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1. Introduction      

In this chapter we will apply the classic theory of Harmonic Analysis and the Conformal 
Geometric Algebra to evaluate the Radon transform on the unit sphere 2S  and on the 
rotation group  3SO  to recover the 3D camera rotation. Since the images taken by 
omnidirectional sensors can be mapped to the sphere, the problem of attitude estimation of 
a 3D camera rotation can be treated as a problem of estimating rotations between spherical 
images. 
 

 
Fig. 1. A 3D line L as a circle C in the image plane. 
 
 From [Geyer & Daniilidis, 2000], we know that the parabolic, hyperbolic and elliptic mirrors 
are equivalent to the equivalent sphere, that is, a 3D-point P is projected to the sphere in a 
point   which is the intersection of the sphere and the line from the origin to P. Then, if the 
mirror is parabolic,   is stereographically projected from the north pole to the image plane 

0z . See Figure 1. This is the reason to study harmonic analysis on 2S  and  3SO . In 
recent years harmonic analysis has been used in computer vision to obtain 3D rotations with 
the Radon and Hough transforms. In [Geyer et al., 2004] harmonic analysis is used to obtain 
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the essential matrix of two omnidirectional images. In [Makadia et al., 2005] and [Makadia & 
Daniilidis, 2003] the Euler angles are obtained with the Radon transform as a correlation of 
points on 2S  and  3SO . In [Falcon-Morales & Bayro-Corrochano, 2007] the Radon 
transform is defined as a correspondence of lines to obtain a 3D rotation. In reference to the 
notation and theory about spherical harmonics we are following [Arfken & Weber, 1966] 
and [Chirikjian & Kyatkin, 2001]. The objective is to combine the almost forgotten 
mathematical framework conformal geometric algebra with the classical analysis theory, to 
obtain a different approximation, focus on geometric entities, to a well know 
omnidirectional vision problem.  

 
2. Geometric Algebra 

The algebras of Clifford and Grassmann are well known to pure mathematicians, but since 
the beginning were abandoned by physicists in favor of the vector algebra of Gibbs, the 
commonly algebra used today in most areas of physics. The approach to Clifford algebra 
that  we adopt here has been developed since the 1960’s by David Hestenes. See [Hestenes & 
Sobczyk, 1984] and [Li et al., 2001]. 

 
2.1 Basic definitions 
Let nV  be a vector space of dimension n . We are going to define and generate an algebra 

nG , called geometric algebra. Let  neee ,,, 21   be a set of basis vectors of nV . The scalar 
multiplication and sum in nG  are defined in the usual way of a vector space. The product or 
geometric product of elements of the basis of nG  will be simply denoted by juxtaposition. In 
this way, from any two basis vectors je  and ke , a new element of the algebra is obtained 

and denoted as jkkj eee  . The product of basis vectors is anticommutative, that is,  

 
jkkj eeee  , kj  . (1) 

 
The basis vectors must square in +1,−1 or 0, this means that there are no-negative integers p , 
q  and r  such that rqpn   and 
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This product will be called the geometric product of nG . With these operations nG  is an 
associative linear algebra with identity and it is called the geometric algebra or Clifford algebra 
of dimension rqpn  , generated by the vector space nV . It is usual to write r,q,pG  

instead of nG .  The elements of this geometric algebra are called multivectors, because they 
are entities generated by the sum of elements of mixed grade of the basis set of nG , such as 

 

nAAAA  10  (3) 

 
where the multivector nGA  is expressed by the addition of its 0-vector part (or scalar 

part) 0A , its 1-vector part (or vector part) 1A , its 2-vector part (or bivector part) 2A , 

its 3-vector part (or trivector part) 3A , and in general its n-vector part nA . A multivector 

nGA  is called homogeneous of grade r  if rAA  .  
It will be convenient to define other products between the elements of this algebra which 
will allow us to set up several geometric relations (unions, intersections, projections, etc.) 
between different geometric entities (points, lines, planes, spheres, etc.) in a very simple 
way. 
Firstly, we define the inner product ba  ,  and the exterior or wedge product ba , of any two 
1-vectors a  and b , as the symmetric and antisymmetric parts of the geometric product ab , 
respectively. That is, using the expression 
 

   baabbaabab 
2
1

2
1  

(4) 

 
we can define the inner product 
 

 baabba 
2
1  

(5) 

 
and the outer or wedge product 
 

 baabba 
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(6) 

 
Now, from (4), (5) and (6) we can express the geometric product of two vectors as 
 

babaab  . (7) 
   
From (5) and (6), abba  , and abba  . 
Now we can define the inner and outer products for more general elements. For any two 
homogeneous multivectors rA  and sB  of grades r and s, we define the inner product  
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By definition, for a scalar   and a homogeneous multivector A , 0A  and AA   .   

The dual, *A , of the multivector A  is defined as 1 n
* AIA  where nn eI 12  is the unit 

pseudoscalar of nG .  And the inverse of a multivector A , if it exists, is defined by the 

equation 11  AA .  
We say that an homogeneous vector rA  is an r -blade or a blade of grade r  if 

rr aaaA  21 , for 1-vectors 1a , 2a ,…, ra  and 0rA . 
From (8) it can be said that the inner product sr BA   lowers the grade of rA  by s units when 

0 sr , and from equation (9) that the outer product sr BA   raises the grade of rA  by s 
units for every 0s,r . 
The manipulation of multivectors is easier with the use of the next recursively equality of 
two blades rr aaaA  21 , and ss bbbB  21 ,  
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2.2 Conformal Geometric Algebra 
The geometric algebra of a 3D Euclidean space 003 ,,G  has a point basis and the motor 

algebra 103 ,,G  a line basis. In the latter the lines expressed in terms  of Plücker coordinates 
can be used to represent points and planes as well, [Bayro-Corrochano et al., 2000]. In the 
conformal geometric algebra the unit element is the sphere, which will allow us to represent 
other entities. We begin giving an introduction in conformal geometric algebra following the 
same formulation presented in [Li et al., 2001] and [Bayro-Corrochano, 2001] and showing 
how the Euclidean vector space nR  is represented in 11,nR  . 
Let 11,nR   be the vector space with an orthonormal vector basis given by  ,e,e,e,,e n 1  
with the property (1) expressed as:  
 

12 ie , 12 e , 12 e ,  (13) 

0  eeeeee ii  (14) 
 

 

for n,,i 1 . Now, we define the null basis  e,e0  as 
 

   eee
2
1

0 , 
(15) 

  eee  (16) 
 
where from (4) and (5) we have the properties 
 

022
0  ee , 10  ee . (17) 

 
A unit pseudoscalar 11,RE , representing the Minkowski plane, is defined by  
 

0eeE   , (18) 
 
and from (10), (11), (12), (17) and (18) we have that 
 

            0000000
2 eeeeeeeeeeeeeeeE   , (19) 

     101 000   eeeee , (20) 
 
that is , for the Minkowski plane E , 12 E .  
 

 
Fig. 2. The one dimensional null cone. 
 
One of the results of the non-Euclidean geometry demonstrated by Nikolai Lobachevsky in 
the XIX century is that in spaces with hyperbolic structure we can find subsets which are 
isomorphic to a Euclidean space. In order to do this, Lobachevsky introduced two 
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constraints to the now so-called conformal point 11,n
c Rx  . See Figure 2. The first constraint 

is the homogeneous representation of the conformal point cx , which is obtained by the 
normalization  
 

1 exc , (21) 
 
and the second constraint is to made the conformal point a null vector, that is, 
 

02 cx . (22) 

 
Thus, conformal points are required to lie in the intersection space, denoted n

eN , between 

the null cone 1nN  and the hyperplane  0e,eP  , that is 
 

   10211
0

1  



 ex,x|Rxe,ePNN cc

,n
c

nn
e . (23) 

 
The constraints (21) and (22) define an isomorphic mapping between the Euclidean and the 
conformal space. Thus, for each conformal point 11,n

c Rx   there is a unique Euclidean 

point n
e Rx   and unique scalars  ,   such that the mapping 0eexxx ece     

is bijective. From (21) and (22) we can now obtain the values of the scalars, 2
2
1

ex  and 

1 . Then, the standard form of a conformal point cx  is 
 

0
2

2
1 eexxx eec   . 

(24) 

 
3. Orthogonal Expansion in Spherical Coordinates 

We use the spherical coordinates as a parameterization of 2S . Let   be the meridian angle 
measure from the north pole which is called colatitude or polar angle. Let   the angle 
measure on the equator in a counter-clockwise direction, and where 0  correspond to the 
x-axis.   is called azimuth or longitude. By definition   ,0  and    2,0 . See 

Figure 3. Thus, any point   2, Suu    has a unique representation on the unit sphere as 

  cos,sinsin,sincosu . The unit sphere in the Euclidean space 3R  is a two 

dimensional surface denoted as 2S  defined by the constraint 12
3

2
2

2
1  xxx . If f  is a real-

valued function on 2S , its integral is performed as    

    







ddfdsf

S
sin,

2

0 02    
 . 

(25) 

 

 

Since sine function is defined only for  , the volume element in (25) can be viewed as the 

product of the volume elements  ,0   and 2S , with the weighting factor  sin .  
 

 
Fig. 3. Parametrization of 2S  with band-limit bw .  
 
This allows us to use the Sturm-Liouville theory to generate orthogonal functions in these 
two domains separately. From classical theory an orthogonal basis for  12 SL  is the set 

  m
ime   where 1S  is the unit circle and 2L  the Hilbert space of square integrable 

functions. Likewise, an orthogonal basis for   dxL ,1,12   is given by the Legendre 
polynomials  xPl . Using the change of variable  cosx , the functions  
 

 lPl
2

12   
(26) 

 
are an orthogonal basis of the space      dL sin,,02 , and the set of functions 
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l ePl

4
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(27) 

 
where ,2,1,0l , and m , form a complete orthonormal set of functions on the sphere 

2S . It is much more common to choose the associated Legendre functions   m
lP , where 

each integer m  satisfy lm  . Thus, the elements of the orthogonal basis that we need to 
expand functions on the sphere are of the form  
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and they are called spherical harmonics. Then, given any function  22 SLf  , its spherical 
Fourier series is given as 
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,,ˆ,
l

l

lm

m
lYmlff  , 

(29) 

 
where 
 

  dsYfmlf
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m
l 2

,ˆ . (30) 

 
Each coefficient  mlf ,ˆ  will be called the spherical Fourier transform of   ,f , and the set 

  mlf ,ˆ  is called the spectrum on the sphere of   ,f . The spherical harmonics   ,m
lY   are 

the usual common functions used to expand functions on the sphere because they are 
eigenfunctions of the Laplacian operator. Indeed, for a constant radius r = 1 the Laplacian of 
a smooth function f  in spherical coordinates is given as 
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(31) 

 
In analogy with the Sturm-Liouville theory, an eigenfunction of the Laplacian operator is 
defined as 
 

  ff 2  (32) 

 
for some eigenvalues  . Moreover, in spherical coordinates the boundary conditions are 
periodic in the variable  , that is,     ,2, ff  , and a solution set of eigenfunctions 
of the Laplacian (32) is the set of spherical harmonics (28) with eigenvalue  1 ll .  

 
4. Representation Theory on SO(3)  

From a classical result of linear algebra a matrix R  is a rotation matrix or a special orthogonal 
matrix if and only if IRRT  , where I  is the identity matrix, and the determinant satisfies 

  1det R . Let )3(SO  be the special orthogonal group or rotation group for three dimensional 
space.  
In the same way that with the square integrable functions on the unit circle or on the line, 
we can say that a function is square integrable on the space  )3(2 SOL  if  
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  )3(2 SOL  is a vector space with the usual addition and scalar multiplication, that is, 
      RgRfRgf   and     RfRf   .  
 
We can now define the convolution of two functions f  and  )3(2 SOLg  as 
 

        RdRQgQfRgf
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)3(

1* . (34) 

 
See [Chirikjian & Kyatkin, 2001]. On the contrary to the classical case, the convolution on 

 )3(2 SOL  is not a 
commutative product.  
With the Euler parameterization ZYZ  now we can state one of the most important 
properties of the spherical harmonics 
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where 2S , )3(SOR  and the    1212  ll  unitary matrices lU  are the irreducible 
representation of )3(SO , where their components are given as 
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and l

mnP  are the generalized associated Legendre functions .  In fact, the unitary matrices 
lU  are the representation group of )3(SO  and they constitute a basis which can be used to 

obtain a Fourier transform on the rotation group, that is 
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where the Fourier coefficients of f  on the rotation group )3(SO  are 
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Now, from (35) we can obtain a shift theorem, relating the coefficients of the rotation 
functions 
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where 2S , )3(SOR  and the    1212  ll  unitary matrices lU  are the irreducible 
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This shift theorem is telling us that the effect caused by a rotation R  on a spherical function 
f , is equivalent in the Fourier space to the effect of the Fourier coefficients l

kf̂  by the 

unitary matrices l
mkU  of the irreducible representation of )3(SO . More explicitly, while the 

spherical functions are rotated by orthogonal matrices, the Fourier coefficients of longitude 
 12 l  are affected by the unitary matrices lU . 
 
As expected, this theory can be extended to the direct product group )3()3( SOSO   acting on 

the homogenous space 22 SS  . Thus, the expansion of functions on 22 SS   is given as 
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Also, a shift theorem exists for functions on 22 SS   given as 
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These expressions have been used in [Makadia et al., 2005] and [Makadia & Daniilidis, 2003] 
to obtain the Euler angles of a 3D rotation, using the point correlation of two given images 
without correspondences. 

 
5. Radon Transform with Lines  
 

In this section we will extend the way of obtain the Euler angles of a 3D rotation as 
presented in [Makadia et al., 2005]. As these authors used correlation between points of two 
images, we will use lines instead of points. Note that lines are less noise sensitive. From 
[Makadia et al., 2005] the Radon transform on points is defined as 
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where the similarity function g  is based on the SIFT points. See [Lowe, 2004] for details of 
the SIFT algorithm. For sake of simplicity from now on we will call sift points to the sift 
descriptors returned by the SIFT algorithm. The   function is the Kronecker delta function 
relating the points of two images with the epipolar constraint of a stereo camera system. 
Now, to extend the Radon transform to a correlation of lines to estimate pure rotations, we 

 

need to define analogue similarity and delta functions for lines, instead of points, as well as a 
constraint for lines instead of the epipolar constraint for points.  
Let )3(SOR  be a 3D rotation relating two 3D lines, l  and l   which were projected to two 

omnidirectional images Im1 and Im2. Then we can write lRl   or lRl T  . The three 

dimensional line l  is associated to a great circle C  on the sphere 2S . Let 2S  be an 

orthogonal vector to the plane containing the great circle C , then   and lRT   are 

orthogonal, that is, 0lRTT  . We will use this constraint as the delta function to define 
our desired integral, that is, as the constraint for lines. Thus, the integral of the Radon 
transform on lines would be  
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where g  is a similarity function between the lines of both images and   the delta Kronecker 
function over the constraint with lines. So, (44) can be used as a correlation function between 
g  and  , where g ,  1,0: 22  SS . 

Although we know how to calculate the analytical expressions of the continuous Fourier 
and Radon transforms in spherical coordinates, it is necessary a discretization process for 
their applications with real omnidirectional images. Thus, given a function on the space 

 22 SL  with band-limit bw , its spherical Fourier transform SFT can be obtained with the 

FFT algorithm of order     bwbwO 22 log  on 2S , see [Driscoll & Healy, 1994] for details. 

Similarly, we can use the FFT algorithm of order     bwbwO 23 log  in the case of the rotation 
space SO(3), see [Kostelec & Rockmore, 2003] for details. 
Then, applying the spherical Fourier expansion (40) to the similarity function g  of (44), we 
have that  
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where we used  21,g  instead of  lg ,  to simplify notation. Likewise, we get 

 21 ,  R , the expansion of the   function for each   22
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Now, because   1221210  TTTTT RRR  , we can write  21 ,ˆ 21
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1 11 2 22 1 11 2 22

321
l lm l lm p pk p pk

DDDRG , (52) 

 
where 
 

 




2

21

1

2

2

21

21
ˆˆ1

pb

pp
bk

p
bk

ll
mm RUgD , (53) 

 

    1112 2
1

1

1

1

1



dYYD

S

k
p

m
l 

  (54) 

 
and 

 

    2223 2
2

2

2

2

2



dYYD

S

k
p

m
l 

 . (55) 

 
 Now, applying the orthonormal property  
 

    mmll
S

m
l

m
l dYY 




  

 2
, (56) 

 
to (54) and (55), the expression (48) for the Radon transform  RG  is reduced now to  
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We know that in  3SO  the unitary elements U ’s are an orthonormal set too, that is, 
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From (60) we can have now the 3D Fourier transform Ĝ  of G  on  3SO . Indeed, rewriting 
indices without primes in (60), the Fourier transform Ĝ  of G  on the rotation group  3SO  
is given as  
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The expressions (61) and (62) obtained for lines and a pure rotation is consistent with the 
formula for points obtained in [Makadia et al., 2005].  

 
6. Radon Transform with Lines using Conformal Geometric Algebra 

The conformal geometric algebra is a mathematical framework that helps to unify matrices, 
vectors, transformations, complex numbers in one unique theory using the geometric 
product, with its inner and wedge products, to generate the former mathematical concepts.  
Let  3SOR  be a rotation relating two 3D lines, 1L  and 2L , which were projected to two 
omnidirectional images Im1 and Im2 using the equivalent sphere as depicted in Figure 1 . In 

conformal geometric algebra the 3D rotation can be expressed as 
n
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 , where n̂  is unit 

bivector which represents the dual of the rotation axis, and the    angle, which represents 

the amount of the rotation. Then, these lines satisfy 1
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 RRLL , where the lines are 

expressed in conformal form too, that is, the dual form is   exxL jjj 21
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two points 1jx , *
2 jj Lx  . Using the origin 0e  of the conformal space, we can obtain the 

planes j  generated by the 3D line jL  and the origin 0e , that is, the dual planes are 
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where I  is the unit pseudoscalar of the five dimensional conformal space. Thus, we have a 
correspondence between 3D points obtained from 11x  and 112 Lx   and points 2  on the 

unit sphere 2S . Then the characteristic function   must obey the constraint for lines 
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for 0  depending of the band-limit used in the discretization process. Thus, the 
characteristic function (66) is measuring how close the two lines 1L  and 2L  are. 

 

Finally, following the work in [Makadia & Daniilidis, 2003] and [Makadia et al., 2005], we 
take the similarity function as  

  21
21 , llellg  , (67) 

 
where   is the Euclidean norm and 1l  and 2l  are the 128-dimensional sift vectors of the 
sift algorithm applied to each omnidirectional image. See Figure 4.  

 
Fig. 4. SIFT descriptors between two omnidirectional images related by a rotation.  
 
Notice that in the Radon transform with lines (44) the domain of the integral is now on the 
unit sphere but in conformal representation.  
Future implementations with real and simulated images will be used to verify and compare 
the efficiency of the theory with respect to the works in [Makadia et al., 2005] and [Falcon & 
Bayro-Corrochano, 2007]. 

 
7. Conclusions 

This chapter can give us an idea about how conformal geometric algebra can be used with 
traditional mathematical theory in order to expand the applications of this almost forgotten 
framework. The authors believe that this theoretical framework can be used to obtain 
different approximations to old and new computer vision problems. The author believe the 
use of harmonic analysis based on Radon transform using lines and conformal geometric 
algebra on incidence algebra is promising for omnidirectional image processing. 
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