar (1999) have considered these factors, however
they paid high computation costs to solve these problems. Third, humans don’t have a uni-
form definition of the shapes of different objects other than some very common and simple
shapes such as triangle, rectangle, and circle, etc. Several working system of query by shape
include CIRES Iqbal & Aggarwal (2002), which used perceptual grouping and several image
structural boundary types like “L” junctions, “U” junctions, “polygons”, etc to differentiate

www.intechopen.com

Tile-based Image Visual Codewords Extraction for Eficient Indexing and Retrieval 237

manmade objects from outdoor images. No image segmentation was used in their methods.
Another work is query by sketch such as Retrievr Jacobs et al. (1995).

3. Sparseness of Image Features

One assumption and reason behind the success of the inverted file structure for indexing text
and documents is the sparseness of terms in documents. The total number of terms in a
large document collection is very high with dimensionality O(104) Squire et al. (1999) West-
erveld (2000), while the number of terms that occur in a single document is comparatively
low O(102). In other words, human have accumulated a big enough vocabulary to cover each
field of our everyday life, yet for a specific topic or article, a small portion suffices. However
for the case of images, since “a picture is worth a thousand words” and since pictures tend
to be self-explanatory, it can be hard to develop a complete thesaurus for images. The result
is that a sparse dictionary comparable to documents does not exist. However, an analysis of
images based on its color, texture, and shape, shows that although a term-document like high
sparseness is not achieved, a slightly lower sparseness could be reached with an appropriate
content to codeword mapping. For instance, a picture may contain only a few dominant col-
ors when using a color histogram containing hundreds of bins. The sparseness also depends
on the visual word representation.
Figure 1 gives the log-log distribution of the resulting colorwords (mapped from original
colors) using different methods to represent 10,000 actual images randomly selected from
flickr.com. For equal color quantization, we use 4 × 4 × 4 quantization on the RGB color
channels to get 64 bins. For the clustering-merge based method, we use 1000 images as the
training set to obtain the global color or texture codebook, then use the global codebook to
represent these 10,000 images.
We can see that these representations roughly follow a power law distribution. In Jurie &
Triggs (2005), Frederic et al showed that texture features followed a power law distribution.
Their results match our experimental results, and lay the foundation for our inverted indexing
scheme. In the following, we will discuss our clustering-merge method to compute the global
codebook.

4. GLA and Cluster-Merge Algorithm

There are two reasons for us to use GLA (Generalized Lloyd Algorithm) vector quantization
instead of uniform quantization. The first reason is that the latter is not feasible for high-
dimensional features, whereas GLA can be used in such cases. The second reason is that the
latter does not take the actual feature distribution into account and can lose some accuracy in
representing the images, while GLA does better.
One issue with most K-mean-based clustering algorithm such as GLA for codebook genera-
tion is that for power law distributed data, more cluster centers are generated around high
density areas Jurie & Triggs (2005). Our experiments also confirmed such phenomenon, see
figure 3. This can cause the codewords to be overpopulated in the high density area while the
sparse area not properly represented. To solve this problem, we propose to merge these very
close cluster centers after obtaining the K-means clustering result. We first use K-means to
generate more centers than what we expect, then we merge these centers into the number of
centers we desire. Through merging close centers, we can avoid cluster centers to crowd into
high density areas. At the same time, we fully take advantage of the efficiency of K-means.

www.intechopen.com

Pattern Recognition, Recent Advances238

100 101 102
10−5

10−4

10−3

10−2

10−1

100

Bin Rank

B
in

 P
ro

ba
bi

lit
y

(a) Equal Quantization (Color 64 bins)

100 101 102
10−4

10−3

10−2

10−1

100

Bin Rank
B

in
 P

ro
ba

bi
lit

y

(b) Clustering-Merge Based Method (128 Colors
merged into 64 centers)

100 101 102 103
10−5

10−4

10−3

10−2

10−1

100

Bin Rank

B
in

 P
ro

ba
bi

lit
y

(c) Clustering-Merge Based Method (256 Colors
merged into 128 centers)

100 101 102 103
10−4

10−3

10−2

10−1

100

Bin Rank

B
in

 P
ro

ba
bi

lit
y

(d) Clustering-Merge Based Method (256 Tex-
tures merge into 128 centers

Fig. 1. Log-log plots of different quantization methods.

Thus, our clustering merge algorithm will be much more efficient than purely hierarchical
clustering algorithm.
The pseudocode for merging clusters is shown in pseudocode 2. In pseudocode 2, we check
two constraints, the number of clusters and the distance between two closest clusters. Once we
obtain the desired number of clusters or if the distance between two closest clusters becomes
greater than a preset threshold value, we terminate the merging and return the results.
Figure 3 gives a two-dimension visualization of how our cluster-merge algorithm works. For
Figure 3, we use 2,541 manually synthesized 2D data points for K-means clustering test. We
manipulate these data points to make it roughly follow certain degree of sparseness. The two
big clusters on the left are used to simulate the high-density area, while the three small clusters
in the right are used to simulate the sparse area. For visualization purpose, we scale the red
circle proportionally smaller to cover only a portion of the clusters while the center of the red
circles show the real cluster centers. The left figure shows the k-means clustering result by
setting k equals to 10, we can see more cluster centers are crowded into the high density area.
After our cluster-merge algorithm, the resulting 6 clusters are satisfactory to our demand.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

www.intechopen.com

Tile-based Image Visual Codewords Extraction for Eficient Indexing and Retrieval 239

100 101 102
10−5

10−4

10−3

10−2

10−1

100

Bin Rank

B
in

 P
ro

ba
bi

lit
y

100 101 102
10−4

10−3

10−2

10−1

100

Bin Rank

B
in

 P
ro

ba
bi

lit
y

100 101 102 103
10−5

10−4

10−3

10−2

10−1

100

Bin Rank

B
in

 P
ro

ba
bi

lit
y

100 101 102 103
10−4

10−3

10−2

10−1

100

Bin Rank

B
in

 P
ro

ba
bi

lit
y

Fig. 2. Pseudocode for merging clusters.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) k-means cluster (k=10)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) cluster-merge result

Fig. 3. Merge close clusters (setting radius < 0.1732).

5. Codebook Design and Feature Extraction

In this section, we are going to use the clustering-merge algorithm discussed in seciton 4 in
image codebook design. As image color codebook design is very straightforward, we are not
going to include it in this chapter due to page limit. We only discuss image texture and shape
codebooks.

5.1 Inner, Bordering and Crossing Tiles

Before we discuss texture words and shape words, we will define several relevant tile types
that will support extracting such features. Figure 4 shows how we divide an actual image from
into small (64 × 64) tiles for further feature extraction. Notice that if we divide the original
image into small grids (as in the top right image), some small tiles (tile 4, 5, and 6, etc) will
have uniform texture patterns since they are totally inside one object or inside the background.
We will name these tiles inner tiles as they lay totally inside an object or the background.
On the other side, tiles such as tile 1, 2, and 3 don’t have uniform texture patterns as they

www.intechopen.com

Pattern Recognition, Recent Advances240

(a) Original image (b) Inner Tiles and Bordering Tiles

(c) Original Image (d) Crossing Tiles

Fig. 4. Inner tiles (4, 5, 6), Bordering tiles (1, 2, 3), and Crossing tile (right bottom image).

contain multiple conceptual areas (the dog fur and the road). We name these tiles bordering
tiles as they tend to border a big block and some other small blocks. Inner tiles are very helpful
in identifying the texture pattern of an object, while bordering tiles are useful for identifying
shapes or contours of objects. Inner tiles and bordering tiles are not sufficient to characterize
image tiles. For instance, when we segment and divide the brick wall image (in Figure 4), we
cannot get even one tile (right figure) which purely belongs to one big block or borders one
big block. To deal with such case, we define another type of tile: crossing tile. By definition, it
contains many small blocks without any pixel belonging to any big block. Such segmentation
results often mean that the image is a texture image. Crossing tiles will be very meaningful in
identifying texture patterns. For the above three types of tiles, we will select inner tiles and
crossing tiles for image texture extraction and select only bordering tiles for shape analysis.
In order to take advantage of tiling, we need to be able to decide whether an image tile is an
inner tile, bordering tile, or crossing tile. To differentiate between these three kinds of tiles,
we train a simple decision tree classifier (C4.5) to learn how to automatically classify a tile
into the correct type. We use three features: number of components (len), number of pixels
of the maximum component (max), and standard deviation (std) of the number of pixels of
each component in the segmented tile, and three class labels: inner tile (0), bordering tile (1),
and crossing tile (2). We first use 1000 tiles as a training set. For these 1000 color segmented
tiles, we manually label each segmented tile as inner tile, bordering tile, or crossing tile. After
training and 10-fold cross-validation, we get the following classification model (with 93.8596

www.intechopen.com

Tile-based Image Visual Codewords Extraction for Eficient Indexing and Retrieval 241

Fig. 5. Decision Tree Model for Classifying Tiles.

% Correctly Classified Instances). For image segmentation, we use the graph based method
proposed by Felzenszwalb & Huttenlocher (2004).

5.2 Image Texture Codebook

We use Gabor texture feature extraction to generate the image texture codebook. However,
because we first need to get the global image texture dictionary from a set of training texture
images, instead of clustering the filtered image output pixel-wise for only one image as in Malik
et al. (1999), we will perform clustering tile-wise on an entire set of training images. This way,
each texture image can be subdivided into small tiles which corresponds to certain texture
words. We analyze texture tile-wise instead of textel-wise because this corresponds to our
visual understanding of images: textures can make sense to us only when they are displayed
in a region and thus form a pattern.
Furthermore, we do not use all the segmented components for texture analysis. Instead we
use only the inner tiles and crossing tiles. This is because first of all, image segmentation
is not very accurate especially in the bordering part separating two components or blocks.
Another reason is that sampling inner tiles instead of all the segmented blocks can help reduce
the computational cost and raises the possibility of saving even more computations by only
computing the texture features of those tiles that are not similar to any other analyzed tiles.
For instance, before we compute one tile’s texture feature, we can check whether most of its
pixel values are similar to the previous neighboring tile in the same block by taking the pixel
value difference. If we find that the tiles are very similar, then we can simply classify this tile
into the same pattern as the previous tile and avoid computing its texture features.

www.intechopen.com

Pattern Recognition, Recent Advances242

Fig. 6. Process of Generating Image Texture Codebook.

To compute the texture codebook, we divide each image into 32× 32 pixel blocks or tiles, select
texture tiles (inner tiles and crossing tiles) according to image segmentation results, then
apply Gabor filters to each texture tile, and finally record the corresponding texture features.
The process for generating the image texture codebook is summarized in Figure 6. We use
1000 texture pictures for training (each picture roughly contains 160 (32 × 32 pixel) tiles with
more than half of the tiles are selected as texture tiles). This process yield 128 texture words
(compared to Ma & Manjunath (1998) which yields 950 codewords).

Fig. 7. Example Texture Codebook.

The clustering method used is GLA followed by the cluster-merge algorithm, as discussed
above. Figure 7 shows an example texture book generated using the above procedure.

www.intechopen.com

Tile-based Image Visual Codewords Extraction for Eficient Indexing and Retrieval 243

5.3 Extracting and Indexing Texture Features

When we try to extract image texture words, we apply Gabor filters to small 32 × 32 image
texture tiles. After extracting the image texture feature vector, we use Nearest Neighbor (ac-
celerated by a Kd-tree structure) to determine the corresponding texture codeword from the
texture codebook.

Fig. 8. Extracting Texturewords from An Image.

Figure 8 gives an example of extracting texture words from an actual image. The leftmost
column contains the representative tiles selected from the codebook in Figure 7, while the
remaining tiles are the corresponding image tiles extracted from the actual image. In the
process of extracting texturewords from an actual image, we adopt a similar procedure, where
we segment the image and select texture tiles (inner tiles and crossing tiles) according to the
segmentation results using the decision tree model show in model 5. We use nearest neighbor
search method to find the representative texture word in the texture codebook to represent
each texture tile.

5.4 Image Boundary Angle Codebook

In this section, we propose a novel method of image retrieval that is very similar to shape-
based image retrieval. We name this new type of retrieval boundary angle-based image retrieval
or BABIR. In section 2, we have reviewed several shape-base image retrieval systems, and
their limitations. Considering all of the drawbacks, we propose to use an important part of
the shape boundaries, boundary angles, to represent a shape. For instance, we can use two 90
degree angles or even four straight lines to represent a rectangle. These boundary angles seem
to agree with human’s atomic understanding of shapes, and constitute the basic elements in
drawing a picture. This simplification has important consequences. First, while it can be hard
for an image segmentation system to identify the accurate shape, most image segmentation
systems would easily identify the boundary lines or angles. Second, boundary-angle-based
retrieval relies on basic elements like straight lines or turning angles or arcs which are actu-
ally scale and rotation invariant. As discussed in section 5.3, we will use bordering tiles, for

www.intechopen.com

Pattern Recognition, Recent Advances244

boundary-angle-based retrieval. Figure 9 gives another example showing these tiles, where
we can see that it is very hard for an image segmentation scheme to render the whole bird
shape as one component. However, we are able to segment image for the boundary-angle
contours to extract boundary-angle words.

(a) Original image (b) Segmented Tiles

Fig. 9. sample boundary angles tiles (1, 2, 3).

For shape feature, we will adopt the region-based shape representation proposed in Lu &
Sajjanhar (1999) and Prasad et al. (2004) with slight modification. The region based method

Fig. 10. Region based shape representation.

can be illustrated in Figure 10, where a grid with fixed-size square cells was used to cover
the shape region. “1” and “0” are assigned to the small cells in which the shape covers above
or below 25% of the cell respectively. This allows representing the shape using the binary
sequence: 00000000 11000000 11110000 01111000 00011110 00011110 00111000 00100000. To
adapt the grid-based method to our application, we further grid each image tile into 8× 8 = 64
small pixel cells. Instead of using “0” and “1” to represent each cell, we use integer value
ranging from “0” to “16” to represent each cell, where the value of the cell is a count of image

www.intechopen.com

Tile-based Image Visual Codewords Extraction for Eficient Indexing and Retrieval 245

pixels belonging to the dominant component of the image tile. This sequence of 64 counts
will represent the shape of each boundary angle tile, and is called the shape vector of the image
tile. Then we perform clustering and cluster-merging in the same way as we did for image

Fig. 11. Process of Generating the Boundary-Angle Codebook.

textures. Here, as well, we use a training set (e.g., 1000 shape images) and use tile selection,
GLA method and the cluster-merging algorithm to generate a shape codebook. This process
is summarized in Figure 11, while Figure 12 shows an example of a boundary angle codebook
generated using our method.
Once we have obtained the boundary angle codebook, during the image crawling phase,
we adopt a procedure that is similar to extracting texture codewords (Kd-tree-based Near-
est Neighbor mapping) to extract image-boundary-angle code words. Figure 13 shows an
example of extracting boundary angle words from an image.

6. Experimental Results

6.1 Effectiveness of Texture Word Representation

To demonstrate the effectiveness of our tile-based image representation, we will compare the
retrieval precision of using image texture tiles with that of using the whole image texture
vectors. Our assumption is that although we use a much faster boolean query consisting of
several representative image texture words, we can get a comparable retrieval precision to
that of using the whole image texture vectors for similarity search, which the general CBIR
systems would use. To evaluate the precision, we adopt a similar strategy as was used in
SIMPLIcity Wang et al. (2001). We use a subset of COREL database with 10 categories shown
in table 1, where each category contains 100 semantically coherent images. Altogether, there
are 1000 images in total for testing. In the codebook generation stage, we collect 100 images

Africa Beach Buildings Buses Dinosaurs

Horses Flowers Elephants Food Mountains

Table 1. COREL Categories of Images Tested

by randomly selecting 10 images from each category. We use these 100 images to generate
a global image texture codebook. After we build the image search by implementing Nutch1

1 http://lucene.apache.org/nutch/

www.intechopen.com

Pattern Recognition, Recent Advances246

Fig. 12. Example Boundary Angle Codebook.

on image texture feature, we conduct our testing by randomly selecting three images from
each category as query images (30 queries for each case). To form the actual queries, for the
texture words representation case, we select top-N (N ranges from 1 to 10) texture words for
the query image to form the boolean query and we use Nutch’s default TF × IDF ranking.
For the texture vector query case, we take the whole 48 dimension texture vector for the query
image to form the query and use Euclidean distance measure for ranking. We show 10 results
in each page and examine the number of category matches in the first page. In case the total
number of results is less than 10, we show all the results in the first page. We then calculate
the precision as the number of category matches in the first page divided by the number of
results in the same page. We then average the precision of the 30 result-sets and compare the
two types of methods. The results is shown in Figure 14.
As shown in Figure 14, the precision for Texture words boolean query case increases as the
number of query terms increases. As the number of query terms approaches 5 or 6, the average
precision of boolean query comes close to the vector similarity query case. On the other hand,
the number of returned results drops dramatically as the number of query terms increases as
shown in Figure 15. For instance, the average number of returned results drops from 13.5 to
6.6 as the number of terms in the query increases from 5 to 6. Although the average precision
is high as we include much more terms (say 9 or 10), the very few number of results returned
should prevent us from using too many terms. Combining Figure 14 and Figure 15, we can
see that selecting around 5 query terms would give us a balanced results of desirable precision
and total number of results.
On the other end, the retrieval efficiency benefit of using boolean query over vector similarity
query is obvious, as shown in Figure 16 and the experiments are with the Linux server (with

www.intechopen.com

Tile-based Image Visual Codewords Extraction for Eficient Indexing and Retrieval 247

Fig. 13. Extract Boundary-Angle Words.

Intel(R) Xeon(TM) CPU 2.80GHz, 2cpu, and 2G memory). We also can see that as the number
of terms contained in the boolean query increases, the retrieval speed does not fluctuate much.
This is guaranteed by the inverted indexing structure.

6.2 Effectiveness of on Boundary-angle Based Retrieval

Since we have argued for using boundary-angle instead of whole shape for image retrieval,
we need to empirically justify this choice. For this experiment, we use the Columbia image
testing set, which contains 7200 images of 100 objects traditionally used to evaluate shape-
based retrieval, and measure the precision of retrieval. We adopt a similar procedure to get
the global boundary-angle codebooks. We first randomly select 7 images for each object and
get 700 images in total for training the boundary-angle codebook. Then we use Nutch to
build the inverted index and conduct the testing by two types of search. For each object, we
randomly choose 2 images to form the query images and altogether we get 200 query images.
To form the boundary-angle boolean query, we use top-N (N ranges from 1 to 5) boundary-
angle words and to form the shape vector query, we use the 64D shape grid vector. Again,
we consider the returned results that correspond to the same object as accurate matches. We
compare the precision of using the two methods. We can see from Figure 17 and Figure 18 that
when we choose a boolean query that contains 3 or 4 terms, we can get very close precision
as the vector nearest-neighbor query case without losing too much recall. Note the average
number of returned results is 29.2 for 3-term boolean query and 6.6 for 4-term boolean query.
Also, we can see the obvious efficiency benefit of using boolean queries from Figure 19.

www.intechopen.com

Pattern Recognition, Recent Advances248

1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Precision of the First Page Results (10 results per page)

Num of Texture Words in the Boolean Query

A
ve

ra
ge

 P
re

ci
si

on
Texture Words Boolean Query
Texture Vector Similarity Query (48D)

Fig. 14. Texture Query Precision Comparison.

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

900
Num of Total Search Results for Boolean Query

Num of Texture Words in the Boolean Query

To
ta

l N
um

be
r o

f R
et

ur
ne

d
R

es
ul

ts

Fig. 15. Number of Results Returned (Texture).

7. Conclusions and Future Works

We have shown through our experiments that image content features follow the power-law
spare distribution. Then we take advantage of such sparseness for inverted file indexing. Our
clustering-merge algorithm gave us better cluster center representations over GLA clustering,
which generated cluster centers over-crowdedness in high density area for sparse data. Our
experimental results shows our tile-based image textualization process for image texture and
shape features are effective. Such techniques can be used for scalable and efficient content-
based image retrieval and search systems.

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Retrieval Efficiency Comparison

Num of Texture Words in the Boolean Query

R
et

rie
va

l T
im

e
(S

ec
on

ds
)

Texture Words Boolean Query
Texture Vectors Similarity Query (48D)

1 2 3 4 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Precision of the First Page Results (10 results per page)

Num of Boundary−angle Words in the Boolean Query

A
ve

ra
ge

 P
re

ci
si

on

Boundary−angle Words Boolean Query
Shape Grid Vector Similarity Query

www.intechopen.com

Tile-based Image Visual Codewords Extraction for Eficient Indexing and Retrieval 249

1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Precision of the First Page Results (10 results per page)

Num of Texture Words in the Boolean Query

A
ve

ra
ge

 P
re

ci
si

on

Texture Words Boolean Query
Texture Vector Similarity Query (48D)

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

900
Num of Total Search Results for Boolean Query

Num of Texture Words in the Boolean Query

To
ta

l N
um

be
r o

f R
et

ur
ne

d
R

es
ul

ts

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Retrieval Efficiency Comparison

Num of Texture Words in the Boolean Query

R
et

rie
va

l T
im

e
(S

ec
on

ds
)

Texture Words Boolean Query
Texture Vectors Similarity Query (48D)

Fig. 16. Texture Retrieval Efficiency Comparison.

1 2 3 4 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Precision of the First Page Results (10 results per page)

Num of Boundary−angle Words in the Boolean Query

A
ve

ra
ge

 P
re

ci
si

on

Boundary−angle Words Boolean Query
Shape Grid Vector Similarity Query

Fig. 17. Shape Query Precision Comparison.

www.intechopen.com

Pattern Recognition, Recent Advances250

1 2 3 4 5
0

50

100

150

200

250
Num of Total Search Results for Boolean Query

Num of Boundary−angle Words in the Boolean Query

To
ta

l N
um

be
r o

f R
et

ur
ne

d
R

es
ul

ts

Fig. 18. Number of Results Returned (Shape).

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1
Retrieval Efficiency Comparison

Num of Boundary−angle Words in the Boolean Query

R
et

rie
va

l T
im

e
(S

ec
on

ds
)

Boundary−angle Words Boolean Query
Shape Grid Vector Simiarity Query

Fig. 19. Shape Retrieval Efficiency Comparison.

www.intechopen.com

Tile-based Image Visual Codewords Extraction for Eficient Indexing and Retrieval 251

1 2 3 4 5
0

50

100

150

200

250
Num of Total Search Results for Boolean Query

Num of Boundary−angle Words in the Boolean Query

To
ta

l N
um

be
r o

f R
et

ur
ne

d
R

es
ul

ts

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1
Retrieval Efficiency Comparison

Num of Boundary−angle Words in the Boolean Query

R
et

rie
va

l T
im

e
(S

ec
on

ds
)

Boundary−angle Words Boolean Query
Shape Grid Vector Simiarity Query

8. References

Beckmann, N., Kriegel, H. P., Schneider, R. & Seeger:, B. (1990). The r*-tree: An efficient and
robust access method for points and rectangles, SIGMOD Conference, pp. 322–331.

Carson, C., Thomas, M., Belongie, S., Hellerstein, J. & Malik, J. (1999). Blobworld: A system
for region-based image indexing and retrieval, Proc. Third International Conf. Visual
Information Systems, pp. 509–516.

Felzenszwalb, P. F. & Huttenlocher, D. P. (2004). Efficient graph-based image segmentation,
Int. J. Comput. Vision 59(2): 167–181.

Flickner, M., Sawhney, H., Niblack, W., Ashley, J. & et al (1995). Query by image and video
content: the qbic system, IEEE computer 28(9): 23–32.

Gersho, A. & Gray, R. M. (1992). Kluwer Academic Publishers.
Guttman, A. (1984). R-trees: A dynamic index structure for spatial searching, ACM SIGMOD

International Conference on Management of Data, pp. 47–57.
Iqbal, Q. & Aggarwal, J. (2002). Retrieval by classification of images containing large man-

made objects using perceptual grouping, Pattern Recognition 35: 1463–1479.
Jacobs, C. E., Finkelstein, A. & Salesin, D. H. (1995). Fast multiresolution image querying,

Computer Graphics 29(Annual Conference Series): 277–286.
Jegou, H., Harzallah, H. & Schmid, C. (2007). A contextual dissimilarity measure for accurate

and efficient image search, IEEE Conference on Computer Vision & Pattern Recognition.
Jing, F., Li, M., Zhang, H. & Zhang, B. (2004). An efficient and effective region-based image

retrieval framework, IEEE TRANSACTIONS ON IMAGE PROCESSING 13(5).
Jurie, F. & Triggs, B. (2005). Creating efficient codebooks for visual recognition, ICCV ’05: Pro-

ceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume
1, IEEE Computer Society, Washington, DC, USA, pp. 604–610.

Lu, G. & Sajjanhar, A. (1999). Region-based shape representation and similarity measure suit-
able for content-based image retrieval, Multimedia Syst. 7(2): 165–174.

Lu, H., Ooi, B. C., Shen, H. T. & Xue, X. (2006). Hierarchical indexing structure for efficient
similarity search in video retrieval, IEEE TRANSACTIONS ON KNOWLEDGE AND
DATA ENGINEERING, 18(11): 1544–1559.

Ma, W.-Y. & Manjunath, B. S. (1998). A texture thesaurus for browsing large aerial pho-
tographs, Journal of the American Society for Information Science 49(7): 633–48.

Malik, J., Belongie, S., Shi, J. & Leung, T. K. (1999). Textons, contours and regions: Cue inte-
gration in image segmentation, ICCV (2), pp. 918–925.

Mojsilovic, A., Kovacevic, J., Hu, J., Safranek, R. J. & Ganapathy, K. (2000). Matching and
retrieval based on the vocabulary and grammar of color patterns, IEEE Trans. on Image
Processing 9(1): 38–54.

Natsev, A., Rastogi, R. & Shim, K. (2004). Walrus: A similarity retrieval algorithm for image
databases, IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
16(3): 301–316.

Prasad, B. G., Biswas, K. K. & Gupta, S. K. (2004). Region-based image retrieval using inte-
grated color, shape, and location index, Comput. Vis. Image Underst. 94(1-3): 193–233.

Rahman, M. M., Desai, B. C. & Bhattacharya, P. (2006). Visual keyword-based image retrieval
using latent semantic indexing, correlation-enhanced similarity matching and query
expansion in inverted index, 10th International Database Engineering and Applications
Symposium (IDEAS’06), pp. 201–208.

Safar, M., Shahabi, C. & Sun, X. (2000). Image retrieval by shape: A comparative study, IEEE
International Conference on Multimedia and Expo (I), pp. 141–144.

www.intechopen.com

Pattern Recognition, Recent Advances252

Shi, J. & Malik, J. (2000). Normalized cuts and image segmentation, IEEE Transactions on
Pattern Analysis and Machine Intelligence 22(8): 888–905.

Sivic, J. & Zisserman, A. (2003). Video Google: A text retrieval approach to object matching in
videos, Proceedings of the International Conference on Computer Vision, Vol. 2, pp. 1470–
1477.

Squire, D., Muller, W., Muller, H. & Raki, J. (1999). Content-based query of image databases,
inspirations from text retrieval: inverted files, frequency-based weights and rele-
vance feedback.

Wang, J. Z., Li, J. & Wiederhold, G. (2001). SIMPLIcity: Semantics-sensitive integrated match-
ing for picture LIbraries, IEEE Transactions on Pattern Analysis and Machine Intelligence
23(9): 947–963.

Wang, J. Z., Wiederhold, G., Firschein, O. & Wei, S. X. (1997). Content-based image indexing
and searching using daubechies’ wavelets, International Journal on Digital Libraries
1: 311–328.

Weber, R., Schek, H.-J. & Blott, S. (1998). A quantitative analysis and performance study for
similarity-search methods in high-dimensional spaces, Proc. 24th Int. Conf. Very Large
Data Bases, VLDB, pp. 194–205.

Westerveld, T. (2000). Image retrieval: Content versus context, Content-Based Multimedia Infor-
mation Access, RIAO, p. 276ĺC284.

Witten, I. H., Moffat, A. & Bell, T. C. (1999). Managing gigabytes (2nd ed.): compressing and
indexing documents and images, Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA.

Zhang, Z., Rojas, C., Nasraoui, O. & Frigui, H. (2006). Show and tell: A seamlessly integrated
tool for searching with image content and text, In Proceedings of the ACM-SIGIR Open
Source Information Retrieval workshop.

Zobel, J., Moffat, A. & Ramamohanarao, K. (1998). Inverted files versus signature files for text
indexing, ACM Transactions on Database Systems 23(4): 453–490.

www.intechopen.com

Pattern Recognition Recent Advances

Edited by Adam Herout

ISBN 978-953-7619-90-9

Hard cover, 524 pages

Publisher InTech

Published online 01, February, 2010

Published in print edition February, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Nos aute magna at aute doloreetum erostrud eugiam zzriuscipsum dolorper iliquate velit ad magna feugiamet,

quat lore dolore modolor ipsum vullutat lorper sim inci blan vent utet, vero er sequatum delit lortion sequip

eliquatet ilit aliquip eui blam, vel estrud modolor irit nostinc iliquiscinit er sum vero odip eros numsandre

dolessisisim dolorem volupta tionsequam, sequamet, sequis nonulla conulla feugiam euis ad tat. Igna feugiam

et ametuercil enim dolore commy numsandiam, sed te con hendit iuscidunt wis nonse volenis molorer suscip

er illan essit ea feugue do dunt utetum vercili quamcon ver sequat utem zzriure modiat. Pisl esenis non ex

euipsusci tis amet utpate deliquat utat lan hendio consequis nonsequi euisi blaor sim venis nonsequis enit, qui

tatem vel dolumsandre enim zzriurercing

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Zhiyong Zhang and Olfa Nasraoui (2010). Tile-based Image Visual Codewords Extraction for Efficient Indexing

and Retrieval, Pattern Recognition Recent Advances, Adam Herout (Ed.), ISBN: 978-953-7619-90-9, InTech,

Available from: http://www.intechopen.com/books/pattern-recognition-recent-advances/tile-based-image-

visual-codewords-extraction-for-efficient-indexing-and-retrieval

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

