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Nomenclature

Symbol Meaning

MP Mobile platform
KC Kinematic chain(s)
TCP Tool center point
DOF Degree(s) of freedom
IKP Inverse kinematic problem
DKP Direct kinematic problem
|JIKP| Inverse Jacobian
|JDKP| Direct Jacobian

The term kinematic chain is used in the sense of limb, or leg, of the parallel manipulator.

1. Introduction

Parallel manipulators are an interesting alternative to serial robots given the important me-
chanical and kinematic advantages offered. Nevertheless, they often present more complex
and smaller workspaces with internal singularities (Altuzarra et al., 2004; Gosselin & Angeles,
1990). Thus, the workspace size, shape and quality are considered some of the main design
criteria of these robots (Merlet et al., 1998).
These robots often present multiple solutions for both the DKP and the IKP. The workspace
singularity-free region where the manipulator is initially configured, i.e., the set of postures
that a manipulator can reach in the same direct and inverse configuration, has been tradition-
ally considered its operational workspace. This is due to the fact that it is widely extended the
idea that to perform a transition between different kinematic solutions, the robot must cross a
singular position where the control is lost, and that must be avoided (Hunt & Primrose, 1993).
This idea leads to very limited operational workspaces.
In this chapter, a general methodology for obtaining the maximal operational workspace
where a parallel manipulator can move in a controllable way will be presented. The basis
for enlarging the operational workspace consists in superimposing all the singularity-free re-
gions of the workspace associated with the same assembly mode for all different robot work-
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ing modes. This work is the generalization of the methodology developed in (Macho et al.,
2008b) for a planar two-DOF parallel manipulator, the 5R robot.
According to this, the first step is to develop a methodology capable of obtaining the com-
plete workspace, i.e., the entire set of positions that a point of interest of the MP, the TCP,
can reach. There are three main families of methodologies used to obtain the workspace of a
manipulator, namely, discretization methods (Dash et al., 2002; Masory & Wang, 1995), geo-
metrical methods (Bonev & Ryu, 1999; Gosselin, 1990) and analytical methods (Agrawal, 1991;
Jo & Haug, 1998). In this case, the general purpose hybrid analytical-discrete procedure appli-
cable to fully-parallel manipulators described in (Macho et al., 2009) will be used. Secondly,
a complete singularity analysis must be done to carry out an efficient path planning. Singu-
larity maps are traced for target manipulators making a kinematic analysis of the positions
comprising the calculated workspace. To do this a systematic method to obtain the corre-
sponding Jacobian matrices is introduced. This methodology is based on the mathematical
disassembling of the manipulator into a MP and a set of serial KC.
Two main types of kinematic singularities are obtained. On the one hand, the IKP singu-
larities which separate the different working modes of the robot and define the workspace
boundaries, since they occur whenever a KC reaches an extreme position. At these postures a
dependence relation among the output velocities appears, so the output capabilities of the MP

are restricted, which is equivalent to an instantaneous reduction in the number of DOF. How-
ever, the manipulator can reach IKP singularities without compromising its controllability.
On the other hand, DKP singularities, which are different for each working mode, occur in-
side the workspace and separate the different assembly modes of the robot (Li et al., 2007). At
direct kinematic singularities a dependence relation among the input velocities occurs, which
implies the robot becoming uncontrollable. The result of the whole process developed is the
computation of all singularity-free workspace regions where the robot is fully controllable,
associated with certain working and assembly modes.
This research shows the possibility of enlarging the operational workspace joining the differ-
ent working modes through the IKP singularities, maintaining at all times the same assembly
mode, that is, avoiding reaching a DKP singularity. Thus, the maximal operational workspace
associated with a certain assembly mode of the robot is the union of the different singularity-
free regions associated with that assembly mode from all working modes. In order to make
a path planning inside this enlarged operational workspace, the strategies to identify the IKP

singularities which connect the different regions joined will be provided. To illustrate all these
general purpose procedures and strategies, an example of application will be proposed. An
spatial complex parallel manipulator is the most appropriate candidate to show the potential-
ity, effectiveness and interest of this methodology.
The different solutions of the IKP of a parallel manipulator are known as working modes. In
the same way, the different solutions of the DKP have been traditionally known as assem-
bly modes. Nevertheless, in this chapter the concept of assembly mode will have a different
meaning. It is well known that some parallel manipulators are able of moving from one DKP

solution to another in a fully controlled way, i.e., without crossing any DKP singularity. These
are the so-called cuspidal robots (Innocenti & Parenti-Castelli, 1992; McAree & Daniel, 1999).
The notion of assembly mode as DKP solution is confusing in cuspidal robots, because dif-
ferent DKP solutions can be joined without loosing control and in fact, joined solutions are
geometrically indistinguishable. In this work, those DKP solutions between which the ma-
nipulator can alternate without crossing a DKP singularity will not be considered different
assembly modes. Assembly modes will be considered those kinematic configurations sepa-
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rated by DKP singularities, always characterized by different signs of |JDKP|, or which require
the physical disassembling of the manipulator to be reached (Macho et al., 2008a).

2. A case study of translational manipulator

The manipulator shown in Fig. 1 is a three-DOF spatial parallel robot. It has two similar KC

actuated each one by means of a prismatic joint along a fixed sliding direction and a third KC

actuated by a fixed revolute joint. This is a fully-parallel manipulator since it has one actuated
joint per KC. In fully-parallel manipulators the number of KC and, therefore, the number of
input variables coincides also the number of DOF (output variables). The kinematic structure
of these three KC, containing articulated parallelograms, causes a manipulator having just
three translational DOF. These are known as Delta-like KC. There are several well known
mechanisms based on this kind of kinematic structure, like the DELTA Robot. The singular
configurations of these types of robots is analyzed in (Gregorio, 2004; Lopez et al., 2005) and
the workspace in (Laribi et al., 2007; Liu et al., 2004). This example is suitable to illustrate the
operational workspace enlargement general strategies due to the complexity of its singularity
loci. Probably, the robot in Fig. 1 is not the most adequate at a practical level, but it has been
found interesting for research purposes. Motion limitations in the kinematic joints will not be
considered. Neither interferences or collisions among elements.

(a)

(0,0,0)

(1,-1,0)

(0,1,0)

(0,0,1)
(-164.7,-364.7,300)

(-364.7,-164.7,300)

(200,623.1,0)

(0,623.1,0)

(1000,0,400)

(1000,200,400)

(0,0,900)

(0,300,800)

(200,300,800)

(300,200,800)

(300,0,800)

(200,0,700)

(0,200,700)
KC1

KC2

KC3

(b)

Fig. 1. Delta-like translational manipulator

An equivalent mechanism which will provide the same workspace and the same singularity
loci will be analyzed. This is the manipulator shown in Fig. 3. Each KC of the original
mechanism in Fig. 1 is split in two, breaking the parallelogram. The KC actuated by the
revolute joint (KC1 in Fig. 1) is split in two RSS KC, like shown in Fig. 2-(a), and each of
the two KC actuated by a prismatic joint (KC2 and KC3 in Fig. 1) split in two PSS KC, Fig.
2-(b). The resulting fully-parallel manipulator has six-uncoupled-DOF. The MP can change
its position and also spatial orientation. The kinematics of manipulators in Fig. 1 and Fig. 3
will be similar if the resulting couples of KC (Fig. 2) are actuated imposing for both KC the
same input variable. Therefore the workspace and singularity loci of the manipulator in Fig.
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1 can be obtained computing the constant orientation workspace of the manipulator in Fig. 3.
The reason for analyzing the auxiliary manipulator instead of the real one is because it will be
used a method capable of solving the kinematics of manipulators with RSS and RSS KC.

pi

fi

ai

qi

Ri

Li

ei

(a) Couple of RSS KC

pi

fi
aiqi

Ri

Li

gi

(b) Couple of PSS KC

Fig. 2. Auxiliary equivalent KC

f1

f2

f6

f5

f4f3

a2

a6

a5
a4

a3

a1

p1

p6

p5

p4

p3

p2

TCP

g6
g5

g4

g3

Fig. 3. Auxiliary equivalent 4-PSS-2-RSS manipulator

In the original manipulator each of the three KC has two IKP configurations. Thus, the whole
manipulator has a total of eight (23) working modes. In the auxiliary manipulator, each of the
six equivalent KC as also two IKP configurations. Thus, the auxiliary manipulator has a total
of sixty four (26) working modes, but just the eight coincident with those of the original ma-
nipulator will be considered. These are shown in Fig. 4. The nomenclature used is WMc1c2c3 ,
where c1, c2 and c3 stand for configuration of KC1, KC2 and KC3 respectively, being either p
(positive) or n (negative). For the analyzed manipulator, when the IKP has solution, each KC
can have two different configurations. Mathematically those come from a quadratic equation
where the two distinct solutions correspond to the use of a positive or negative sign.
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(a) WMppp (b) WMnpp (c) WMpnp (d) WMppn

(e) WMnnn (f) WMpnn (g) WMnpn (h) WMnnp

Fig. 4. Working modes considered in the auxiliary manipulator

3. Workspace computation

In order to compute the workspace, as well as to make the kinematic analysis to determine
the singularity surfaces crossing and dividing the workspace into the singularity-free regions,
a mathematical model of the robotic device must be done. In parallel manipulators, a MP is
attached to a fixed frame through a set of KC. Therefore, the mathematical model developed
to compute the workspace and the singularities consists in first separating the MP from each
CK. The following notion for these basic entities of the model will be used.
The MP is a rigid body located in a reference frame (O, i, j, k), by virtue of a moving frame
(TCP, u, v, w) attached to it, as shown in Fig. 5. The coordinates of the origin, position of the
TCP, are the translational output variables (X, Y, Z). In a six-DOF manipulator, the spatial
orientation of such a system is given by the rotational output variables of the MP, the three
Euler angles (ϕ, θ, ψ), in their ZYZ version. In this moving frame, the position of the nodes
where KC are attached to the MP are given by constant coordinates (xpi, ypi, zpi).
A KC can be considered as an open limb with a large variety of topologies. In this example
only RSS and PSS cases, shown in Fig. 2, appear. In fully-parallel manipulators, the number
of KC is equal to the number of DOF and thus, each KC has a single actuated joint. Actu-
ated joints are underlined and define input variables, denoted as qi. Nodes where KC are
attached to the MP are denoted by pi = [Xpi, Ypi, Zpi]. Nodes fixed to the base frame are
fi = [X f i, Yf i, Z f i]. For the PSS KC, to define the fixed sliding direction two nodes are used, fi

and gi = [Xgi, Ygi, Zgi]. Finally, intermediate nodes, those whose position is different accord-
ing to the IKP configuration, are given by ai = [Xai, Yai, Zai]. Further constant parameters are
also considered, e.g. magnitudes like Ri, Li...
The workspace is computed using a hybrid discrete-analytical procedure. The complete
workspace of the manipulator depicted in Fig. 3 is a six-dimensional continuum entity. The
method presented in (Macho et al., 2009) makes an approximation of the actual continuum by
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i

k

j

W

v

u

TCP (X,Y,Z)

(xpi,ypi,zpi)

(a) Relative reference system

θ

ϕ

ψ

Pi

(b) Euler angles

Fig. 5. Output variables defining the pose of the MP

a discretization of this real domain. On each point of such a discretized workspace, however,
all calculations are done analytically.
The grid of discrete positions can be configured to the desired number of dimensions. Each
dimension of such a grid contains an output variable to be incremented. All the remaining
output variables, those not considered in the grid, will maintain a constant value. For ex-
ample in Fig. 3, the case under analysis, a three-dimensional grid will be configured. Each
dimension will increment one of the translation output variables (X, Y, Z). This way, since all
the rotational output variables (ϕ, θ, ψ) will maintain a constant value, the constant orienta-
tion workspace of the manipulator will be computed. The constant orientation workspace is a
three-dimensional subspace of the complete six-dimensional workspace. But the reader must
remember that the constant orientation workspace of the manipulator in Fig. 3 is the total
workspace of the original manipulator depicted in Fig. 1.
The most efficient method for providing the discrete candidate poses to the workspace is
based on the propagation of a wave front. Starting from the pose where the manipulator
is initially assembled, since this pose evidently belongs to the workspace. New posses, poten-
tially belonging to the workspace, will be generated in the surroundings of those which have
already provided satisfactory results, as shown schematically in Fig. 6 for a two-dimensional
case.

Fig. 6. Schematic advance of a wave front
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θ

ϕ

ψ

The increment step for each DOF of the MP considered in the grid has to be defined. New
candidate poses will be generated by incrementing each of the output variables considered,
separately and in both senses, increasing and decreasing. This provides propagating capabil-
ity in all directions of the domain comprising the subset of the workspace being computed.
Each candidate pose will be tested to know if it has to be added to the workspace or not. The
final result will be the workspace connected to the starting pose.
To check if a candidate pose belongs or not to the workspace, a verification of the IKP solution
existence is performed. As this has to be done on a large number of poses, the most efficient
method, the analytical one, has been chosen. Once the MP has been positioned according to
the values of the output variables given by a point on the discrete grid, such a pose belongs to
the workspace if and only if all KC can be physically assembled. As the IKP for parallel robots
is an uncoupled problem, each CK is now considered as an independent sub-mechanism. The
whole manipulator can be assembled when all KC can be assembled individually.
Once the MP is positioned in a specific location, the coordinates of the nodes at the end-joints
pi of each KC are defined. These positions and the KC dimensions are the data necessary
to first check the existence of solution, and afterwards solve the IKP. As each KC is treated
separately, next will be shown the algorithms applied to the two types of KC involved in the
present manipulator,shown in Fig. 2.

• PSS KC: node ai is located at the two possible intersections of a sphere centered at pi,
with radius Ri and a line between points fi and gi.

• RSS KC: node ai is located at the two possible intersections of a sphere centered at pi,
with radius Ri and a circumference centered at fi, with axis ei and radius Li.

In Fig. 7-(a) is shown the result of this computation.

4. Singularity analysis

4.1 Velocity problem

The previous result still has not all the information required to plan a safe motion. Singular-
ity maps will be traced by carrying out a kinematic analysis of the positions obtained in the
previous step. A systematic method to obtain the corresponding DKP and IKP Jacobian ma-
trices has been developed. These matrices come from performing the derivatives with respect
to time on the position equations. In fully-parallel manipulators, since the number of DOF
coincides with the number of KC, a position equation will be posed for each KC.
This position equation is specific for each KC topology and it is called characteristic equation.
It is posed always in the same systematic way, in function of three types of parameters, the
coordinates of the node attached to the MP (Xpi, Ypi, Zpi) the input variable or actuator po-
sition (qi) and the dimensional parameters, (Ri, Li, ...), including here also the coordinates of
fixed nodes (X f i, Yf i, Z f i, ...). This way, each KC is initially considered an independent sub-
mechanism with its own position equation. In the case of RSS and PSS KC, the characteristic
equation, fi = 0, is given by Equation 1. The difference between both types of KC lies in the
expressions ai(qi), the coordinates of the node ai in function of the input variable.

fi = (Xpi − Xai(qi))
2 + (Ypi − Yai(qi))

2 + (Zpi − Zai(qi))
2 − Ri

2 = 0 (1)

Next step consists in performing the assembly of these equations to the output variables,
which is the application of the physical assembly of KC to the MP. This mathematical assem-
bly is performed by substituting in the characteristic equations fi, the end joint coordinates

www.intechopen.com



Robot Manipulators, New Achievements584

(a)

KC1

KC2

KC3

KC1

(b)

Fig. 7. Workspace

(Xpi, Ypi, Zpi), as functions of the output variables X = (X, y, Z, ϕ, θ, ψ). Taking into account
Fig. 5, these functions are given in Equation 2.







Xpi

Ypi

Zpi







=







X
Y
Z







+





cϕ −sϕ 0
sϕ cϕ 0
0 0 1









cθ 0 sθ
0 1 0

−sθ 0 cθ









cψ −sψ 0
sψ cψ 0
0 0 1











xpi

ypi

zpi







(2)
The resulting system of six non-linear equations is dependent on the six output variables Xi

and the six input variables qi. By differentiating this system with respect to time, the veloc-
ity equations are obtained. This linear system of equations can be expressed in the matrix
form given by Equation 3, being those matrices the DKP and IKP Jacobian (JDKP and JIKP

respectively).

[

∂f

∂X

]

Ẋ =

[

−
∂f

∂q

]

q̇ (3)

4.2 DKP Jacobian matrix

To pose JDKP, the derivatives with respect to all output variables must be considered, inde-
pendently from those chosen to compute a subset of the complete workspace. Since the actual
auxiliary manipulator is a six DOF robot, the derivatives of the position equations with re-
spect to the three translational output variables (X, Y, Z) and with respect to the three angular
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ones (ϕ, θ, ψ) have to be performed, although just the translational variables have been incre-
mented in the discrete grid to compute the constant orientation workspace.
Each element aij of JDKP in Equation 3 is given by:

aij =
∂ fi

∂Xj
=

∂ fi

∂Xpi

∂Xpi

∂Xj
+

∂ fi

∂Ypi

∂Ypi

∂Xj
+

∂ fi

∂Zpi

∂Zpi

∂Xj
(4)

On the one hand appear the partial derivatives of the position equations fi with respect to the
end-joint coordinates (Xpi, Ypi, Zpi), which can be directly obtained from Equation 1. On the
other hand, the partial derivatives of such coordinates with respect to the output variables Xj

are independent from fi and they can be obtained from Equation 2. For translational output
variables (X, Y, Z) those expressions are immediate:

∂Xpi

∂X
= 1

∂Xpi

∂Y
= 0

∂Xpi

∂Z
= 0 (5)

∂Ypi

∂X
= 0

∂Ypi

∂Y
= 1

∂Ypi

∂Z
= 0 (6)

∂Zpi

∂X
= 0

∂Zpi

∂Y
= 0

∂Zpi

∂Z
= 1 (7)

>From Equation 1, considering Equation 5, Equation 6 and Equation 7, the Equation 4 for the
three translational variables leads to:

∂ fi

∂X
= Xpi − Xai (8)

∂ fi

∂Y
= Ypi − Yai (9)

∂ fi

∂Z
= Zpi − Zai (10)

However for the three rotational output variables (ϕ, θ, ψ) more complex expressions will
be generated. As these expressions have to be evaluated in each of the numerous postures
comprising the discretized workspace, they must be optimized as much as possible, regarding
the computational cost. Firstly, applying Equation 5, Equation 6 and Equation 7, the Equation
4 for orientation variables is transformed into:

∂ fi

∂ϕ
=

∂ fi

∂X

∂Xpi

∂ϕ
+

∂ fi

∂Y

∂Ypi

∂ϕ
+

∂ fi

∂Z

∂Zpi

∂ϕ
(11)

∂ fi

∂θ
=

∂ fi

∂X

∂Xpi

∂θ
+

∂ fi

∂Y

∂Ypi

∂θ
+

∂ fi

∂Z

∂Zpi

∂θ
(12)

∂ fi

∂ψ
=

∂ fi

∂X

∂Xpi

∂ψ
+

∂ fi

∂Y

∂Ypi

∂ψ
+

∂ fi

∂Z

∂Zpi

∂ψ
(13)

In (Macho et al., 2009) are obtained the following expressions:
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∂Xpi

∂ϕ
= −(Ypi − Y) (14)

∂Ypi

∂ϕ
= Xpi − X (15)

∂Zpi

∂ϕ
= 0 (16)

∂Xpi

∂θ
= cos ϕ(Zpi − Z) (17)

∂Ypi

∂θ
= sin ϕ(Zpi − Z) (18)

∂Zpi

∂θ
= − sin ϕ(Ypi − Y)− cos ϕ(Xpi − X) (19)

∂Xpi

∂ψ
= − cos θ(Ypi − Y) + sin ϕ sin θ(Zpi − Z) (20)

∂Ypi

∂ψ
= cos θ(Xpi − X)− cos ϕ sin θ(Zpi − Z) (21)

∂Zpi

∂ψ
= sin θ[cos ϕ(Ypi − Y)− sin ϕ(Xpi − X)] (22)

4.3 IKP Jacobian

For fully-parallel manipulators, JIKP is diagonal. Each term of such diagonal is associated
with one KC and it is given by the derivative of the characteristic equation fi with respect to
to its input variable qi. Therefore, |JIKP| vanishes, producing an IKP singularity, whenever
any of the diagonal terms does. This means that all KC can be considered independent sub-
mechanisms capable of separately causing IKP singularities.
It would be useful if the values of different Jacobian terms were comparable among them.
Thus, given a posture of the manipulator, which KC is closer to produce an IKP singularity
could be determined. To do this a normalization of these terms has been implemented.
Instead of the actual value of the derivative ∂ fi/∂qi, another parameter, called normalized
term of the JIKP, ‖∂ fi/∂qi‖, will be used. This parameter has a specific expression for each
type of KC and its value is directly proportional to the corresponding term of the |JIKP|, and
thus, vanishes at the IKP singular configuration of the KC. But its value is limited to 1 at the
furthest position from the singularity. Next will be shown the expressions of ‖∂ fi/∂qi‖ for the
KC comprising the manipulator under analysis:

• PSS KC:
∥

∥

∥

∥

∂ fi

∂qi

∥

∥

∥

∥

=
(pi − ai) · (fi − gi)

Ri Li
(23)

• RSS KC:
∥

∥

∥

∥

∂ fi

∂qi

∥

∥

∥

∥

=
[(ai − fi)× ei] · (pi − ai)

Ri Li
(24)
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IKP singularities occur whenever any KC reaches an extreme position, thus they define the
workspace boundary. Taking this into account, it is easy to check all discrete postures added
to the workspace in order to know which of them are closer to one of these singularities. If one
posture is surrounded completely by neighboring positions in the discrete grid, it is inside the
workspace, whereas if it lacks some neighbor it is in a border and hence it is an approximate
IKP singularity.
Once one of these postures has been identified, comparing the values of the normalized ele-
ments corresponding to all KC, it is possible to know which KC has produced the singularity,
that one with the smaller value. This result is depicted in Fig. 7-(b). This information will be
necessary later on to plan working mode transitions in the enlarged operational workspace.

4.4 DKP singularity maps and workspace singularity-free regions

The mapping of |JDKP| on the workspace provides an approximate singularity map. In fact,
the change in the sign of |JDKP| is the best way to detect a transition over a singular pos-
ture. This phenomenon has been used to obtain DKP singular postures within the computed
workspace. Whenever two contiguous postures in the discrete grid with different signs are
found, they are considered approximated singularities. Once all approximated singular pos-
tures are found, there is an easy way to refine the singular locus. Taking every two neighbor-
ing singular postures with opposite signs, by means of a linear interpolation that makes use
of the actual values of the |JDKP|, it can be placed an intermediate posture at the presumed
null value of the determinant, as shown schematically in Fig. 8.

Fig. 8. DKP singularity refinement

DKP singularity locus divides the workspace into a set of regions free of internal singulari-
ties. For a three-dimensional workspace, like the one depicted in Fig. 7, the loci of postures
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where the |JDKP| vanishes defines a spatial surface which completely splits the aforemen-
tioned workspace into regions associated with different signs of such a kinematic indicator.
These correspond with different assembly modes of the manipulator.
In JDKP appear the coordinates of nodes ai. For the same pose of the MP, the coordinates of
such points are different for each KC IKP configuration. Therefore, each working mode of the
manipulator has its own DKP singularity loci. This result is depicted in Fig. 9. The resulting
workspace singularity-free regions associated to |JDKP| positive and negative are the volumes
depicted in Fig. 10.

(a) WMppp (b) WMnpp (c) WMpnp (d) WMppn

(e) WMnnn (f) WMpnn (g) WMnpn (h) WMnnp

Fig. 9. DKP singularity surfaces for each working mode. Loci of postures with |JDKP| = 0

5. Enlarged operational workspace

As mentioned before, it is a common practice to define as the basic operational workspace one
of these singularity-free regions, i.e., the region of the workspace associated with a working
mode, in which the manipulator keeps the same assembly mode configuration. The robot
will have its home posture in such a region and will be kept inside it all the time. However,
it is also possible to consider the union of singularity-free regions associated with the same
assembly mode. This requires a path planning implementing transitions between working
modes, which will lead to an enlarged operational workspace.
Therefore, finally, there is a workspace, shown in Fig. 7, crossed by DKP singularities that
must be avoided, shown in Fig. 9, which divide that workspace into a set of singularity-free
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(a) WMppp (b) WMnpp (c) WMpnp (d) WMppn

(e) WMnnn (f) WMpnn (g) WMnpn (h) WMnnp

|JDKP| ≥ 0

(i) WMppp (j) WMnpp (k) WMpnp (l) WMppn

(m) WMnnn (n) WMpnn (o) WMnpn (p) WMnnp

|JDKP| ≤ 0

Fig. 10. Workspace singularity-free regions
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regions, Fig. 10, that are obviously smaller than the complete workspace. Alternatively, the en-
larged operational workspace associated with an assembly mode, also being usually smaller
than the total workspace, since comes from the union of several singularity-free regions, is
normally larger than any of such composing regions, and thus, can be defined as the largest
set of postures that the manipulator can reach without the blockade of the actuators.
The analysis of the operational workspace done in the obtained three-dimensional workspace
may result confusing. In order to understand these concepts clearly, only a plane section
of the workspace will be considered. A bi-dimensional analysis will be much more illustra-
tive and the explained ideas can be immediately extrapolated to the three-dimensional entity.
Remember that according to the procedure described, just the desired output variables are
incremented in the discrete grid. So, configuring the workspace computation grid only in
variables (Y, Z), a planar slice, for a constant value of the output variable X = 0, of the whole
workspace will be obtained, as shown in Fig. 11.

y

z

Fig. 11. Planar slice of the workspace for a constant value of X

Thus, without losing generality, it will be assumed that the robot moves in such a way that
the TCP is always on that plane. In this planar case, singularity loci are defined by curves.
As shown in Fig. 11, the singularity curves in the bidimensional case are the intersections
between the considered plane and the general three-dimensional singularity surfaces. In Fig.
12 are shown the workspace singularity-free regions associated with different signs of |JDKP|
for the eight existing working modes.
The enlarged, or maximal, operational workspace associated to an assembly mode will be ob-
tained overlapping the singularity-free regions, corresponding to all existing working modes,
associated with that assembly mode. This result is shown in Fig. 13. As it can be observed,
obtained enlarged operational workspaces do not fill completely the complete workspace, but
the not reachable areas are just quite small corners (less than a 5% of the whole surface).
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Fig. 12. Workspace singularity-free regions in a bi-dimensional section

5.1 Path planning inside the maximal operational workspace

After having obtained the singularity-free regions of the workspace associated with all work-
ing and assembly modes, the strategies to enlarge the accessible space are easier to plan and
implement. To do this, it is necessary to know and use, as said before, IKP singularities,
because they enable transitions between regions associated to different working modes. By
virtue of this knowledge, appropriate paths can be defined to fulfill with desired motion plan-
ning tasks.
As an example let’s suppose that the manipulator is initially configured in the WMppp work-
ing mode, with the TCP located in the initial position, pi, shown in Fig. 14-(a). This posture
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(a) |JDKP| ≤ 0 (b) |JDKP| ≥ 0

Fig. 13. Maximal operational workspaces associated with existing assembly modes. Superim-
position of all singularity-free regions associated with the same sign of |JDKP|

is located in a singularity-free region associated with |JDKP| ≤ 0 assembly mode. According
to this, in Fig. 14-(b) all regions associated with |JDKP| ≥ 0 have been removed. But the re-
maining workspace is still composed by several disjoint singularity-free regions, all of them
associated with |JDKP| ≤ 0. Although all of them have been initially considered as belonging
to the same assembly mode, the current elemental operational workspace is given by the the
region that contains the TCP location, i.e., that one depicted in Fig. 14-(c).
>From this initial region, on reaching the IKP singularity curve highlighted with a dashed line
in Fig. 15-(a), the KC3 in Fig. 1 can change its IKP configuration. Thus, the manipulator will
change its working mode from WMppp to WMppn. At that moment DKP singularity curves,
which are specific for each working mode, change and the workspace becomes divided into
new singularity-free regions. The new region where the robot can move without losing control
is depicted in Fig. 15-(b). The transition from one region to another is be performed always
via the IKP singularity locus due to the KC that changes its configuration. In fact those curves
(surfaces in the case of the general three-dimensional workspace) are completely shared by
the regions connected, as shown in Fig. 15-(c). Once the new region has been reached, new
postures in the workspace are attainable, for example p f in Fig. 15-(b). Also some postures
that were attainable in the starting region cannot be directly reached now, like pi.
The overlapping of the two regions corresponding to WMppp and WMppn working modes,
Fig. 15-(c), almost fill the enlarged operational workspace corresponding to |JDKP| ≤ 0, in-
dicated in Fig. 13-(a). But lacking postures can be reached making another working mode
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pi

(a)

pi

(b)

pi

(0,0,600)

(c)

Fig. 14. Initial posture and corresponding singularity-free region

change since they are inside the region corresponding to the WMnpp working mode. Thus,
starting from the same initial region, associated with the WMppp working mode, on reaching
a posture over the IKP singularity curve highlighted with dashed line in Fig. 15-(d), the KC1

will change its configuration form p to n to perform the desired transition between working
modes. Doing this, the region depicted in Fig. 15-(e) is reached, enlarging the initial opera-
tional workspace as shown in Fig. 15-(f).
In this example, just overlapping three singularity-free regions, those corresponding to
WMppp, WMppn and WMnpp working modes, the maximal enlarged operational workspace
associated with |JDKP| ≤ 0 is fulfilled. Nevertheless, additional transitions connecting all
other working mode regions are feasible. In Fig. 16 are shown all the possibilities starting
from the initial region depicted in Fig. 14-(c). Next to the connection lines displayed is indi-
cated which KC changes its configuration to make the transition between connected regions.
Note that there are some regions in Fig. 16 which cannot be reached (not colored regions)
and some working mode changes that are not possible (dashed connection lines) because the
corresponding initial and final regions do not share the adequate IKP singularity curve.
In consequence, operational workspace enlargement capability may depend on the region
where the manipulator is initially configured. For example, if the starting region was the one
marked in Fig. 18, only the color filled regions will be accessible, resulting on an operational
workspace, shown in Fig. 19 smaller than the one achieved in Fig. 17. This fact has to be taken
into account when making the path planning.
A transition scheme, like the one shown in Fig. 16, is very useful to perform the path plan-
ning task. For example, let’s suppose that the manipulator has to from the initial posture
pi, to the final posture p f shown in Fig. 20-(a). Let’s suppose also that the manipulator will
work according to the |JDKP| ≤ 0 assembly mode. Since both postures belong tho the en-
larged operational workspace, it is known in advance that the robot will be able to join them
in a controlled way. And finally, let’s suppose that there are some technical hypothetical rea-
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(a)

pi

pf

(b) (c)

Transition from WMppp to WMppn (KC3 changes from p to n)

(d) (e) (f)

Transition from WMppp to WMnpp (KC1 changes from p to n)

Fig. 15. Transitions between singularity-free regions trough IKP singularities

sons which impose that the the manipulator must start in the initial posture configured in the
WMppp working mode and must reach the final posture configured in the WMnnn working
mode. In Fig. 20-(b) and (c) are shown the initial and final singularity-free regions, containing
the initial and final postures, which must be joined making working mode changes.
The map in Fig. 16 allows to know easily how to go from pi to p f verifying also the prescribed
initial and final working modes. Note that as the three KC have to change their configuration,
at least three transitions will be required. There are several possibilities, or ways, for joining
the initial and final regions. Just one will be depicted in Fig. 21:

• Starting form the initial position pi in the WMppp working mode, the TCP of the ma-
nipulator goes to the intermediate position pg1 over the IKP singularity curve caused
by KC3 to make transition to the WMppn working mode, Fig. 21-(a).
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WMppn

KC3

WMppp WMnpp

WMnpn WMpnp

WMpnn WMnnn WMnnp

KC3

KC3

KC3

KC1

KC1

KC1

KC1

KC2
KC2

KC2

KC2

Fig. 16. Transitions among singularity-free regions associated with different working modes

• On reaching the new region, the motion has to continue inside it from pg1, to the sec-
ond intermediate position pg2 over the IKP singularity curve caused by KC2 to make
transition to the WMpnn working mode, Fig. 21-(b).

• On reaching the third region, the motion has to continue inside it from pg2, to the third
intermediate position pg3 over the IKP singularity curve caused by KC1 to make tran-
sition to the WMnnn working mode, Fig. 21-(c).

• Finally, the motion can evolve inside the final region to the final posture p f , Fig. 21-(d).

All motions have been done without reaching any DKP singularity.
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Fig. 17. Overlapping of all joined singularity-free regions. Enlarged operational workspace

Generalizing the described process, to go from a singularity-free region associated with a
working mode WMi,j,..,k, to another region associated with WMl,m,..,n, they must be done con-
secutively as many elemental transitions as kinematic chains have to change their configura-
tion, namely:

• from WMi,j,..,k to WMl,j,..,k

• from WMl,j,..,k to WMl,m,..,k

• . . .

• from WMl,m,..,k to WMl,m,..,n

This way any pose inside the operational workspace can be reached without blockade of ac-
tuators. All these procedures can be generalized directly to the complete three-dimensional
workspace. In Fig. 22 are shown the enlarged operational workspaces associated with the two
existing assembly modes. A size comparison (in volume) among the complete workspace,
Fig. 7, the largest singularity-free region (WMnpn, Fig. 10-(o)) and the enlarged operational
workspace associated with the assembly mode |JDKP| ≤ 0, Fig. 22-(b) can be done resulting
on:

• Complete workspace: 100%

• Largest singularity-free region: 75%

• Enlarged operational workspace: 97%

6. Conclusions

This chapter has described and illustrated the strategy of obtaining enlarged workspaces con-
necting all working modes and keeping one of the parallel manipulator assembly modes.
It has been used a procedure which is able to obtain all the singularity-free regions of the
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Fig. 18. Feasible transitions starting from another region

robot workspace, taking into account that each working mode presents a different direct kine-
matic problem singularity locus. The direct singularities imply that a dependency relation
appears among actuator velocities and separate assembly modes, while the inverse singular-
ities, which define the workspace boundaries and separate working modes, can be reached
without loss of control. Therefore, it is possible to make use of the inverse singularities to
transit between different singularity-free regions associated with the same assembly mode.
Joining all the regions associated with the same assembly mode for all working modes, the
largest set of postures that the manipulator can reach is obtained. In order to make an efficient
path planning within this enlarged workspace, the workspace borders allowing the transi-
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Fig. 19. Joined singularity-free regions. Enlarged operational workspace starting from another
region

pi

pf

(a)

pi

(0,0,600)

(b)

pf

(0,0,-400)

(c)

Fig. 20. Initial and final postures in the enlarged operational workspace and in their
singularity-free regions
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pi

pg1

(a)

pg1

pg2

(b)

pg2

pg3

(c)

pf
pg3

(d)

Fig. 21. Path planning

(a) |JDKP| ≤ 0 (b) |JDKP| ≥ 0

Fig. 22. Enlarged three-dimensional workspace

tions between the different working modes need to be known and used. This is the first time
that the systematic general purpose procedure has been applied to a Delta like manipulator by
means of an auxiliary equivalent robot.
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