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Abstract 
This paper analyzes the dynamic performance of two cooperative robot manipulators. It is 
studied the implementation of fractional-order algorithms in the position/force control of 
two cooperating robotic manipulators holding an object. The simulations reveal that 
fractional algorithms lead to performances superior to classical integer-order controllers. 

 
1. Introduction     

Two robots carrying a common object are a logical alternative for the case in which a single 
robot is not able to handle the load. The choice of a robotic mechanism depends on the task 
or the type of work to be performed and, consequently, is determined by the position of the 
robots and by their dimensions and structure. In general, the selection is done through 
experience and intuition; nevertheless, it is important to measure the manipulation 
capability of the robotic system (Y. C. Tsai & A.H Soni., 1981) that can be useful in the robot 
operation. In this perspective it was proposed the concept of kinematic manipulability 
measure (T. Yoshikawa, 1985) and its generalization to dynamical manipulability (H. Asada, 
1983) or, alternatively, the statistical evaluation of manipulation (J. A. Tenreiro. Machado & 
A. M. Galhano, 1997). Other related aspects such as the coordination of two robots handling 
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objects, collision avoidance and free path planning have been also investigated (Y. 
Nakamura, K. Nagai, T. Yoshikawa, 1989) but they still require further study.  
With two cooperative robots the resulting interaction forces have to be accommodated and 
consequently, in addition to position feedback, force control is also required to accomplish 
adequate performances (T. J. Tarn, A. K. Bejczy, P. K., 1996) and (N. M. Fonseca Ferreira, J. 
A. Tenreiro Machado, 2000) and (A. K. Bejczy and T. Jonhg Tarn, 2000). There are two basic 
methods for force control, namely the hybrid position/force and the impedance schemes. 
The first method (M. H. Raibert and J. J. Craig, 1981) separates the task into two orthogonal 
sub-spaces corresponding to the force and the position controlled variables. Once 
established the subspace decomposition two independent controllers are designed. The 
second method (N. Hogan, 1985) requires the definition of the arm mechanical impedance. 
The impedance accommodates the interaction forces that can be controlled to obtain an 
adequate response. Others authors (Kumar, Manish; Garg, Devendra 2005, Ahin Yildirim, 
2005, Jufeng Peng, Srinivas Akella, 2005) present advance methodologies to optimize the 
control of two cooperating robots using the neural network architecture and learning 
mechanism to train this architecture online. This paper analyzes the manipulation and the 
payload capability of two arm systems and we study the position/force control of two 
cooperative manipulators, using fractional-order (FO) algorithms (J. A. Tenreiro Machado, 
1997) and (N. M. Fonseca Ferreira & J. A. Tenreiro Machado 2003, 2004 and 2005).  
Bearing these facts in mind this article is organized as follows. Section two presents the 
controller architecture for the position/force control of two robotic arms. Based on these 
concepts, section three develops several simulations for the statistical analysis and the 
performance evaluation of FO and classical PID controllers, for robots having several types 
of dynamic phenomena at the joints. Finally, section four outlines the main conclusions. 

 
2. Control of Two Arms  

The dynamics of a robot with n links interacting with the environment is modelled as: 
 

 (q)FJG(q))qC(q,qH(q)τ T   
(1) 

 
where is the n  1 vector of actuator torques, q is the n  1 vector of joint coordinates, 
H(q) is the n  n inertia matrix, )qC(q,   is the n  1 vector of centrifugal/Coriolis terms and 
G(q) is the n  1 vector of gravitational effects. The n  m matrix JT(q) is the transpose of the 
Jacobian of the robot and F is the m  1 vector of the force that the (m-dimensional) 
environment exerts in the gripper. 
We consider two robots with identical dimensions (Fig. 1). The contact of the robot gripper 
with the load is modelled through a linear system with a mass M, a damping B and a 
stiffness K (Fig. 2). The numerical values adopted for the RR (where R denote rotational 
joints) robots and the object are m1 = m2 = 1.0 kg, l1 = l2 = lb  = l0 = 1.0 m, 0 = 0 deg, B1 = B2 = 
1 Nsm1 and K1 = K2 = 104 Nm-1. 
 

 

 

 
Fig. 1. Two RR robots working cooperation for the manipulation of an object with length l0 
and orientation 0. 

   
 
Fig. 2. The contact between the robot gripper and the object. 
 
The controller architecture (Fig. 3), is inspired on the impedance and compliance schemes. 
Therefore, we establish a cascade of force and position algorithms as internal an external 
feedback loops, respectively, where xd and Fd are the payload desired position coordinates 
and contact forces.  
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Fig. 3. The position/force cascade controller. 
 
In the position and force control loops we consider FO controllers of the type C(s) = Kp + 
Ks, 1 <  < 1, that are approximated by 4th order discrete-time Pade expressions (ai, bi, , 
k = 4): 
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We compare the response with the classical PDPI algorithms therefore, in the position and 
force loops we consider, respectively.  
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(4) 

 
Both algorithms were tuned by trial and error, having in mind getting a similar performance 
in the two cases (Tables 1 and 2). 
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(a) Position controller  (b) Force controller 
Table 1. The parameters of the position and force FO controllers. 
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2 250 10 2.5 10 5.0 10 10.0 10 
(a) Position controller (b) Force controller 

Table 2. The parameters of the position and force PDPI controllers. 

 
3. Analysis of the system performance 
 

In order to study the system dynamics we apply a small amplitude rectangular pulse yd at 
the position reference and we analyze the system response. 
The simulations adopt a controller sampling frequency fc = 10 kHz, contact forces of the 
grippers {Fxj, Fyj}  {0.5, 5} Nm, a operating point of the center of the object A  {x, y}  {0, 1} 
and a load orientation of  = 0º. 
In a first phase we consider robots with ideal transmissions at the joints. Figure 4 depicts the 
time response of robot A under the action of the FO and PDPI algorithms. 
In a second phase (figure 5) we analyze the response of robots with dynamic backlash at the 
joints. For the ith joint (i = 1, 2), with gear clearance hi, the backlash reveals impact 
phenomena between the inertias, which obey the principle of conservation of momentum 
and the Newton law: 

   
imii

imimimiii
i JJ

εJqεJJqq



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im JJ

εJJqεJqq
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
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 1  (6) 

 
where 0    1 is a constant that defines the type of impact (  0 inelastic impact,  1 
elastic impact) and iq  and imq ( iq  and imq ) are the velocities of the ith joint and motor 
before (after) the collision, respectively. The parameter Jii (Jim) stands for the link (motor) 
inertias of joint i. The numerical values adopted are hi = 1.8 4 rad and i  0.8 (i = 1, 2). 

In a third phase (figure 6) we study the RR robot with compliant joints. For this case the 
dynamic model corresponds to model (1) augmented by the equations: 

 qqKqBqJτ mmmmmm    (7) 

       qGqq,CqqJqqK mm    (8) 
 
where Jm, Bm and Km are the n  n diagonal matrices of the motor and transmission inertias, 
damping and stiffness, respectively. In the simulations we adopt Kmi = 2 106 Nm rad1 and 
Bmi = 104 Nms rad1 (i = 1, 2). 
The time response characteristics (Tables 3 and 4), namely the percent overshoot PO%, the 
steady-state error ess, the peak time Tp and the settling time Ts reveal that, if we consider 
similar performances for robots with ideal transmissions at the joints, the FO is superior to 

www.intechopen.com



Two Cooperating Manipulators with Fractional Controllers 283  

 

 
Fig. 3. The position/force cascade controller. 
 
In the position and force control loops we consider FO controllers of the type C(s) = Kp + 
Ks, 1 <  < 1, that are approximated by 4th order discrete-time Pade expressions (ai, bi, , 
k = 4): 

 












 4

0

4

4

0

4

k

k
k

k

k
k

p

zb

za
KKzC 

 (2) 

 
We compare the response with the classical PDPI algorithms therefore, in the position and 
force loops we consider, respectively.  
 

  sKKsC dp   
  )1( 1 zKKzC dp  

(3) 

 
s

KKsC ip
1

  

 
1


z
zKKzC ip

 

(4) 

 
Both algorithms were tuned by trial and error, having in mind getting a similar performance 
in the two cases (Tables 1 and 2). 
 

i Kp K   Kp K 
1 0.1259 1.555 10 

2
1

 
 10.59 2.0 10 

5
1


 

2 0.1259 1.555 10 
2
1

 
 10.59 2.0 10 

5
1


 

(a) Position controller  (b) Force controller 
Table 1. The parameters of the position and force FO controllers. 
 
 

Position 
Controlle
r 

Force 
Controlle
r 

CP 

Robots 

Position 
Velocity 

Object 

Force 
F x 




CF 
 

Kinematic
s 
Kinematics 

Po
si

tio
n/

 F
or

ce
 

Tr
aj

ec
to

ry
 P

la
nn

in
g 

 

i Kp Kd Kp Ki 
1 250 10 2.5 10 5.0 10 10.0 10 
2 250 10 2.5 10 5.0 10 10.0 10 
(a) Position controller (b) Force controller 

Table 2. The parameters of the position and force PDPI controllers. 

 
3. Analysis of the system performance 
 

In order to study the system dynamics we apply a small amplitude rectangular pulse yd at 
the position reference and we analyze the system response. 
The simulations adopt a controller sampling frequency fc = 10 kHz, contact forces of the 
grippers {Fxj, Fyj}  {0.5, 5} Nm, a operating point of the center of the object A  {x, y}  {0, 1} 
and a load orientation of  = 0º. 
In a first phase we consider robots with ideal transmissions at the joints. Figure 4 depicts the 
time response of robot A under the action of the FO and PDPI algorithms. 
In a second phase (figure 5) we analyze the response of robots with dynamic backlash at the 
joints. For the ith joint (i = 1, 2), with gear clearance hi, the backlash reveals impact 
phenomena between the inertias, which obey the principle of conservation of momentum 
and the Newton law: 

   
imii

imimimiii
i JJ

εJqεJJqq





1  (5) 

   
imii

iiimimii
im JJ

εJJqεJqq





 1  (6) 

 
where 0    1 is a constant that defines the type of impact (  0 inelastic impact,  1 
elastic impact) and iq  and imq ( iq  and imq ) are the velocities of the ith joint and motor 
before (after) the collision, respectively. The parameter Jii (Jim) stands for the link (motor) 
inertias of joint i. The numerical values adopted are hi = 1.8 4 rad and i  0.8 (i = 1, 2). 

In a third phase (figure 6) we study the RR robot with compliant joints. For this case the 
dynamic model corresponds to model (1) augmented by the equations: 

 qqKqBqJτ mmmmmm    (7) 

       qGqq,CqqJqqK mm    (8) 
 
where Jm, Bm and Km are the n  n diagonal matrices of the motor and transmission inertias, 
damping and stiffness, respectively. In the simulations we adopt Kmi = 2 106 Nm rad1 and 
Bmi = 104 Nms rad1 (i = 1, 2). 
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the PDPI algorithms at the cases of robots with joint dynamic phenomena. I conclusion the 
FO have good dynamic response for position and force perturbations. 
 

No C(s) PO% ess[mm] Tp[s] Ts[s] 

1 
PDPI 43.0 5.0 10 2.1 10 15.0 10 
FO 39.0 0.9 10 3.6 10 15.0 10 

2 
PDPI 0.2 2.7 10 12.2 10 12.0 10 
FO 0.3 3.5 10 10.0 10 10.0 10 

3 
PDPI 0.3 64.0 10 16.0 10 16.0 10 
FO 0.3 50 10 8.0 10 8.0 10 

Table 3. Time response characteristics for a pulse yd at the robot A position reference. 
 

No C(s) PO% ess[mm] Tp[s] Ts[s] 

1 
PDPI 400.0 9.8 10 11.0 10 2.0 10 
FO 115.0 77.0 10 25.0 10 2.0 10 

2 
PDPI 400.0 9.8 10 15.0 10 10.0 10 
FO 100.0 77.0 10 10.0 10 4.0 10 

3 
PDPI 100.0 9.8 10 15.0 10 10.0 10 
FO 100.0 77.0 10 10.0 10  4.0 10 

Table 4. Time response characteristics for a pulseFd at the robot A force reference. 
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Fig. 4. Time response for robots A and B with ideal joints under the action of the FO and the 
PDPI algorithms for a pulse perturbation at the robot A position reference yd = 103 m and 
a payload with M = 1 kg, Bi = 10 Nsm1 and Ki = 103 Nm1. 
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the PDPI algorithms at the cases of robots with joint dynamic phenomena. I conclusion the 
FO have good dynamic response for position and force perturbations. 
 

No C(s) PO% ess[mm] Tp[s] Ts[s] 

1 
PDPI 43.0 5.0 10 2.1 10 15.0 10 
FO 39.0 0.9 10 3.6 10 15.0 10 

2 
PDPI 0.2 2.7 10 12.2 10 12.0 10 
FO 0.3 3.5 10 10.0 10 10.0 10 

3 
PDPI 0.3 64.0 10 16.0 10 16.0 10 
FO 0.3 50 10 8.0 10 8.0 10 

Table 3. Time response characteristics for a pulse yd at the robot A position reference. 
 

No C(s) PO% ess[mm] Tp[s] Ts[s] 

1 
PDPI 400.0 9.8 10 11.0 10 2.0 10 
FO 115.0 77.0 10 25.0 10 2.0 10 

2 
PDPI 400.0 9.8 10 15.0 10 10.0 10 
FO 100.0 77.0 10 10.0 10 4.0 10 

3 
PDPI 100.0 9.8 10 15.0 10 10.0 10 
FO 100.0 77.0 10 10.0 10  4.0 10 

Table 4. Time response characteristics for a pulseFd at the robot A force reference. 
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Fig. 4. Time response for robots A and B with ideal joints under the action of the FO and the 
PDPI algorithms for a pulse perturbation at the robot A position reference yd = 103 m and 
a payload with M = 1 kg, Bi = 10 Nsm1 and Ki = 103 Nm1. 
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Fig. 5. Time response for robots A and B with joints having backlash under the action of the 
FO and the PDPI algorithms for a pulse perturbation at the robot A position reference yd = 
0.1 m and a payload with M = 1 kg, Bi = 10 Nsm1 and Ki = 103 Nm1. 
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Fig. 6. Time response for robots A and B with joints having flexibility under the action of the 
FO and the PDPI algorithms for a pulse perturbation at the robot A position reference yd = 
0.1 m and a payload with M = 1 kg, Bi = 10 Nsm1 and Ki = 103 Nm1. 

 
4. Conclusion 
 

This paper studied the position/force control of two robots working in cooperation using 
fractional and integer order control algorithms. The system time response was analyzed for 
manipulators having several types of dynamical phenomena at the joints. The transient 
response of the system shows the superior performance of the FO controller. 
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