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1. Introduction 
 

Face recognition has received significant attention in the past decades due to its potential 
applications in biometrics, information security, law enforcement, etc. Numerous methods 
have been suggested to address this problem [1]. Among appearance-based holistic 
approaches, principal component analysis (PCA) turns out to be very effective. As a classical 
unsupervised learning and data analysis technique, PCA was first used to represent images 
of human faces by Sirovich and Kirby in 1987 [2, 3]. Subsequently, Turk and Pentland [4, 5] 
applied PCA to face recognition and presented the well-known Eigenfaces method in 1991. 
Since then, PCA has been widely investigated and has become one of the most successful 
approaches to face recognition [6-15].  
PCA-based image representation and analysis technique is based on image vectors. That is, 
before applying PCA, the given 2D image matrices must be mapped into 1D image vectors 
by stacking their columns (or rows). The resulting image vectors generally lead to a high-
dimensional image vector space. In such a space, calculating the eigenvectors of the 
covariance matrix is a critical problem deserving consideration. When the number of 
training samples is smaller than the dimension of images, the singular value decomposition 
(SVD) technique is useful for reducing the computational complexity [1-4]. However, when 
the training sample size becomes large, the SVD technique is helpless. To deal with this 
problem, an incremental principal component analysis (IPCA) technique has been proposed 
recently [16]. But, the efficiency of this algorithm still depends on the distribution of data.  
Over the last few years, two PCA-related methods, independent component analysis (ICA) 
[17] and kernel principal component analysis (KPCA) [18, 19] have been of wide concern. 
Bartlett [20], Yuen [21], Liu [22], and Draper [23] proposed using ICA for face representation 
and found that it was better than PCA when cosine was used as the similarity measure 
(however, the performance difference between ICA and PCA was not significant if the 
Euclidean distance is used [23]). Yang [24] and Liu [25] used KPCA for face feature 
extraction and recognition and showed that KPCA outperforms the classical PCA. Like 
PCA, ICA and KPCA both follow the matrix-to-vector mapping strategy when they are used 
for image analysis and, their algorithms are more complex than PCA. So, ICA and KPCA are 
considered to be computationally more expensive than PCA. The experimental results in 
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[24] showed the ratio of the computation time required by ICA, KPCA and PCA is, on 
average, 8.7: 3.2: 1.0.  
Recently, a straightforward image projection technique, coined two-dimensional principal 
component analysis (2DPCA) [26, 27], was developed for image representation. Differing 
from standard PCA, 2DPCA is based on 2D matrices rather than 1D vectors. That is, 2DPCA 
does not need to transform an image matrix into a vector in advance. Instead, it can 
construct an image covariance matrix directly using the original image matrices. In contrast 
with the covariance matrix of PCA, the size of the image covariance matrix of 2DPCA is 
much smaller. Thereby, 2DPCA has two remarkable advantages over PCA. Firstly, it is 
much easier to evaluate the covariance matrix accurately with a given number of training 
images. Secondly, it is computationally more efficient to determine the eigenvectors.  
The disadvantage of 2DPCA, however, is also obvious [27]. 2DPCA-based image 
representation was not as economical as PCA in terms of storage requirements, since 
2DPCA needs more coefficients than PCA for image representation. Although a feasible 
alternative to deal with this is to use PCA after 2DPCA for further dimensional reduction, it 
is still unclear how the dimension of 2DPCA could be reduced directly. In this paper, we 
will address this issue.  
In image compression area, the classical 2D-KLT technique was ever adopted to implement 
KLT (KL transform) for computational efficiency, based on an assumed image model [28-
30]. Assuming that the image random field has a separable covariance function (or 
autocorrelation function) and, the horizontal and vertical statistics satisfy the first-order 
Markov model, PCA can be equivalently implemented by a separable transform, i.e. 2D-
KLT. Recently, Olmos et al. [31] borrowed the idea of classical 2D-KLT and suggested a 
method called ST-KLT to carry out spatial-temporal analysis on multi-channel signal. 
However, in Olmos’s method, the horizontal and vertical covariance matrices are not 
generated by the assumed first-order Markov covariance functions but evaluated by the 
training samples. This implies that the separability assumption was actually abandoned in 
ST-KLT. The abandonment of this assumption will give rise to a series of problems; for 
example, no theory can guarantee that ST-KLT is a good approximation to KLT.  
   Motivated by the classical 2D-KLT, we develop a new feature extraction method coined Bi-
2DPCA to overcome the weakness of 2DPCA. The initial idea of Bi-2DPCA is to perform 
2DPCA twice sequentially: the first one is in horizontal direction and the second is in 
vertical direction. After the second compression, the resulting features are significantly 
reduced but still as powerful as the original ones (i.e. 2DPCA features). Differing from the 
classical 2D-KLT, Bi-2DPCA does not depend on an assumed image model. Instead, it can 
work as independently as PCA. More importantly, Bi-2DPCA lays a solid theoretical 
foundation for a separable transform without any assumed image model. It provides a 
sequentially optimal image representation mechanism in the sense of minimal mean-square 
error. In comparison, ST-KLT lacks theoretical justifications and is shown to be sub-optimal 
with respect to representation error. So, Bi-2DPCA is a better approximation to KLT than 
ST-KLT in theory. 
The remainder of this paper is organized as follows. Section 2 outlines some relevant 
techniques, such as PCA (KLT), classical 2D-KLT, and ST-KLT. 2DPCA technique is outlined 
and its properties are presented in Section 3. Bi-2DPCA is proposed in Section 4 and Bi-
2DPCA based representation error is analyzed. In Section 5, the proposed Bi-2DPCA is 
systematically compared to other PCA (KLT) techniques. In Section 6, Bi-2DPCA is applied 

 

to face coding and recognition cases. The method is evaluated and compared to other 
methods using the AT&T and FERET face databases. Finally, conclusions are offered in 
Section 7.  

 
2. Relevant methods 
 

2.1 PCA (Holistic KLT) 
The KL transform (KLT) was originally introduced as a series expansion for continuous 
random process by Karhunen [32] and Loeve [33]. Hotelling [34] first studied a method of 
principal components to deal with random sequences, which is actually the discrete 
formulation of the KL series expansion. Thereby, the KL transform is also called principal 
component analysis (PCA). 
   Given a set of M training samples (image vectors) 1 2, , , Mx x x  in N, the covariance 

matrix of PCA can be evaluated by 

          tS = T

1

1 ( )( )
M

j j
jM 

  x x x x                                                     (1) 

where x  denotes the mean vector of all training samples. 
The orthonormal eigenvectors dwww ,,, 21   of tS  corresponding to d largest 
eigenvlaues are chosen as projection axes. If we calculate these eigenvectors directly, the 

computational complexity is ( 3N ). In real-world applications like face recognition where 
the training sample size is smaller than the dimension of image vector, there is a more 
computationally-efficient way to solve this eigen-problem by virtues of SVD technique [35]. 

Specifically, let  1 , , M  Q x x x x  and form an MM Gram matrix QQK T . 

We only need to solve K ’s eigenvectors, so the computational complexity is reduced to 

( 3M ). 
After the projection of sample x onto these eigenvectors, we get the PCA-transformed 
feature vector  

   )(T xxΨy  , where ),,,( 21 dwwwΨ  ,                                  (2) 
PCA has a number of desirable properties. For example, the PCA transform coefficients are 
uncorrelated and, PCA-based image representation has minimal mean-square 
approximation error (that is, PCA packs most of the energy into a small number of principal 
components so that the error due to truncation is smaller than with other transforms). These 
properties make it optimal in many signal-processing applications. 
It should be mentioned that PCA is a 1D vector based technique. That is, before we apply 
PCA to face image feature extraction, an initial step is to transform 2D image matrices into 
1D image vectors. Generally, an image ),,,( 21 n A  is converted into a column 

vector )(vec Ax   = TTT
2

T
1 ),,,( n   by stacking the columns ofA . 
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[24] showed the ratio of the computation time required by ICA, KPCA and PCA is, on 
average, 8.7: 3.2: 1.0.  
Recently, a straightforward image projection technique, coined two-dimensional principal 
component analysis (2DPCA) [26, 27], was developed for image representation. Differing 
from standard PCA, 2DPCA is based on 2D matrices rather than 1D vectors. That is, 2DPCA 
does not need to transform an image matrix into a vector in advance. Instead, it can 
construct an image covariance matrix directly using the original image matrices. In contrast 
with the covariance matrix of PCA, the size of the image covariance matrix of 2DPCA is 
much smaller. Thereby, 2DPCA has two remarkable advantages over PCA. Firstly, it is 
much easier to evaluate the covariance matrix accurately with a given number of training 
images. Secondly, it is computationally more efficient to determine the eigenvectors.  
The disadvantage of 2DPCA, however, is also obvious [27]. 2DPCA-based image 
representation was not as economical as PCA in terms of storage requirements, since 
2DPCA needs more coefficients than PCA for image representation. Although a feasible 
alternative to deal with this is to use PCA after 2DPCA for further dimensional reduction, it 
is still unclear how the dimension of 2DPCA could be reduced directly. In this paper, we 
will address this issue.  
In image compression area, the classical 2D-KLT technique was ever adopted to implement 
KLT (KL transform) for computational efficiency, based on an assumed image model [28-
30]. Assuming that the image random field has a separable covariance function (or 
autocorrelation function) and, the horizontal and vertical statistics satisfy the first-order 
Markov model, PCA can be equivalently implemented by a separable transform, i.e. 2D-
KLT. Recently, Olmos et al. [31] borrowed the idea of classical 2D-KLT and suggested a 
method called ST-KLT to carry out spatial-temporal analysis on multi-channel signal. 
However, in Olmos’s method, the horizontal and vertical covariance matrices are not 
generated by the assumed first-order Markov covariance functions but evaluated by the 
training samples. This implies that the separability assumption was actually abandoned in 
ST-KLT. The abandonment of this assumption will give rise to a series of problems; for 
example, no theory can guarantee that ST-KLT is a good approximation to KLT.  
   Motivated by the classical 2D-KLT, we develop a new feature extraction method coined Bi-
2DPCA to overcome the weakness of 2DPCA. The initial idea of Bi-2DPCA is to perform 
2DPCA twice sequentially: the first one is in horizontal direction and the second is in 
vertical direction. After the second compression, the resulting features are significantly 
reduced but still as powerful as the original ones (i.e. 2DPCA features). Differing from the 
classical 2D-KLT, Bi-2DPCA does not depend on an assumed image model. Instead, it can 
work as independently as PCA. More importantly, Bi-2DPCA lays a solid theoretical 
foundation for a separable transform without any assumed image model. It provides a 
sequentially optimal image representation mechanism in the sense of minimal mean-square 
error. In comparison, ST-KLT lacks theoretical justifications and is shown to be sub-optimal 
with respect to representation error. So, Bi-2DPCA is a better approximation to KLT than 
ST-KLT in theory. 
The remainder of this paper is organized as follows. Section 2 outlines some relevant 
techniques, such as PCA (KLT), classical 2D-KLT, and ST-KLT. 2DPCA technique is outlined 
and its properties are presented in Section 3. Bi-2DPCA is proposed in Section 4 and Bi-
2DPCA based representation error is analyzed. In Section 5, the proposed Bi-2DPCA is 
systematically compared to other PCA (KLT) techniques. In Section 6, Bi-2DPCA is applied 

 

to face coding and recognition cases. The method is evaluated and compared to other 
methods using the AT&T and FERET face databases. Finally, conclusions are offered in 
Section 7.  

 
2. Relevant methods 
 

2.1 PCA (Holistic KLT) 
The KL transform (KLT) was originally introduced as a series expansion for continuous 
random process by Karhunen [32] and Loeve [33]. Hotelling [34] first studied a method of 
principal components to deal with random sequences, which is actually the discrete 
formulation of the KL series expansion. Thereby, the KL transform is also called principal 
component analysis (PCA). 
   Given a set of M training samples (image vectors) 1 2, , , Mx x x  in N, the covariance 

matrix of PCA can be evaluated by 

          tS = T
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  x x x x                                                     (1) 

where x  denotes the mean vector of all training samples. 
The orthonormal eigenvectors dwww ,,, 21   of tS  corresponding to d largest 
eigenvlaues are chosen as projection axes. If we calculate these eigenvectors directly, the 

computational complexity is ( 3N ). In real-world applications like face recognition where 
the training sample size is smaller than the dimension of image vector, there is a more 
computationally-efficient way to solve this eigen-problem by virtues of SVD technique [35]. 

Specifically, let  1 , , M  Q x x x x  and form an MM Gram matrix QQK T . 

We only need to solve K ’s eigenvectors, so the computational complexity is reduced to 

( 3M ). 
After the projection of sample x onto these eigenvectors, we get the PCA-transformed 
feature vector  

   )(T xxΨy  , where ),,,( 21 dwwwΨ  ,                                  (2) 
PCA has a number of desirable properties. For example, the PCA transform coefficients are 
uncorrelated and, PCA-based image representation has minimal mean-square 
approximation error (that is, PCA packs most of the energy into a small number of principal 
components so that the error due to truncation is smaller than with other transforms). These 
properties make it optimal in many signal-processing applications. 
It should be mentioned that PCA is a 1D vector based technique. That is, before we apply 
PCA to face image feature extraction, an initial step is to transform 2D image matrices into 
1D image vectors. Generally, an image ),,,( 21 n A  is converted into a column 
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2.2 Classical 2D-KLT (Separable KLT) 
Different from face recognition, in image compression area, an ensemble of images rather 
than a category of images need to be processed using the same transform matrix. That is to 
say, KLT-based image compression must be functionally independent of the data [30]. Since 
it is not realistic to use the training samples to obtain a covariance matrix, an assumed image 
model is needed. An ensemble of images ),( jiA  can be characterized by a two-
dimensional random field (the mean is assumed to be zero without loss of generality), in 
which the total covariance function (or auto-correlation function) is assumed to be separable 
[29, 30], i.e.,  

                  )]',()',(E[ jjii AA  = )',()',()',';,( 21 jjriirjijir  .                         (3) 
This means that the covariance function of the random field can be expressed by the product 
of covariance functions of two one-dimensional sequences. Generally, the two one-
dimensional sequences are assumed to be first-order stationary Markov sequences, that is, 

                           iii ρρiir   1
|'|

11 )',(  and jjj ρρjjr   2
|'|

22 )',(                             (4) 

where 1ρ  and 2ρ  are horizontal (column) and vertical (row) correlations and 1|| 1 ρ , 

1|| 2 ρ . 
Thus, the horizontal and vertical covariance matrices are 

        1,,1,01 }{ 
 ni
i

h ρ R  and 1,,1,02 }{ 
 mj
j

v ρ R .                                 (5) 

Due to the separability assumption of the total covariance function, the total covariance 
matrix can be expressed by the Kronecker (outer) product of hR  and vR , i.e., 

                                                        = vh RR                                                                     (6) 
The Kronecker product has the following property: 
Lemma 1 [30] Suppose that A is nn  matrix and B is mm  matrix. If BAC  , 

kkk γ  C , iii xAx λ , and jjj μ yBy  , then, jik yx   and jik μγ λ , 

where ni 1 , mj 1 , mnk 1 . 

Suppose the eigenvector matrix of is denoted by Ψ , and the eigenvector matrices of hR  

and vR are denoted by hΦ  and vΦ . From Lemma 1, we have Ψ = hΦ  vΦ . 

The KL transform of )(vec Ax   is  

                                         xΨy T = xΦΦ )( T
v

T
h  ,                                                   (7) 

which is equivalent to the separable transform 

                                                   h
T
vAΦΦC  .                                                              (8) 

The advantages of modeling the total covariance function by separable covariance functions 
of first-order stationary Markov sequences are twofold. First, this model makes it possible to 
implement KLT-based image compression for an ensemble of images because the model 
itself is independent of the data. Second, the process of image compression becomes 
computationally more efficient by virtue of a separable transform. The size of the eigen-

 

problem is significantly reduced after the decomposition of total covariance function and the 
transformation calculations are largely decreased [30] as well.  
It should be emphasized that the assumptions of separable covariance function and the first-
order stationary Markov models are crucial since they lay the foundations for the classical 
2D-KLT. Without the assumptions, it makes no sense to discuss the classical 2D-KLT. 
In addition to 2D-KLT, there are other traditional separable transforms such as two-
dimensional discrete cosine transform (2D-DCT), Walsh-Hadamard transform, Slant 
transform and two-dimensional discrete Fourier transform (2D-DFT). Among these 
transforms, 2D-DCT has the optimal energy packing property for high correlated data. This 
is because DCT is very close to the KLT of a first-order stationary Markov sequence when 
the correlation parameter ρ  is close to 1. This property of DCT combining with the fact that 
it is a fast transform make it a useful substitute for the KLT of high correlated first-order 
Markov sequences. 

 
2.3 ST-KLT 
Following the idea of the classical 2D-KLT, Olmos et al. [31] recently suggested a method 
called ST-KLT to carry out spatio-temporal analysis on multi-channel signals. Different from 
the classical 2D-KLT, in Olmos’s method, the horizontal and vertical covariance matrices are 
not generated by covariance functions like Eq. (5) but evaluated by the training samples, i.e., 

 hR  = )()(1 T

1
AAAA 


j

M

j
jM

,                                                (9) 

vR = T

1
))((1 AAAA 



M

j
jjM

,                                             (10) 

where M is the number of training image samples, jA  is an nm   matrix denoting the j-

th training samples, and A  is the mean image of all training samples. Thus, the image 
model (the assumption of images satisfying first-order Markov model with separable 
covariance function) is actually abandoned by ST-KLT. Without this model, the following 
relation  

 tS = vh RR                                                                    (11) 
does not hold in general. In such a case, the authors [31] thought that the separable 
transform in Eq. (8) could be understood as an approximation to KLT with lower energy 
packing performance. But, this claim gives rise to a series of problems: 
(i) Why can one say the separable transform in Eq. (8) is an approximation to KLT without 
the image model? What is the degree of the approximation? 
(ii) The separable transform in Eq. (8) can be decomposed into two transforms: hAΦB   

and BΦC T
v . What are their intuitive meanings without the separability assumption?  

(iii) Does there exist a separable transform that is a better approximation to KLT without 
considering the separability assumption? 
These problems are critical in theory but were not addressed in Olmos’s paper [31]. In 
addition, if one uses training samples to evaluate the horizontal and vertical covariance 
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it is not realistic to use the training samples to obtain a covariance matrix, an assumed image 
model is needed. An ensemble of images ),( jiA  can be characterized by a two-
dimensional random field (the mean is assumed to be zero without loss of generality), in 
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[29, 30], i.e.,  
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implement KLT-based image compression for an ensemble of images because the model 
itself is independent of the data. Second, the process of image compression becomes 
computationally more efficient by virtue of a separable transform. The size of the eigen-

 

problem is significantly reduced after the decomposition of total covariance function and the 
transformation calculations are largely decreased [30] as well.  
It should be emphasized that the assumptions of separable covariance function and the first-
order stationary Markov models are crucial since they lay the foundations for the classical 
2D-KLT. Without the assumptions, it makes no sense to discuss the classical 2D-KLT. 
In addition to 2D-KLT, there are other traditional separable transforms such as two-
dimensional discrete cosine transform (2D-DCT), Walsh-Hadamard transform, Slant 
transform and two-dimensional discrete Fourier transform (2D-DFT). Among these 
transforms, 2D-DCT has the optimal energy packing property for high correlated data. This 
is because DCT is very close to the KLT of a first-order stationary Markov sequence when 
the correlation parameter ρ  is close to 1. This property of DCT combining with the fact that 
it is a fast transform make it a useful substitute for the KLT of high correlated first-order 
Markov sequences. 

 
2.3 ST-KLT 
Following the idea of the classical 2D-KLT, Olmos et al. [31] recently suggested a method 
called ST-KLT to carry out spatio-temporal analysis on multi-channel signals. Different from 
the classical 2D-KLT, in Olmos’s method, the horizontal and vertical covariance matrices are 
not generated by covariance functions like Eq. (5) but evaluated by the training samples, i.e., 
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where M is the number of training image samples, jA  is an nm   matrix denoting the j-

th training samples, and A  is the mean image of all training samples. Thus, the image 
model (the assumption of images satisfying first-order Markov model with separable 
covariance function) is actually abandoned by ST-KLT. Without this model, the following 
relation  

 tS = vh RR                                                                    (11) 
does not hold in general. In such a case, the authors [31] thought that the separable 
transform in Eq. (8) could be understood as an approximation to KLT with lower energy 
packing performance. But, this claim gives rise to a series of problems: 
(i) Why can one say the separable transform in Eq. (8) is an approximation to KLT without 
the image model? What is the degree of the approximation? 
(ii) The separable transform in Eq. (8) can be decomposed into two transforms: hAΦB   

and BΦC T
v . What are their intuitive meanings without the separability assumption?  

(iii) Does there exist a separable transform that is a better approximation to KLT without 
considering the separability assumption? 
These problems are critical in theory but were not addressed in Olmos’s paper [31]. In 
addition, if one uses training samples to evaluate the horizontal and vertical covariance 
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matrices, the intuitive meanings of hR  and vR  are not as clear as that in the classical 2D-
KLT, since the assumption of the first-order stationary Markov statistics is abandoned. 
From the image representation (or coding) point of view, the methods outlined above can be 
divided into two categories: image-data dependent methods and image-data independent 
methods. The image-data dependent methods need training image samples to learn the 
transform matrix, while image-data independent methods need a model to generate the 
transform matrix, without the training or learning process. The image-data independent 
methods include Classical 2D-KLT, 2D-DCT, and other separable transform based image 
coding methods like Walsh-Hadamard transform, Slant transform and so on. The image-
data dependent methods include PCA, ST-KLT and 2DPCA [27]. In the following sections, we 
will outline 2DPCA and further derive a new image-data dependent coding method. 

 
3. 2DPCA and Its Properties 
 

3.1 Outline  
The idea of 2DPCA was motivated by Liu’s image side-projection technique [36]. Given 
image Α , an nm   random matrix, the aim of 2DPCA is to find a set orthogonal 
projection axes qXX ,,1  so that the projected vectors =k kY AX  ( qk ,,2,1  ) 

achieve a maximal total scatter [27]. The image covariance (scatter) matrix of 2DPCA is 
introduced as follows:  

   tG  = )]E()E[(E T AAAA  .                                                      (12) 

It is easy to show tG  is an nn   non-negative definite matrix. The matrix can be 
evaluated by 

       tG  = )()(1 T

1
AAAA 


j

M

j
jM

                                                   (13) 

where M is the number of training image samples, jA  is an nm   matrix denoting the j-

th training samples, and A  is the mean image of all training samples. 
The optimal projection axes qXX ,,1  are chosen as the orthonormal eigenvectors of tG  

corresponding to q largest eigenvalues [27]. After the projection of image samples onto these 
axes, i.e.,  

kk XAAY )(  , qk ,,2,1  ,                                                    (14) 

we obtain a family of principal component vectors, qYY ,,1 , which form an m q feature 

matrix ],,[ 1 qYYB  . Letting ],,[ 1 qXXU  , Eq. (14) can be alternatively expressed 

by  

                                       UAAB )(                                                                           (15) 

The feature matrix B are used to represent image A  for classification. The similarity measure 

between two feature matrices, ],,[ )()(
1

i
q

i
i YYB   and ],,[ )()(

1
j

q
j

j YYB  , is given 

 

by  

                    



q
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j
k

i
k

jidist
1

)()()()( ),( YYBB                                                              (16) 

where ||||   is the notation of norm, which determines what measure is used.  
It can be seen that 2DPCA is a 2D matrix based image analysis technique. That is, we do not 
need to transform an image matrix into a vector in advance. Instead, we can construct an 
image covariance matrix directly using the original image matrices, and then use its 
eigenvectors as projection axes to perform principal component analysis.   

 
3.2 Correlation Property 
First of all, let us give an intuitive explanation of the image covariance matrix tG . To this 
end, a generalized covariance definition should be given.  
For 1-dimensional random variables   and  , we know that their covariance is defined by 

)})({(E EηηEξξ  . Now, let us generalize this concept to the n-dimensional case. 
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This means that the covariance of two n-dimensional random vectors defined in Eq. (17) is 
essentially the sum of the covariances of the corresponding components.  
Accordingly, we can define the correlation coefficient between   and   as follows: 
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Now, let us analyze the image covariance matrix tG . Suppose image A is formed by a set 
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matrices, the intuitive meanings of hR  and vR  are not as clear as that in the classical 2D-
KLT, since the assumption of the first-order stationary Markov statistics is abandoned. 
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divided into two categories: image-data dependent methods and image-data independent 
methods. The image-data dependent methods need training image samples to learn the 
transform matrix, while image-data independent methods need a model to generate the 
transform matrix, without the training or learning process. The image-data independent 
methods include Classical 2D-KLT, 2D-DCT, and other separable transform based image 
coding methods like Walsh-Hadamard transform, Slant transform and so on. The image-
data dependent methods include PCA, ST-KLT and 2DPCA [27]. In the following sections, we 
will outline 2DPCA and further derive a new image-data dependent coding method. 

 
3. 2DPCA and Its Properties 
 

3.1 Outline  
The idea of 2DPCA was motivated by Liu’s image side-projection technique [36]. Given 
image Α , an nm   random matrix, the aim of 2DPCA is to find a set orthogonal 
projection axes qXX ,,1  so that the projected vectors =k kY AX  ( qk ,,2,1  ) 

achieve a maximal total scatter [27]. The image covariance (scatter) matrix of 2DPCA is 
introduced as follows:  

   tG  = )]E()E[(E T AAAA  .                                                      (12) 

It is easy to show tG  is an nn   non-negative definite matrix. The matrix can be 
evaluated by 

       tG  = )()(1 T

1
AAAA 


j

M

j
jM

                                                   (13) 
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This derivation shows that the element on the i-th line and the j-th column of tG  are 
essentially the covariance of column i and column j of image A. Now, the physical meaning 
of tG  is clear. It characterizes the correlation between column vectors (rather than the 

elements) of image matrices. From this viewpoint, tG  can be called image column (or 
horizontal) covariance matrix. 
Let us consider the correlation between the principal component vectors after 2DPCA 
transform. From Eq. (14), we have kk XAAY )E(  , ( qi ,,2,1  ). The covariance 

between two principal component vectors iY  and jY  is 
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It follows from Eq. (12) that  
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So, the correlation coefficient between two projected feature vectors iY  and jY  is 
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Since the projection vectors of 2DPCA are selected as qXX ,,1 , a set of orthonormal 

eigenvectors of tG , it is easy to draw the following conclusion: 

Proposition 1 The principal component vectors of 2DPCA, ii XAAY )E(   

( qi ,,2,1  ), satisfy ),( jiCov YY = 0, qjiji ,,1,,  , which means 

0),( jiρ YY , qjiji ,,1,,  .   

Proposition 1 indicates that the projected feature vectors resulting from 2DPCA are 
mutually uncorrelated. In other words, 2DPCA transform can eliminate the correlation 
between column vectors (rather than the elements) of image matrices. 

 
3.3 Minimal mean square error representation property 
Assume that A  is an nm   random image matrix. Without loss of generality, the 
expectation of image samples generated from A  is supposed to be zero, i.e. 0E A , in 
the following discussion since it is easy to centralize image A  by EA A  if 0E A . 

Suppose that in n , we are given an arbitrary set of vector system 1 2, , , nu u u  which 
satisfy 
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Projecting A  onto these orthonormal basis vectors 1 2, , , nu u u , we have  
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(23) 
Then, the image can be completely expanded by  
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If we use the first d components to representA , the reconstructed approximation is  
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And, the reconstruction mean-square error (MSE) can be characterized by    

       22 ||ˆ||E Fε AA                                                                   (26) 

where ||||   denotes the Frobenius norm of a matrix.  

Theorem 1 [38] Suppose 1 2, , , nu u u  are the eigenvectors of tG  corresponding to 

eigenvalues nλλλ  21 . If we use the first q eigenvectors as projection axes and the 

resulting component vectors q ,,, 21   to represent A , the reconstruction mean-

square error can be minimized in the sense of the matrix Frobenius norm, and 
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It should be noted that the minimal MSE property of 2DPCA (the result of Theorem 1) is 
with respect to the expansion form in Eq. (24) (or the transform form in Eq. (23)), which is 
different from that of PCA. Regarding this, we will give more detailed explanation in 
Section 5.1.  
Theorem 1 provides a theoretical justification for choosing of the principal eigenvectors of 

tG  to expand the images. This eigenvectors construct an optimal coordinate system for 
image expansion in n-dimensional space. Under this coordinate system, the expansion 
coefficients (a set of projected vectors) form the optimal representation of images in the 
sense of minimal mean-square error. 
We can also comprehend the physical meanings of 2DPCA based image transform from the 
image energy point of view. For a given image A, after a complete 2DPCA transform (all 
eigenvectors of tG  are used), we obtain its image B, which is the same size as A. By this 
transform, the average image energy is reassigned on image columns. The energy allocated 

to the first p columns is 


q

j
jλ

1
, while that allocated to the remaining columns is 



n

qj
jλ

1
. 
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mutually uncorrelated. In other words, 2DPCA transform can eliminate the correlation 
between column vectors (rather than the elements) of image matrices. 
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It should be noted that the minimal MSE property of 2DPCA (the result of Theorem 1) is 
with respect to the expansion form in Eq. (24) (or the transform form in Eq. (23)), which is 
different from that of PCA. Regarding this, we will give more detailed explanation in 
Section 5.1.  
Theorem 1 provides a theoretical justification for choosing of the principal eigenvectors of 

tG  to expand the images. This eigenvectors construct an optimal coordinate system for 
image expansion in n-dimensional space. Under this coordinate system, the expansion 
coefficients (a set of projected vectors) form the optimal representation of images in the 
sense of minimal mean-square error. 
We can also comprehend the physical meanings of 2DPCA based image transform from the 
image energy point of view. For a given image A, after a complete 2DPCA transform (all 
eigenvectors of tG  are used), we obtain its image B, which is the same size as A. By this 
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Since the eigenvalues nλλλ ,,, 21   are sorted in decreasing order, most of the image 
energy is packed into a small number of column vectors of B. In a word, 2DPCA realizes the 
optimal image energy compression in horizontal direction. 

 
4. Bi-2DPCA 
 

4.1 Idea  
2DPCA can eliminate the correlations between image columns and compress the image 
energy optimally in horizontal direction. But, it disregards the correlations between image 
rows and the data compression in vertical direction. So, its compression rate is far lower 
than PCA and more coefficients are needed for the representation of images. This must lead 
to a slow classification speed and large storage requirements for large-scaled databases [27, 
38].  
In this section, we will suggest a way to overcome the weakness of 2DPCA. Our idea is very 
simple, just to perform 2DPCA compression twice: the first one is in horizontal direction 
and the second is in vertical direction (Note that any operation in vertical direction can be 
equivalently implemented by an operation in horizontal direction by virtue of the transpose operation 
of matrix). Specifically, given image A, we obtain the feature matrix B after the first 2DPCA 

compression. Then, we transpose B and input TB  into 2DPCA, and determine the 

transform matrix V. Projecting TB  onto V, we obtain VBC TT  . The resulting feature 

matrix is BVC T . This process is illustrated in Figure 1. 
    In the whole process, the first 2DPCA transform AUB   performs the compression of 
2D-data in horizontal direction, making the image energy pack into a small number of 

columns. While the second 2DPCA transform BVC T  performs the compression of 2D-
data in vertical direction, eliminating the correlations between columns of image B and 
making its energy further compact into a small number of rows. Ultimately, the energy of 
the whole image is packed into the up-left corner of the image matrix. 
 

 
Fig. 1. Illustration of Bi-2DPCA 
     
 
 

 

4.2 Algorithm  
Now, let us present the detailed implementation of Bi-2DPCA. Based on the given training 
sample image A, we can construct the image covariance matrix tG  using Eq. (12). Suppose 

quuu ,,, 21   are the orthonormal eigenvectors of tG  corresponding to q largest 

eigenvalues qλ,,λ,λ 21  . Let ),,,( 21 quuuU  . Then, we get the 2DPCA feature 

matrix of A, i.e., 
                                            UAAB )E(                                                                      (27) 

Constructing the image covariance matrix tH  based on TB , we have 

                  tH = ])E)(E[(E TBBBB                                                         (28) 

From Eq. (27), we know BE  = 0. Thus tH = ][E TBB . This matrix can be evaluated by 

tH = j

M

j
jM
BB

1

T1
, where UAAB )(  jj ,                                        (29) 

Suppose pvvv ,,, 21   are the orthonormal eigenvectors of tH  corresponding to p largest 

eigenvalues pμμμ ,,, 21  . Let ),,,( 21 pvvvV  . We get the 2DPCA feature matrix 

of TB by 

                     VBBC )E( TTT  = VBT                                                          (30) 
Thus                                               

BVC T = UAAV )E( T                                                          (31) 
The resulting feature matrix C is a qp  matrix, which is much smaller than the 2DPCA 
feature matrix B and the original image A since p and q are always selected much smaller 
than m and n. We can use C to represent A for recognition purpose.  
   In summary of the discussion so far, the Bi-2DPCA algorithm is given below: 
 
Bi-2DPCA Algorithm 
Step 1. Construct the image column covariance matrix tG  using Eq. (13). Calculate tG ’s 

orthonormal eigenvectors quuu ,,, 21   corresponding to q largest eigenvalues. 

Step 2. Construct the image row covariance matrix tH  using Eq. (29). Calculate tH ’s 

orthonormal eigenvectors pvvv ,,, 21   corresponding to p largest eigenvalues. 

Step 3. Let ),,,( 21 quuuU   and ),,,( 21 pvvvV  . Use the transform C 

= UAAV )( T  to get the feature matrix of the given image sample A. 
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4.3 Bi-2DPCA based image reconstruction 
Bi-2DPCA allows the reconstruction of the original image pattern. Since tG ’s eigenvectors 

quuu ,,, 21   and tH ’s eigenvectors pvvv ,,, 21   are both orthonormal, from Eq. (31), 

it is easy to obtain the reconstructed image of A : 
TVCUAA  E~

,                                                                   (32) 
where ),,,( 21 quuuU  , ),,,( 21 pvvvV  . 

Denoting qpijc  )(C , Eq. (32) can be rewritten by   

                
 


p

i

q

j

T
jiijc

1 1

~ uvAA                                                                  (33) 

Let us denote T
jiij uv  ( pi ,,1 ; qj ,,1 ). Obviously, ij  is rank-1 matrix, 

which is of the same size as original image A and called the basis image. Any image A  can 
be approximately reconstructed by adding up the weighted basis images and the mean 
image.  

 
4.4 Reconstruction error evaluation  
Without loss of generality, the expectation of image samples generated from A  is also 
supposed to be zero, i.e. 0E A , in the following discussion. 
If we use the feature matrix C to representA , the reconstruction error of image A  can be 
expressed by  

AAΔ ~
  =  
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pi

n

qj

T
jiijc

1 1
uv                                                         (34) 

And, the total reconstruction mean-square error (MSE) can be characterized by    

                        222
t ||~||E||||E FFε AAΔ                                                            (35) 

Theorem 2 Suppose 1 2, , , nu u u  are the eigenvectors of tG  corresponding to 

nλλλ  21  and mvvv ,,, 21   are the eigenvectors of tH  corresponding to 

mμμμ  21 . Let ),,( 1 quuU   and ),,( 1 pvvV  . If we use the feature 

matrix C = UAAV )E( T  to represent A , the total mean square error is 
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The proof of Theorem 2 is given in Appendix A. 
Theorem 2 tells us the total MSE of Bi-2DPCA based image representation is the sum of 
MSEs corresponding to the two involved 2DPCA. It is easy to understand this result from 
the image energy loss point of view. After the first 2DPCA compression on A, we obtain B 

 

and know that the corresponding image energy loss is 


n

qj
jλ

1

 from Theorem 1. After the 

second 2DPCA compression on TB , we obtain C and know the image energy loss is 
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 also from Theorem 1. So, the total energy loss should be 
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5. Relationship to other PCA (KLT) Techniques 
  

5.1 Relationship to PCA and 2DPCA 
Let us begin our discussion from the viewpoint of mean-square error. Unquestionably, PCA 
(KLT) is optimal for 1D data representation (compression) in the sense of minimal mean-

square error. For 1D data x (vector), if the transform form xΨy T  is chosen, PCA-based 
transform is optimal. For 2D data A (matrix), we can transform the data into 1D vectors by 
stacking the columns ofA  and then use PCA to obtain a holistically optimal representation. 
For 2D data A, however, we can also choose another transform form AUB  . With 
respect to this transform form, 2DPCA turns out to be optimal; it realizes an optimal 
compression in horizontal direction. Bi-2DPCA provides a sequentially optimal 

compression mechanism with respect to the transform form C = AUVT . That is to say, if 
we choose such a transform form to compress the image data from horizontal to vertical, Bi-
2DPCA is optimal in the sense of minimal mean-square error.  
PCA, 2DPCA and Bi-2DPCA are all image-data dependent coding method. In contrast to PCA, 
a remarkable advantage of Bi-2DPCA is its low computation requirement. The 
computational advantage of Bi-2DPCA mainly embodies in the following three aspects:   
First, Bi-2DPCA needs less computation than PCA in the construction of covariance matrices. 
Suppose the image size is nm   and the training sample size is M. Denote N = nm   and 

},min{ NMl  . To form the covariance matrix (or the corresponding Gram matrix), PCA 

needs lNM   multiplications, while Bi-2DPCA needs 2nmM   multiplications to 

construct tG  and 2mqM   multiplications to construct tH . So, the total computation 

of Bi-2DPCA is )( 22 mqnmM  , which is less than )( nmNM   since q is 

much smaller than n. Generally, lnm  )(  in face recognition problems, so Bi-2DPCA 
needs less computation for constructing covariance matrices. 
Second, Bi-2DPCA has a lower computational complexity than PCA on solving the eigen-
problem. From the discussion in Section 2.1, we know that the computational complexity of 

PCA is ( 3l ). Since Bi-2DPCA only needs to calculate the eigenvectors of tG  and tH , its 

computational complexity is ( 33 nm  ). Since l  is much larger than m or n in real-world 
applications, PCA is computationally more intensive than Bi-2DPCA.  
Third, the transformation calculation of Bi-2DPCA in Eq. (31) is also smaller than that of 
PCA in Eq. (2). The transformation calculation of PCA is dnm  , while the calculation of 
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,                                                                   (32) 
where ),,,( 21 quuuU  , ),,,( 21 pvvvV  . 

Denoting qpijc  )(C , Eq. (32) can be rewritten by   
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i

q

j

T
jiijc

1 1

~ uvAA                                                                  (33) 

Let us denote T
jiij uv  ( pi ,,1 ; qj ,,1 ). Obviously, ij  is rank-1 matrix, 

which is of the same size as original image A and called the basis image. Any image A  can 
be approximately reconstructed by adding up the weighted basis images and the mean 
image.  

 
4.4 Reconstruction error evaluation  
Without loss of generality, the expectation of image samples generated from A  is also 
supposed to be zero, i.e. 0E A , in the following discussion. 
If we use the feature matrix C to representA , the reconstruction error of image A  can be 
expressed by  

AAΔ ~
  =  
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qj

T
jiijc

1 1
uv                                                         (34) 

And, the total reconstruction mean-square error (MSE) can be characterized by    

                        222
t ||~||E||||E FFε AAΔ                                                            (35) 

Theorem 2 Suppose 1 2, , , nu u u  are the eigenvectors of tG  corresponding to 

nλλλ  21  and mvvv ,,, 21   are the eigenvectors of tH  corresponding to 

mμμμ  21 . Let ),,( 1 quuU   and ),,( 1 pvvV  . If we use the feature 

matrix C = UAAV )E( T  to represent A , the total mean square error is 
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The proof of Theorem 2 is given in Appendix A. 
Theorem 2 tells us the total MSE of Bi-2DPCA based image representation is the sum of 
MSEs corresponding to the two involved 2DPCA. It is easy to understand this result from 
the image energy loss point of view. After the first 2DPCA compression on A, we obtain B 

 

and know that the corresponding image energy loss is 
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 from Theorem 1. After the 

second 2DPCA compression on TB , we obtain C and know the image energy loss is 
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 also from Theorem 1. So, the total energy loss should be 
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5. Relationship to other PCA (KLT) Techniques 
  

5.1 Relationship to PCA and 2DPCA 
Let us begin our discussion from the viewpoint of mean-square error. Unquestionably, PCA 
(KLT) is optimal for 1D data representation (compression) in the sense of minimal mean-

square error. For 1D data x (vector), if the transform form xΨy T  is chosen, PCA-based 
transform is optimal. For 2D data A (matrix), we can transform the data into 1D vectors by 
stacking the columns ofA  and then use PCA to obtain a holistically optimal representation. 
For 2D data A, however, we can also choose another transform form AUB  . With 
respect to this transform form, 2DPCA turns out to be optimal; it realizes an optimal 
compression in horizontal direction. Bi-2DPCA provides a sequentially optimal 

compression mechanism with respect to the transform form C = AUVT . That is to say, if 
we choose such a transform form to compress the image data from horizontal to vertical, Bi-
2DPCA is optimal in the sense of minimal mean-square error.  
PCA, 2DPCA and Bi-2DPCA are all image-data dependent coding method. In contrast to PCA, 
a remarkable advantage of Bi-2DPCA is its low computation requirement. The 
computational advantage of Bi-2DPCA mainly embodies in the following three aspects:   
First, Bi-2DPCA needs less computation than PCA in the construction of covariance matrices. 
Suppose the image size is nm   and the training sample size is M. Denote N = nm   and 

},min{ NMl  . To form the covariance matrix (or the corresponding Gram matrix), PCA 

needs lNM   multiplications, while Bi-2DPCA needs 2nmM   multiplications to 

construct tG  and 2mqM   multiplications to construct tH . So, the total computation 

of Bi-2DPCA is )( 22 mqnmM  , which is less than )( nmNM   since q is 

much smaller than n. Generally, lnm  )(  in face recognition problems, so Bi-2DPCA 
needs less computation for constructing covariance matrices. 
Second, Bi-2DPCA has a lower computational complexity than PCA on solving the eigen-
problem. From the discussion in Section 2.1, we know that the computational complexity of 

PCA is ( 3l ). Since Bi-2DPCA only needs to calculate the eigenvectors of tG  and tH , its 

computational complexity is ( 33 nm  ). Since l  is much larger than m or n in real-world 
applications, PCA is computationally more intensive than Bi-2DPCA.  
Third, the transformation calculation of Bi-2DPCA in Eq. (31) is also smaller than that of 
PCA in Eq. (2). The transformation calculation of PCA is dnm  , while the calculation of 
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Bi-2DPCA are qnm  + pqm  , which is smaller than )( qpnm  . Since 

pqd   (if the same amounts of features are required by both methods), PCA generally 
needs more calculation than Bi-2DPCA in image transformation. 
The foregoing discussions show PCA is computationally more intensive than Bi-2DPCA. 
Besides, another advantage of Bi-2DPCA is that it needs less memory requirement than PCA 
in face recognition systems. This is because PCA needs to save a much larger transform 
matrix for feature extaction. The transform matrix of PCA is sized of dN  = dnm  , 
which amounts to the size of d orginal images. While, the two transform matrices of Bi-
2DPCA are only sized of qnpm  , which is generally less than one orginal image in 
size.  
A comparison between PCA and Bi-2DPCA is summarized in Table 1. Here, it should be 
stressed that the computational advantages of Bi-2DPCA over PCA is independent of the 
algorithms that are adopted to calculate the eigenvectors. If an algorithm can speed up the 
eigenvector computation of PCA, it is certain to speed up the eigenvector computation of Bi-
2DPCA in the same way. 
 

Method                               Computation Requirements Memory 
Requirements Construction of 

covariance 
matrix 

Solving  
eigen-problem 

Image 
Transformation 

PCA More More More More 
Bi-2DPCA Less Less Less Less 

Table 1. A comparison between PCA and Bi-2DPCA in computation and memory 
requirements 
 
Compared to 2DPCA, the compression rate of Bi-2DPCA is significantly improved. That is, 
Bi-2DPCA needs much less coefficients than 2DPCA for image representation. The 
advantages of Bi-2DPCA over 2DPCA are twofold. First, the storage requirements can be 
significantly reduced. Second, the classification speed will be increased since less 
computation is needed in distance (similarity) calculation.  

 
5.2 Relationship to classical 2D-KLT 
Bi-2DPCA is an image-data dependent coding method while 2D-KLT is image-data independent. 
The underlying difference between these two methods is that the classical 2D-KLT is based 
on an assumed image model while Bi-2DPCA not. The implementation of the classical 2D-
KLT depends on the assumption that an ensemble of images satisfies the first-order Markov 
model with separable autocorrelation function. Without this assumption, the method cannot 
exist independently because its covariance matrices are constructed by the separable 
autocorrelation function rather than training samples. In contrast, Bi-2DPCA can work 
independently without any assumed image model. Like PCA, it relies on training samples to 
evaluate its covariance matrices. 
Actually, the classical 2D-KLT and Bi-2DPCA have different utilities. The classical 2D-KLT 
is suitable for an ensemble of images and generally applied to image compression. Bi-
2DPCA is suitable for a category of images that have some similar characteristics. Bi-2DPCA 

 

can be used for image representation and recognition, such as face recognition, palm 
identification, etc. 

 
5.3 Relationship to ST-KLT 
As discussed in Section 2.3, without the image model, the total covariance matrix is 
generally not equal to the outer product of the horizontal and vertical covariance matrices. 
Thus, the separable transform in Eq. (8) is not equivalent to KL transform. The minimal MSE 
property of ST-KLT cannot be guaranteed and the degree of approximation cannot be 
evaluated in theory. These problems are critical and not addressed by the authors in their 
paper [31].  
2DPCA provides us theoretical insights to see through the series of problems left by ST-KLT. 
First of all, by the correlation analysis in Section 3.2, the intuitive meanings of the horizontal 
and vertical covariance matrices become clear. The horizontal covariance matrix shows the 
correlation between column vectors of image samples, while the vertical covariance matrix 
shows the correlation between image row vectors. Secondly, the transform (compression) in 
horizontal or vertical direction has a clear explanation. 2DPCA-based transform is the 
optimal transform in horizontal direction in the sense of minimal mean square error. The 
image energy is compacted into a small number of columns after 2DPCA transform. 
Similarly, if we use the transpose of image matrices as the input data, 2DPCA can realize the 
optimal compression in vertical direction.  
Thirdly, Bi-2DPCA is a sequentially optimal technique but ST-KLT is not. It is easy to see 

this by analyzing their transform processes. The transform BUVC T  can be 
decomposed into two transforms: the column (horizontal) transform AUB   and the row 

(vertical) transform BVC T . The first transform is same for the two methods but the 
second one is different. For the second transform, the transform matrix V of Bi-2DPCA is 

formed by the eigenvectors of the matrix tH = ])E)(E[(E TBBBB  , while the 

transform matrix of ST-KLT is formed by the eigenvectors of the matrix vR = 

])E)(E[(E TAAAA  . These two matrices are obviously different. Since the second 
transform is independent of the first one, we only need to find an optimal transform to 
recompress the current image B (rather than the original image A) after the first 2DPCA 
transform. From Theorem 1, it follows that the eigenvector system of tH  should be optimal 

for compressing B. Other vector systems, for example, the eigenvector system of vR , must 
be sub-optimal and lead to a larger mean-square error. So, as a separable transform, Bi-
2DPCA is better than ST-KLT in terms of energy packing performance.  
In summary, Bi-2DPCA and ST-KLT are both image-data dependent coding method. Bi-
2DPCA lays a solid theoretical foundation for a separable transform without any assumed 
image model. It also provides a sequentially optimal mechanism to implement this 
transform. In comparison, ST-KLT is sub-optimal in theory. 
Besides the theoretical advantages, Bi-2DPCA is also computationally more efficient than 
ST-KLT. The reason is that the construction of tH  needs less computation than the 
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pqd   (if the same amounts of features are required by both methods), PCA generally 
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Besides, another advantage of Bi-2DPCA is that it needs less memory requirement than PCA 
in face recognition systems. This is because PCA needs to save a much larger transform 
matrix for feature extaction. The transform matrix of PCA is sized of dN  = dnm  , 
which amounts to the size of d orginal images. While, the two transform matrices of Bi-
2DPCA are only sized of qnpm  , which is generally less than one orginal image in 
size.  
A comparison between PCA and Bi-2DPCA is summarized in Table 1. Here, it should be 
stressed that the computational advantages of Bi-2DPCA over PCA is independent of the 
algorithms that are adopted to calculate the eigenvectors. If an algorithm can speed up the 
eigenvector computation of PCA, it is certain to speed up the eigenvector computation of Bi-
2DPCA in the same way. 
 

Method                               Computation Requirements Memory 
Requirements Construction of 

covariance 
matrix 

Solving  
eigen-problem 

Image 
Transformation 

PCA More More More More 
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Table 1. A comparison between PCA and Bi-2DPCA in computation and memory 
requirements 
 
Compared to 2DPCA, the compression rate of Bi-2DPCA is significantly improved. That is, 
Bi-2DPCA needs much less coefficients than 2DPCA for image representation. The 
advantages of Bi-2DPCA over 2DPCA are twofold. First, the storage requirements can be 
significantly reduced. Second, the classification speed will be increased since less 
computation is needed in distance (similarity) calculation.  

 
5.2 Relationship to classical 2D-KLT 
Bi-2DPCA is an image-data dependent coding method while 2D-KLT is image-data independent. 
The underlying difference between these two methods is that the classical 2D-KLT is based 
on an assumed image model while Bi-2DPCA not. The implementation of the classical 2D-
KLT depends on the assumption that an ensemble of images satisfies the first-order Markov 
model with separable autocorrelation function. Without this assumption, the method cannot 
exist independently because its covariance matrices are constructed by the separable 
autocorrelation function rather than training samples. In contrast, Bi-2DPCA can work 
independently without any assumed image model. Like PCA, it relies on training samples to 
evaluate its covariance matrices. 
Actually, the classical 2D-KLT and Bi-2DPCA have different utilities. The classical 2D-KLT 
is suitable for an ensemble of images and generally applied to image compression. Bi-
2DPCA is suitable for a category of images that have some similar characteristics. Bi-2DPCA 

 

can be used for image representation and recognition, such as face recognition, palm 
identification, etc. 

 
5.3 Relationship to ST-KLT 
As discussed in Section 2.3, without the image model, the total covariance matrix is 
generally not equal to the outer product of the horizontal and vertical covariance matrices. 
Thus, the separable transform in Eq. (8) is not equivalent to KL transform. The minimal MSE 
property of ST-KLT cannot be guaranteed and the degree of approximation cannot be 
evaluated in theory. These problems are critical and not addressed by the authors in their 
paper [31].  
2DPCA provides us theoretical insights to see through the series of problems left by ST-KLT. 
First of all, by the correlation analysis in Section 3.2, the intuitive meanings of the horizontal 
and vertical covariance matrices become clear. The horizontal covariance matrix shows the 
correlation between column vectors of image samples, while the vertical covariance matrix 
shows the correlation between image row vectors. Secondly, the transform (compression) in 
horizontal or vertical direction has a clear explanation. 2DPCA-based transform is the 
optimal transform in horizontal direction in the sense of minimal mean square error. The 
image energy is compacted into a small number of columns after 2DPCA transform. 
Similarly, if we use the transpose of image matrices as the input data, 2DPCA can realize the 
optimal compression in vertical direction.  
Thirdly, Bi-2DPCA is a sequentially optimal technique but ST-KLT is not. It is easy to see 

this by analyzing their transform processes. The transform BUVC T  can be 
decomposed into two transforms: the column (horizontal) transform AUB   and the row 

(vertical) transform BVC T . The first transform is same for the two methods but the 
second one is different. For the second transform, the transform matrix V of Bi-2DPCA is 

formed by the eigenvectors of the matrix tH = ])E)(E[(E TBBBB  , while the 

transform matrix of ST-KLT is formed by the eigenvectors of the matrix vR = 

])E)(E[(E TAAAA  . These two matrices are obviously different. Since the second 
transform is independent of the first one, we only need to find an optimal transform to 
recompress the current image B (rather than the original image A) after the first 2DPCA 
transform. From Theorem 1, it follows that the eigenvector system of tH  should be optimal 

for compressing B. Other vector systems, for example, the eigenvector system of vR , must 
be sub-optimal and lead to a larger mean-square error. So, as a separable transform, Bi-
2DPCA is better than ST-KLT in terms of energy packing performance.  
In summary, Bi-2DPCA and ST-KLT are both image-data dependent coding method. Bi-
2DPCA lays a solid theoretical foundation for a separable transform without any assumed 
image model. It also provides a sequentially optimal mechanism to implement this 
transform. In comparison, ST-KLT is sub-optimal in theory. 
Besides the theoretical advantages, Bi-2DPCA is also computationally more efficient than 
ST-KLT. The reason is that the construction of tH  needs less computation than the 
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construction of vR , since the image B (i.e., the feature matrix after 2DPCA compression on 
A) is much smaller than the original image A.   

 
6. Experiments and Analysis 
 

6.1 Experiments using the AT&T Database 
 
The AT&T database contains images from 40 individuals, each providing 10 different 
images. For some subjects, the images were taken at different times. The facial expressions 
(open or closed eyes, smiling or non-smiling) and facial details (glasses or no glasses) also 
vary. The images were taken with a tolerance for some tilting and rotation of the face of up 
to 20 degrees. Moreover, there is also some variation in the scale of up to about 10%. All 
images are grayscale and normalized to a resolution of 11292   pixels.  

 
6.1.1 Image Reconstruction Analysis 
In this section, we will examine the mechanism of Bi-2DPCA based image reconstruction. 
The first five images of each individual are drawn from AT&T database to form a training 
sample set. Thus, the training sample size is 200. Based on these training samples, let us 
form the image horizontal covariance matrix tG and calculate its eigenvectors 

quuu ,,, 21   corresponding to q largest eigenvalues. Then, we construct the image 

vertical covariance matrix tH  and get its eigenvectors pvvv ,,, 21   corresponding to p 

largest eigenvalues. Letting T
jiij uv  ( 9,,1i ; 10,,1j ), we obtain 90 basis 

images, which are shown in Figure 2(a). As a comparison, 90 principal basis images of 2D-
DCT are shown in Figure 2(b).  
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 (b) 

Fig. 2. Examples of basis images of Bi-2DPCA and 2D-DCT. (a) Basis images of Bi-2DPCA; (b) 
basis images of 2D-DCT, from up to down, 9,,1i ; from left to right, 10,,1j .  
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construction of vR , since the image B (i.e., the feature matrix after 2DPCA compression on 
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The first five images of each individual are drawn from AT&T database to form a training 
sample set. Thus, the training sample size is 200. Based on these training samples, let us 
form the image horizontal covariance matrix tG and calculate its eigenvectors 

quuu ,,, 21   corresponding to q largest eigenvalues. Then, we construct the image 

vertical covariance matrix tH  and get its eigenvectors pvvv ,,, 21   corresponding to p 

largest eigenvalues. Letting T
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images, which are shown in Figure 2(a). As a comparison, 90 principal basis images of 2D-
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Fig. 2. Examples of basis images of Bi-2DPCA and 2D-DCT. (a) Basis images of Bi-2DPCA; (b) 
basis images of 2D-DCT, from up to down, 9,,1i ; from left to right, 10,,1j .  
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From Figure 2, we can see that the basis images of Bi-2DPCA and 2D-DCT have some 
common properties. The lower-index (i, j are smaller) basis images ij  contain lower-

frequency information and, the higher-index (i, j are larger) basis images ij  contain 

higher-frequency information. If we fix the column index j, the information in horizontal 
direction becomes more and more conspicuous with the increase of the row index i. 
Similarly, if we fix the row index i, the information in vertical direction becomes more and 
more conspicuous with the increase of the column index j. Besides, we can also see some 
remarkable differences between them. The basis images of Bi-2DPCA appear to be more 
face-image-data dependent, while those of 2D-DCT not. This is because that the basis 
images of Bi-2DPCA are obtained by training based on the given face images, while those of 
2D-DCT are generated by a statistical model. It can be seen from Figure 2 that the first basis 
image 11  of Bi-2DPCA is a prototype of a face, which shows some inherent information of 
face images. In contrast, the basis images of 2D-DCT do not embody any face-related 
information. 

            
                                                                    Original             Mean 

 (a) 

           

          
 (b) 

          

          
(c) 

Fig. 3. An original image and its reconstructed images based on Bi-2DPCA and 2D-DCT. (a) 
An original image and the mean image; (b) the reconstructed images based on Bi-2DPCA; (c) 
the reconstructed images based on 2D-DCT, when 40,,4,2, qp (from left to right, up 
to down). 
 
Based on the basis images, Bi-2DPCA can realize the reconstruction of a given image using 
Eq. (33). The reconstructed image can be expressed as a superposition of a small fraction of 

 

basis images weighted by the corresponding transform coefficients. Figure 3(b) shows a 
series of Bi-2DPCA based reconstructed images of the original image in Figure 3(a) when p 
and q (p = q) vary from 2 to 40 with an interval of 2. In contrast, Figure 3(c) shows a series of 
2D-DCT based reconstructed images as p and q (p = q) vary in the same way. It is obvious 
that the reconstructed images become clearer when more basis images are involved in the 
superposition. This is because the higher-index (higher-frequency) basis images ij  contain 

more detailed image information. It also can be seen that for each p and q, Bi-2DPCA based 
reconstructed image is always better than 2D-DCT based reconstructed images. This is 
because Bi-2DPCA transform keeps more image energy and less reconstruction loss than 
2D-DCT. We will discuss this in detail in the following subsection.  

 
6.1.2 Image Energy and Representation Error Analysis 
Let us work out the horizontal covariance matrix tG ’s all eigenvectors 9221 ,,, uuu   and 
use them to form a complete 2DPCA transform. After this transform, the original image in 
Figure 4 (a) is transformed into the image in Figure 4(b). Figure 4(b) shows that the image 
energy is compacted into a small number of columns. If we select the first q = 10 columns of 
the transformed image and compress them further using a second complete 2DPCA (the 
transform is determined by all eigenvectors of tH ), we obtain an image in Figure 4 (c). 
Obviously, the energy of the first 10 columns is re-compacted into the up-left corner of the 
image. This indicates Bi-2DPCA based transform does have good energy packing property. 
Figure 4 (d) and (e) shows that ST-KLT and 2D-DCT based transforms are also effective for 
energy packing. 

             
                  (a)                          (b)                          (c)                          (d)                           (e) 
Fig. 4. Illustration of energy packing property of 2DPCA, Bi-2DPCA, ST-KLT and 2D-DCT. 
(a) An original image, (b) 2DPCA transformed image, (c) Bi-2DPCA transformed image 
(q=10), (d) ST-KLT transformed image, (e) 2D-DCT transformed image 
 
To gain more insights into the energy packing performance of Bi-2DPCA, ST-KLT and 2D-
DCT, let us analyze their mean square errors (MSEs) in image reconstruction. If we use a 

qp  feature matrix C to represent an image, the MSE of Bi-2DPCA based image 

reconstruction can be evaluated using the tail eigenvalues of tG  and tH  according to 
Theorem 2. Since there is no similar property with ST-KLT and 2D-DCT, we have to employ 
the definition of mean square errors, Equation (35), to calculate the MSEs of ST-KLT and 2D-
DCT. The MSEs of Bi-2DPCA, ST-KLT and 2D-DCT when p and q (p = q) vary from 1 to 10 
are shown in Table 2. Table 2 indicates the MSE of Bi-2DPCA based image representation is 
smaller than that of ST-KLT based. This is consistent with our theoretical analysis in Section 
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more detailed image information. It also can be seen that for each p and q, Bi-2DPCA based 
reconstructed image is always better than 2D-DCT based reconstructed images. This is 
because Bi-2DPCA transform keeps more image energy and less reconstruction loss than 
2D-DCT. We will discuss this in detail in the following subsection.  
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use them to form a complete 2DPCA transform. After this transform, the original image in 
Figure 4 (a) is transformed into the image in Figure 4(b). Figure 4(b) shows that the image 
energy is compacted into a small number of columns. If we select the first q = 10 columns of 
the transformed image and compress them further using a second complete 2DPCA (the 
transform is determined by all eigenvectors of tH ), we obtain an image in Figure 4 (c). 
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image. This indicates Bi-2DPCA based transform does have good energy packing property. 
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Fig. 4. Illustration of energy packing property of 2DPCA, Bi-2DPCA, ST-KLT and 2D-DCT. 
(a) An original image, (b) 2DPCA transformed image, (c) Bi-2DPCA transformed image 
(q=10), (d) ST-KLT transformed image, (e) 2D-DCT transformed image 
 
To gain more insights into the energy packing performance of Bi-2DPCA, ST-KLT and 2D-
DCT, let us analyze their mean square errors (MSEs) in image reconstruction. If we use a 

qp  feature matrix C to represent an image, the MSE of Bi-2DPCA based image 

reconstruction can be evaluated using the tail eigenvalues of tG  and tH  according to 
Theorem 2. Since there is no similar property with ST-KLT and 2D-DCT, we have to employ 
the definition of mean square errors, Equation (35), to calculate the MSEs of ST-KLT and 2D-
DCT. The MSEs of Bi-2DPCA, ST-KLT and 2D-DCT when p and q (p = q) vary from 1 to 10 
are shown in Table 2. Table 2 indicates the MSE of Bi-2DPCA based image representation is 
smaller than that of ST-KLT based. This is consistent with our theoretical analysis in Section 
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5.3. Also, the MSEs of the two image-data dependent coding methods, Bi-2DPCA and ST-
KLT, are much less than that of the image-data independent method 2D-DCT.  
Does the MSE have an impact on the recognition performance? To answer this question, let q 
and p (p = q) vary from 1 to 10.  In each case, we test Bi-2DPCA, ST-KLT and 2D-DCT and 
list their recognition rates in Table 3. Table 3 shows, on the whole, the performance 
difference between Bi-2DPCA and ST-KLT is not as significant as the performance 
difference between Bi-2DPCA and 2D-DCT. From Table 2, we know that the MSE difference 
between Bi-2DPCA and ST-KLT is not as significant as the MSE difference between Bi-
2DPCA and 2D-DCT. So, we can conclude that the significant MSE difference between two 
methods does affect their recognition rates and, the image-data dependent methods are more 
suitable for representing faces for recognition purpose. The insignificant MSE difference, 
however, almost has no effect on the recognition results. The recognition performances of 
Bi-2DPCA and ST-KLT are very close when q and p are over 3. In practice, since we always 
choose a larger q and p for achieving the best recognition rate, the MSE difference between 
ST-KLT and Bi-2DPCA has no substantial effect on their performance. 

 
p, q 1 2 3 4 5 6 7 8 9 10 

Bi-
2DPCA 

207.13 170.42 136.21 118.05 103.93  90.77 79.19 70.48 63.26 57.78 

ST-KLT 211.69   171.03   136.89   121.86   104.84     91.06    79.39    70.56   63.35   57.96 

2D-DCT 216.17   181.20   159.91   145.15   126.42   107.60   90.75     80.86   73.42   66.69 

Table 2. Mean Square errors of Bi-2DPCA, ST-KLT and 2D-DCT based image representation 
 

p, q 1 2 3 4 5 6 7 8 9 10 

Bi-2DPCA 13.5 66.5 90.5 93.5 95.5 95.0 95.5 95.5 95.5 96.0 

ST-KLT 12.0 64.0 90.0 93.0 95.5 95.0 95.5 95.5 95.5 96.0 

2D-DCT 13.5 57.0 87.0 89.5 94.0 93.5 93.5 94.5 94.5 93.5 

Table 3. Recognition rates (%) of Bi-2DPCA, ST-KLT and 2D-DCT with the variation of p 
and q 

 
6.2 Experiments using the FERET Database 
The FERET database is a result of the FERET program, which was sponsored by the 
Department of Defense through the DARPA Program [39, 40]. It has become a standard 
database to test and evaluate state-of-the-art face recognition algorithms.    
In the FERET 1996 standard subset, the basic gallery contains 1,196 face images. There are 
four sets of probe images compared to this gallery: the fafb probe set contains 1,195 images 
of subjects taken at the same time as the gallery images but with different facial expression; 
the fafc probe set contains 194 images of subjects under significantly different lighting 
conditions; the Duplicate I probe set contains 722 images of subjects taken between one 
minute and 1,031 days after the gallery image was taken; the Duplicate II probe set is a subset 
of the duplicate I set, containing 234 images taken at least 18 months after the gallery images. 
In our experiments, the face portion of each original image is automatically cropped based 
on the location of eyes and resized to an image of 8080 pixels. The resulting image is then 

 

pre-processed by a histogram equalization algorithm. Some example images after pre-
processing are shown in Figure 5. 

     
Fig. 5. Some example images of cropped images that were pro-processed by histogram 
equalization.  

 
6.2.1 Performance Comparison Analysis 
For consistency with other studies [23, 39], in our test, 500 images are selected from the 
gallery to form the training sample set. In order to reduce the effect that might be induced 
by the choice of the training sample set, we run the system ten times. In each time, the 
training sample set (containing 500 images) is randomly selected from the gallery so that the 
training sample sets are different for ten tests. PCA, 2DPCA and Bi-2DPCA are, respectively, 
employed for image representation. For PCA, 200 principal components are extracted to 
represent a face (this is consistent with the PCA-based baseline system in [39]). For 2DPCA, 
10 principal component vectors (containing 800 features) are extracted for image 
representation. While for Bi-2DPCA, a 1515 feature matrix is first obtained after image 
transform and then is converted into a 225-dimensional feature vector by stacking the 
columns in turn. Note that in our test, only the first 200 features are used by Bi-2DPCA for 
representation and classification purpose in accordance with the dimension of PCA. Finally, 
a nearest-neighbor classifier with three common distance metrics is employed for 
classification. These distance metrics includes: L2 (Euclidean) distance, L1 (city-block) 
distance, and cosine distance [23, 25]. For each method and each probe set, the average 
recognition rate and standard deviation (std) across ten tests with three distance metrics are 
listed in Tables 4-6. Taking the four probe sets as a whole testing set, the total recognition 
rate of each method is also calculated and listed in these tables.  
 

Method fafb 
(1195) 

fafc  
(194) 

Duplicate I  
(722) 

Duplicate II  
(234) 

Total  
(2345) 

PCA 77.18 ± 0.38 14.84 ± 1.30 32.06 ± 0.43 10.15 ± 0.61 51.442 
2DPCA  79.93 ± 0.29 19.35 ± 0.49 34.90 ± 0.18 11.51 ± 0.21 54.227 

Bi-2DPCA 79.15 ± 0.08 16.45 ± 0.16 33.24 ± 0.12 11.42 ± 0.17 53.069 
Table 4. Recognition rate (%) of PCA, 2DPCA and Bi-2DPCA with L2 distance metric 
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(194) 
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(722) 

Duplicate II  
(234) 

Total  
(2345) 

PCA 76.49 ± 0.52 38.42 ± 1.54 33.89 ± 0.79 13.03 ± 1.55 53.892 
2DPCA 81.04 ± 0.22 13.30 ± 0.46 35.90 ± 0.37 12.92 ± 0.27 54.740 

Bi-2DPCA 79.65 ± 0.40 27.89 ± 1.70 35.41 ± 0.35 12.80 ± 0.53 55.076 
Table 5. Recognition rate (%) of PCA, 2DPCA and Bi-2DPCA with L1 distance metric 
 
 

www.intechopen.com



Bi-2DPCA: A Fast Face Coding Method for Recognition 333
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difference between Bi-2DPCA and ST-KLT is not as significant as the performance 
difference between Bi-2DPCA and 2D-DCT. From Table 2, we know that the MSE difference 
between Bi-2DPCA and ST-KLT is not as significant as the MSE difference between Bi-
2DPCA and 2D-DCT. So, we can conclude that the significant MSE difference between two 
methods does affect their recognition rates and, the image-data dependent methods are more 
suitable for representing faces for recognition purpose. The insignificant MSE difference, 
however, almost has no effect on the recognition results. The recognition performances of 
Bi-2DPCA and ST-KLT are very close when q and p are over 3. In practice, since we always 
choose a larger q and p for achieving the best recognition rate, the MSE difference between 
ST-KLT and Bi-2DPCA has no substantial effect on their performance. 
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training sample sets are different for ten tests. PCA, 2DPCA and Bi-2DPCA are, respectively, 
employed for image representation. For PCA, 200 principal components are extracted to 
represent a face (this is consistent with the PCA-based baseline system in [39]). For 2DPCA, 
10 principal component vectors (containing 800 features) are extracted for image 
representation. While for Bi-2DPCA, a 1515 feature matrix is first obtained after image 
transform and then is converted into a 225-dimensional feature vector by stacking the 
columns in turn. Note that in our test, only the first 200 features are used by Bi-2DPCA for 
representation and classification purpose in accordance with the dimension of PCA. Finally, 
a nearest-neighbor classifier with three common distance metrics is employed for 
classification. These distance metrics includes: L2 (Euclidean) distance, L1 (city-block) 
distance, and cosine distance [23, 25]. For each method and each probe set, the average 
recognition rate and standard deviation (std) across ten tests with three distance metrics are 
listed in Tables 4-6. Taking the four probe sets as a whole testing set, the total recognition 
rate of each method is also calculated and listed in these tables.  
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Method fafb 
(1195) 

fafc  
(194) 

Duplicate I  
(722) 

Duplicate II  
(234) 

Total  
(2345) 

PCA 76.67 ± 0.42 11.06 ± 0.45 33.80 ± 0.44 12.81 ± 0.48 51.671 
2DPCA 72.57 ± 0.37 16.03 ± 4.48 32.09 ± 0.66 10.13 ± 1.03 49.198 

Bi-2DPCA 79.10 ± 0.06 16.50 ± 0.00 33.24 ± 0.08 11.50 ± 0.00 53.056 
Table 6. Recognition rate (%) of PCA, 2DPCA and Bi-2DPCA with cosine distance metric 
 
From Tables 4-6, we can draw the following conclusions. 1) While the L2 distance metric is 
used, Bi-2DPCA is better than PCA for all probe sets with respect to the recognition 
accuracy and standard deviation. While the L1 and cosine distance metrics are employed, 
the recognition results are in relation to probe sets. For some probe sets, Bi-2DPCA performs 
better and for others, PCA perform better. However, as far as the total recognition rate is 
concerned, Bi-2DPCA is consistently superior to PCA, no matter what metric is used. 2) 
2DPCA outperforms Bi-2DPCA when the L2 metric is used, but its total recognition rate is 
worse than Bi-2DPCA with other two metrics. 3) Every method achieves its best 
performance when the L1 distance metric is used. With this metric, Bi-2DPCA outperforms 
PCA and 2DPCA with respect to the total recognition rate. 
In fact, the advantage of Bi-2DPCA over PCA is not only on its recognition accuracy, but 
also on its computational efficiency. In the next subsection, we will demonstrate that Bi-
2DPCA is faster than PCA for face recognition system. 

 
6.2.2 Computational Efficiency Analysis 
In our experiments, we use Matlab for coding and the Matlab function “eigs” to calculate the 
eigenvectors in the implementation of PCA, 2DPCA and Bi-2DPCA. For each method, the 
average CPU time for training and testing (with L2 metric) across 10 random tests are listed 
in Table 8. It is apparent that Bi-2DPCA is much faster than PCA either for training or for 
testing. Although 2DPCA needs less time than Bi-2DPCA for training, it requires more time 
for the whole process: training and testing. To gain more insights into this, we will provide a 
detailed analysis on computation and memory requirements of PCA, 2DPCA and Bi-2DPCA 
based face recognition systems. 
 

Method Time for Training Time for Testing (2345 
samples) 

Total 

PCA 291.70 940.39 1232.09 
2DPCA 97.38 912.60 1009.98 

Bi-2DPCA 140.86 659.07 799.93 
Table 8. The CPU time (s) for training and testing on FERET 1996 subset (CPU: Pentium IV 
2.4GHz, RAM: 512Mb) 
 

Method Constructing  
covariance 
matrices (C1) 

Solving  
eigen-
problems 
(C2 ) 

Transformation of 
an image 
(C3 ) 

Calculating 
distance 
 
(C4) 

PCA 5002802    5003  802200 C4 =1196200 

 

=1.6109 = 1.25108 =1.28106 =2.392105 
2DPCA 500803 

=2.56108 
803  
= 5.12105 

80210 
=6.4104 

1196800 
=9.568105 

Bi-2DPCA 500 (803+80215) 
=3.04108 

8032  
= 1.024106 

80215+801514 
=1.128105 

1196200 
=2.392105 

Table 9. Calculation items of PCA, 2DPCA and Bi-2DPCA in training and testing process 
 

Method Training 
C1+C2+1196C3 

Testing  
(C3 + C4) 2345 

Total 
 

PCA 3.2559109 3.5625109 6.8184109 
2DPCA 3.3306108 2.3938109 2.7269109 
Bi-2DPCA 4.3993108 8.2544108 1.2654109 

Table 10. Comparisons of computation requirements of PCA, 2DPCA and Bi-2DPCA  
 

Method Projector Size Gallery Size Total 
PCA 802200 = 1,280,000 1196200  = 239,200 1,519,200 
2DPCA 8010 = 800 11968010 = 956,800 957,600 
Bi-2DPCA 8015+8014 = 2,320 1196200 = 239,200 241,520 

Table 11. Comparisons of memory requirements of PCA, 2DPCA and Bi-2DPCA  
 
The computation requirements can be measured by the amount of multiplications involved 
in the training and testing processes. The training process includes the following 
calculations: (C1) constructing covariance matrices, (C2) learning the projector (transform 
matrix) by solving eigen-problems and, (C3) transformation of an image in gallery. And, the 
testing process includes: (C3) transformation of an image in probe sets and, (C4) calculating 
the distances between a probe and gallery for classification. The computations involved in 
these items are listed in Table 9. Table 10 exhibits the computation requirements in the 
training, testing and the whole process. 
From Tables 9 and 10, we can see that Bi-2DPCA needs much less computations than PCA 
in the first three items and the same computations for item C4. So, Bi-2DPCA is 
computationally more efficient than PCA either for training or for testing. 2DPCA consumes 
less computations than Bi-2DPCA in the first three items (so that it is faster than Bi-2DPCA 
for training), because it deals with one covariance matrix while Bi-2DPCA deals with two. 
However, 2DPCA spends much more computations on item C4 since it requires four times 
of features than Bi-2DPCA (or PCA) for image representation. This leads to a larger amount 
of computations in its testing process. In a word, Bi-2DPCA has the least computation 
requirements among three methods for the whole process: training and testing. 
The memory requirements of a face recognition system depend on the size of projector and 
the total size of data in gallery. Table 11 shows these items corresponding to each method. 
Bi-2DPCA has the least total memory requirements among three methods. PCA has the 
largest total memory requirements because its projector is very large, which amounts to a 
total size of 200 original face images. In contrast, the projector of Bi-2DPCA or 2DPCA is 
much smaller; its size is less than the size of one original image. Since 2DPCA has a much 
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these items are listed in Table 9. Table 10 exhibits the computation requirements in the 
training, testing and the whole process. 
From Tables 9 and 10, we can see that Bi-2DPCA needs much less computations than PCA 
in the first three items and the same computations for item C4. So, Bi-2DPCA is 
computationally more efficient than PCA either for training or for testing. 2DPCA consumes 
less computations than Bi-2DPCA in the first three items (so that it is faster than Bi-2DPCA 
for training), because it deals with one covariance matrix while Bi-2DPCA deals with two. 
However, 2DPCA spends much more computations on item C4 since it requires four times 
of features than Bi-2DPCA (or PCA) for image representation. This leads to a larger amount 
of computations in its testing process. In a word, Bi-2DPCA has the least computation 
requirements among three methods for the whole process: training and testing. 
The memory requirements of a face recognition system depend on the size of projector and 
the total size of data in gallery. Table 11 shows these items corresponding to each method. 
Bi-2DPCA has the least total memory requirements among three methods. PCA has the 
largest total memory requirements because its projector is very large, which amounts to a 
total size of 200 original face images. In contrast, the projector of Bi-2DPCA or 2DPCA is 
much smaller; its size is less than the size of one original image. Since 2DPCA has a much 
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lower compression rate than Bi-2DPCA, it requires more memory to save the feature vectors 
in gallery.   
The above comparison demonstrates that Bi-2DPCA based image recognition system has 
advantages over PCA or 2DPCA based system on computation and memory requirements. 
This characteristic makes Bi-2DPCA to be a fast tool for face coding and recognition. 

 
7. Conclusions 
 

In this paper, two-dimensional principal component analysis (2DPCA) is first re-examined 
and its two properties are revealed. 2DPCA can eliminate the correlation between column 
vectors of image and compact the image energy onto a small number of column vectors 
(these vectors are used for image representation). In other words, 2DPCA realizes an 
optimal compression in horizontal direction. These properties are desirable and provide 
some theoretical supports for 2DPCA-based image representation. However, 2DPCA does 
not consider the correlation in vertical direction. This leads to a relative lower compression 
rate compared to PCA.  
Bi-2DPCA technique is developed to overcome the weakness of 2DPCA. Basically, Bi-
2DPCA is to perform 2DPCA twice sequentially, i.e., a first compression in horizontal 
direction followed by a second one in vertical direction. In this way, the correlations in both 
directions are eliminated and, the image energy is compacted into the up-left corner of 
image. The elements in this corner are chosen as features. So, Bi-2DPCA needs fewer 
coefficients than 2DPCA for image representation. This results in lower storage 
requirements and a remarkable speedup in classification. Actually, Bi-2DPCA based 
representation is not only economical in storage but also effective for discrimination. Our 
experiments on FERET database show Bi-2DPCA is comparable with 2DPCA. 
In addition, the theoretical justification for Bi-2DPCA based image representation is 
provided. This representation mechanism is sequentially optimal in the sense of minimal 
mean-square error. In comparison, ST-KLT lacks this justification and is shown to be sub-
optimal in theory. That is, the mean-square error (MSE) of ST-KLT is always larger than that 
of Bi-2DPCA. Besides, we also show that the MSEs of the image-data dependent coding 
methods such as Bi-2DPCA and ST-KLT are much less than the image-data independent 
method like 2D-DCT. Our experiments indicate that the significant MSE difference between 
two methods does affect their recognition performances and, the image-data dependent 
methods are more suitable for representing faces for recognition purpose. The insignificant 
MSE difference, however, almost has no effect on the recognition results.  
In contrast to PCA, the most prominent advantage of Bi-2DPCA is its low computational 
complexity. Actually, Bi-2DPCA has lower computation requirement than PCA on almost 
all aspects involved, including the construction of covariance matrices, calculating the 
eigenvectors of these covariance matrices, and image transformation. This characteristic 
makes Bi-2DPCA faster than PCA in both training and testing processes. It should be 
mentioned that the speed advantage of Bi-2DPCA would become more remarkable with the 
increase of database scale and training sample size. Besides, our experiments on the FERET 
database also demonstrate that Bi-2DPCA is comparable with PCA in recognition 
performance. 
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Appendix A: The proof Theorem 2 
 

To prove Theorem 2, a useful Lemma is first given: 

Lemma A1 [41] If m nA  , then 2|| || = tr( ) tr( )T T
F A A A AA . 

Proof of Theorem 2: 

Let us denote ),,,( 21 quuuU   and ),,,( 21 pvvvV  . Then, q
T IUU   and 

p
T IVV  . 

The Bi-2DPCA based compression process contains two sequential operations, i.e. column-
based (horizontal) compression AUB   and row-based (vertical) compression 

BVC T .  
Correspondingly, the column- and row-based reconstructions can be respectively 
represented by 

TBUA ˆ ,                                                                       (A.1)  

VCB ˆ .                                                                        (A.2)  
From Theorem 1, we know their reconstruction MSEs are  
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The Bi-2DPCA based reconstruction image of A  is TVCUA 
~

= TUB̂ . The total 

reconstruction MSE is 22
t ||~||E Fε AA  . We will prove that 2

tε  = 2
vε + 2

hε  as follows. 

From Lemma A1, we have 22
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lower compression rate than Bi-2DPCA, it requires more memory to save the feature vectors 
in gallery.   
The above comparison demonstrates that Bi-2DPCA based image recognition system has 
advantages over PCA or 2DPCA based system on computation and memory requirements. 
This characteristic makes Bi-2DPCA to be a fast tool for face coding and recognition. 

 
7. Conclusions 
 

In this paper, two-dimensional principal component analysis (2DPCA) is first re-examined 
and its two properties are revealed. 2DPCA can eliminate the correlation between column 
vectors of image and compact the image energy onto a small number of column vectors 
(these vectors are used for image representation). In other words, 2DPCA realizes an 
optimal compression in horizontal direction. These properties are desirable and provide 
some theoretical supports for 2DPCA-based image representation. However, 2DPCA does 
not consider the correlation in vertical direction. This leads to a relative lower compression 
rate compared to PCA.  
Bi-2DPCA technique is developed to overcome the weakness of 2DPCA. Basically, Bi-
2DPCA is to perform 2DPCA twice sequentially, i.e., a first compression in horizontal 
direction followed by a second one in vertical direction. In this way, the correlations in both 
directions are eliminated and, the image energy is compacted into the up-left corner of 
image. The elements in this corner are chosen as features. So, Bi-2DPCA needs fewer 
coefficients than 2DPCA for image representation. This results in lower storage 
requirements and a remarkable speedup in classification. Actually, Bi-2DPCA based 
representation is not only economical in storage but also effective for discrimination. Our 
experiments on FERET database show Bi-2DPCA is comparable with 2DPCA. 
In addition, the theoretical justification for Bi-2DPCA based image representation is 
provided. This representation mechanism is sequentially optimal in the sense of minimal 
mean-square error. In comparison, ST-KLT lacks this justification and is shown to be sub-
optimal in theory. That is, the mean-square error (MSE) of ST-KLT is always larger than that 
of Bi-2DPCA. Besides, we also show that the MSEs of the image-data dependent coding 
methods such as Bi-2DPCA and ST-KLT are much less than the image-data independent 
method like 2D-DCT. Our experiments indicate that the significant MSE difference between 
two methods does affect their recognition performances and, the image-data dependent 
methods are more suitable for representing faces for recognition purpose. The insignificant 
MSE difference, however, almost has no effect on the recognition results.  
In contrast to PCA, the most prominent advantage of Bi-2DPCA is its low computational 
complexity. Actually, Bi-2DPCA has lower computation requirement than PCA on almost 
all aspects involved, including the construction of covariance matrices, calculating the 
eigenvectors of these covariance matrices, and image transformation. This characteristic 
makes Bi-2DPCA faster than PCA in both training and testing processes. It should be 
mentioned that the speed advantage of Bi-2DPCA would become more remarkable with the 
increase of database scale and training sample size. Besides, our experiments on the FERET 
database also demonstrate that Bi-2DPCA is comparable with PCA in recognition 
performance. 
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Since q
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