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1. Introduction     
 

This chapter presents the study and modelling of KR 6 KUKA Robot, of the Robotics 
Laboratory, Federal University of Rio de Janeiro, see fig 1. The chapter shows the CAD 
model (Computer Aided Design), the direct kinematics, the inverse kinematics and the 
inverse dynamical model. The direct kinematic is based in the use of homogeneous matrix. 
The inverse kinematics uses the quadratic equations model. The dynamical model is based 
on the use of Euler-Lagrange equations, using the D-H (Denavit-Hartenberg) algorithm and 
taking into account the inertia tensor, which was found with help of CAE tools (Computer 
Aided Engineering), On the other hand the Jacobian of robot manipulator is present, it‘s 
necessary for the kinematic control. The chapter finishes with the implementation of the 
inverse kinematic in one parallel processing platform and analyzes its performance. 
 

 
Fig. 1. KR 6  KUKA Robot, Robotics Laboratory, Federal University of Rio de Janeiro UFRJ. 
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Space movement representation 
For the representation of space movements there are several methods such as rotation 
matrix, vectors, quaternions, roll pitch and yaw, Euler angles, homogenous matrix, among 
others (Barrientos, 1997). The selected method used for the developing of the direct 
kinematic model in this work is the homogeneous matrix. The basic concepts for 
mathematical models formulations are:  
Homogeneous Matrix  
Homogeneous matrices are 4X4 matrixes, which can represent rotations, translations, scales 
and perspectives (Ollero, 2001). In general, the homogeneous matrices represent linear 
transformations. The general form is presented in equation (1) 
 

   
   

                   

3 3 3 1
1 3 1 1

R T
A

P E
                                                        (1) 

 
 3 3R   Corresponds to a matrix of three rows by three columns, representing rotations.  

 3 1T   Corresponds to an array of three rows by a column that represents translation.  

 3 1P   Represents a vector of a row of three columns representing the perspective.  

 1 1E   Corresponds to a scalar that represents the scale of the transformation. 

For this case 0
 
P  and 1E  

 
Principal homogeneous matrix 
Rotation around the Z axis, figure 2. 
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Fig. 2. Rotation around to axis Z. 
 
Translation Px, Py, Pz, figure 3. 
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Fig. 3.Translation  
 
The movements in the space are represented by a series of rotations and translations, these 
rotations and translations, can be represented as a homogeneous matrix multiplication. 

Direct Kinematics  
The direct kinematics is the robot kinematic model. In this model, the movements of the 
robot (coordinates of degrees of freedom) are given and the final positions are found. See 
Figure 4.  
 

 
Fig. 4. Direct Kinematics  
 
To find the direct kinematic model, using the homogeneous matrix method, is necessary to 
make the moves of coordinated system from the fixed base until the last link. For each 
movement, homogeneous matrices are obtained and the final result is the product of these 
matrices. 
 
Inverse kinematics  
The inverse kinematics seeks the coordinates of each degree of freedom based on the final 
position of the robot. Figure 4. 
 

 
Fig. 5. Inverse Kinematics  
 
The methods used are: the geometric method using the quadratic equation (Dutra, 2006) and 
the gradient method  
 
Path planning 
For the robot operation is necessary to identify different working positions, coordinates and 
the paths that allow performing a specific task. This work is makes with path planning 
methods. 
 
Dynamic  
In order to the robot control is necessary to know the dynamic model and formulate the 
dynamic control strategies. To find the dynamic model of the KUKA KR6 the Euler 
Lagrange model was used. (Kurfles, 2005). 
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Fig. 3.Translation  
 
The movements in the space are represented by a series of rotations and translations, these 
rotations and translations, can be represented as a homogeneous matrix multiplication. 
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make the moves of coordinated system from the fixed base until the last link. For each 
movement, homogeneous matrices are obtained and the final result is the product of these 
matrices. 
 
Inverse kinematics  
The inverse kinematics seeks the coordinates of each degree of freedom based on the final 
position of the robot. Figure 4. 
 

 
Fig. 5. Inverse Kinematics  
 
The methods used are: the geometric method using the quadratic equation (Dutra, 2006) and 
the gradient method  
 
Path planning 
For the robot operation is necessary to identify different working positions, coordinates and 
the paths that allow performing a specific task. This work is makes with path planning 
methods. 
 
Dynamic  
In order to the robot control is necessary to know the dynamic model and formulate the 
dynamic control strategies. To find the dynamic model of the KUKA KR6 the Euler 
Lagrange model was used. (Kurfles, 2005). 
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2. Modelling 
 

For the Robot modelling, CAD models and mathematical models were developed. The 
mathematical models are for the kinematics and dynamics of the manipulator and are 
presented below. 

 
2.1 CAD Model 
The Figure 6 shows the model developed in the CAD software Solid Edge®, based on the 
KR6 KUKA Robot of Robotics Laboratory at UFRJ, taking into account its main geometric 
characteristics.  
 

 
Fig. 6. CAD model of the KR6 KUKA Robot 

 
2.2 Direct Kinematics 
The manipulator kinematics model is based on the use of homogeneous matrix for this 
purpose; coordinated systems are located in a convention proposed by the authors. 
Supported by recommendations of the Denavit-Hartenberg algorithm (Denavit & 
Hartenberg, 1955). The convention adopted is: 

 On the spin axis of each joint, locate the z-axis direction such that positive rotations 
are counter clockwise. See Figure 7. 

 The x-axis is located parallel to each link, oriented to the follow coordinate system. 
See Figure 7.  

 
Fig. 7. Reference coordinate systems, for the KR6 KUKA Robot. 
 
The proposed convention, seeks to define all positive rotations of joints when the rotation 
direction is counter clockwise and to make the translations always on the x-axis in positive 
direction. 
The generated movements for going from one frame to another are mathematically 
represented by homogeneous matrix transformations and follow the particular geometry of 
the robot link to link: 

1.  R(Zo,θo)*T(Zo,L1) 
2.  T(Xo´,L2)*R(Xo´,π/2)*R(Zo´, π/2) 
3.  R(Z1,θ1)*T(X1,L3) *R(Z1´, -π/2) 
4.  R(Z2,θ2)*T(X2,L4) 

The full kinematic model is presented in equation (2): 
 

     
 

   

 



  

 

  

        
   

     
 



'
0 1 2

' '
1 1

'
1 3 1 2 2

2 4

, , ,

, , ,
2 2

, , ,
2

,

o o o

o o

T R Z T Z L T X L

R X R Z R Z

T X L R Z R Z

T X L

                                              (2) 

 
2.2 Inverse Kinematics 
To obtain the inverse kinematic model the geometry of the robot is used, using the quadratic 
equation method (Dutra, 2006), obtaining the solution for different configurations of the 
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2.2 Inverse Kinematics 
To obtain the inverse kinematic model the geometry of the robot is used, using the quadratic 
equation method (Dutra, 2006), obtaining the solution for different configurations of the 
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robot in closed form. The first step is to characterize the robot in a vectorial model, for any 
position, see Figure 8. 

 
Fig. 8. Vectorial model for inverse kinematics. 
 
Based on the figure 8, the vector sum is developed and the algebraic equations for each joint 
are obtained: 
For the joint 1 equation (3) 

 
   
 
 
 

2
1

1
4

2
B B ACSin

A
                                         (3) 
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   2 2 2 2

4 3D L L X Z                                                                                      

 

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2 2 2 2
3 3
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2 2 2
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4 4
4
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A X L Z L
B ZL D
C D X L

                                                           (4) 

For the joint 2 equation (5) 

 
   
  
 
 

2
1

2 1
4

2
b b acSin

a
                                             (5) 

 
were: 

 

   

 

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2 2 2 2
3 4

2 2 2 2
4 4

4
2 2 2

4

4 4
4

4

d L L X Z
a X L Z L
b ZL D
c d X L

                                                       (6) 

 

The above equations, equation (3) to equation (6), represent the inverse kinematic model in 
closed form and providing solutions for different settings of KR 6 KUKA Robot in the 
workspace. 

 
2.3 Numerical method to the inverse kinematics  
For the implementation of inverse kinematic model in a parallel processing platform, the 
gradient method was proposed in order to observe the platform potential for the application 
in the control of the manipulator. The general form of the method corresponds to equation 
(7) 

   
   1

1 ( ) ( )n n n nJ f                                                        (7) 
 
Were 1( )nJ  correspond to inverse jacobian of the robot, which can be seen in equation (8) 
and the functions ( )nf  depends of kinematical direc model, equation (9) 
 

  
  

   


   
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                                                         (9) 

According to the equations (8) and (9), it is necessary to determine the Jacobian of the robot 
and develop the algorithm to find the corresponding angles for each position of the 
manipulator, the functions of equations (9) are made explicit in the set of equations (10): 
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f L Cos
L Cos Cos
L Cos Cos X

f L Seno
L Cos Seno
L Cos Seno Y

f L L Seno
L Seno Z

                                 (10) 

 
The equations (10), correspond to the solution for the direct kinematics of the robot. 

 
2.4 Inverse Dynamic  
The dynamic model is based on the Euler Lagrange equations (11). Specifically in the model 
presented by Fu (1987), it considers the inertial effects of the manipulator by means of the 
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inertia tensor. The use of the transformation matrices is an advantage by the fact that its 
derivatives can be obtained as a linear combination of a constant matrix multiplied by the 
original matrix. 

 
  

  
     i

i i

d L LT
dt

                                                          (11) 

were: 
L corresponds to the Lagrangian (kinetic energy less potential energy) equation (12) 
 

          ( ), ( ) ( ), ( ) -U (t)  L t t K t t                                                  (12) 

 
The model proposed by Fu (1987) is presented in equation (13) 
 

  
  

     
1 1 1

n n n

i ik k ikm k m i
k k m

T D h c                                               (13) 

 
The model represented in a matrix form is shown in equation (14) 
 

       ( ) ( ( )) ( ) ( ( ), ( )) ( ( ))T t D t t h t t c t                                       (14) 
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  (15)   Inertia Tensor, size 4x4. 
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From the direct kinematic model, presented in equation (2), is applied the model of Fu , to 
which is necessary determine Ujk matrices, the inertia tensor Ji for each link, the inertia 
effects D, the matrix  hi and hijk of Coriolis and centrifugal acceleration, the  position vector 
R and the gravitational vectors force C. 
To calculate the matrix Ujk is used the canonical equation (16): 
 


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 
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0
10

1
j j

jk j i k
k

A
U A Q A                                                (16) 

 
To determine the inertia tensor of each link the CAD model was used, obtaining the inertia 
moments around of the reference system used in the assembly module of the CAD software. 
As an example is presented the case of link 2, the software presents the inertia in the way 
shown in Figure 8. 
 

 
Fig. 8. Inertia obtained in Solid Edge®. 
 
The Table 1 was obtained using the software solid edge®, showing data of inertia and 
centroids. 

m2 38,767 Kg 
Ixx2 112,0126 Kg-m2 
Iyy2 107,2872 Kg-m2 
Izz2 16 Kg-m2 
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inertia tensor. The use of the transformation matrices is an advantage by the fact that its 
derivatives can be obtained as a linear combination of a constant matrix multiplied by the 
original matrix. 

 
  

  
     i

i i

d L LT
dt

                                                          (11) 
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From the direct kinematic model, presented in equation (2), is applied the model of Fu , to 
which is necessary determine Ujk matrices, the inertia tensor Ji for each link, the inertia 
effects D, the matrix  hi and hijk of Coriolis and centrifugal acceleration, the  position vector 
R and the gravitational vectors force C. 
To calculate the matrix Ujk is used the canonical equation (16): 
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To determine the inertia tensor of each link the CAD model was used, obtaining the inertia 
moments around of the reference system used in the assembly module of the CAD software. 
As an example is presented the case of link 2, the software presents the inertia in the way 
shown in Figure 8. 
 

 
Fig. 8. Inertia obtained in Solid Edge®. 
 
The Table 1 was obtained using the software solid edge®, showing data of inertia and 
centroids. 

m2 38,767 Kg 
Ixx2 112,0126 Kg-m2 
Iyy2 107,2872 Kg-m2 
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Ixy2 7,1702 Kg-m2 
Ixz2 -22,7151 Kg-m2 
Iyz2 -30,4911 Kg-m2 
Xc -0,3661 M 
Yc -0,505 M 
Zc 1,55 m  

Table 1. Inertial and centroidal data for link two. 
 
To obtain the inertia tensor, equation (15), it is necessary to make two changes to the inertia 
tensor data obtained with solid edge®. The first change is a translation of the reference base 
system to the reference of the joint and the second change is to orient the base reference 
system according to the reference system selected in the kinematic model. Figure 9 
 

X
Y

Z

X1
Y1

Z1

Z2 X2

 
Fig. 9. Reference system for link two 
 
To the translation of the references systems it  is necessary to apply the Steiner theorem 
(Beer, 1980), the distances to apply the theorem are presented in Table 2 
 

X axis2 0 M 
Y axis2 -0,505 M 
Z axis2 1,35 M 

Table 2. Distances to Steiner theorem application. 
 
The inertia tensor for the link two after making changes based on the equation (15) is 
presented in Table 3 
 

2,295 4,062 7,170 0 
4,062 53,840 22,715 7,753 
7,170 22,715 1,111 14,195 

0 7,753 14,195 38,767 
Table 3. Inertia tensor of link two. 
 
For the determination of the matrix D (matrix of inertial effects). It is necessary to use the 
Equation (17) 


 
   
  

11 12 13

21 22 23

31 34 33

( )
D D D

D D D D
D D D

                                                     (17) 
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    22 22 2 22 32 3 32
T TD Tr U J U Tr U J U  

  23 32 33 3 32
TD D Tr U J U  

 33 33 3 33
TD Tr U J U  

 
For the determination of vector h, vector of Coriolis and centrifugal forces, the equation (18) 
is proposed. This equation presents the angular velocities independently through the matrix 
Hi,v, for purposes of calculation and simulation. 
 

   
,

T
i i vh H                                                               (18) 
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To obtain the inertia tensor, equation (15), it is necessary to make two changes to the inertia 
tensor data obtained with solid edge®. The first change is a translation of the reference base 
system to the reference of the joint and the second change is to orient the base reference 
system according to the reference system selected in the kinematic model. Figure 9 
 

X
Y

Z

X1
Y1

Z1

Z2 X2

 
Fig. 9. Reference system for link two 
 
To the translation of the references systems it  is necessary to apply the Steiner theorem 
(Beer, 1980), the distances to apply the theorem are presented in Table 2 
 

X axis2 0 M 
Y axis2 -0,505 M 
Z axis2 1,35 M 

Table 2. Distances to Steiner theorem application. 
 
The inertia tensor for the link two after making changes based on the equation (15) is 
presented in Table 3 
 

2,295 4,062 7,170 0 
4,062 53,840 22,715 7,753 
7,170 22,715 1,111 14,195 

0 7,753 14,195 38,767 
Table 3. Inertia tensor of link two. 
 
For the determination of the matrix D (matrix of inertial effects). It is necessary to use the 
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For the determination of vector h, vector of Coriolis and centrifugal forces, the equation (18) 
is proposed. This equation presents the angular velocities independently through the matrix 
Hi,v, for purposes of calculation and simulation. 
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Thus the vector h of centrifugal and Coriolis forces is: 
   

,
T

i i vh H  


   




   



  

  
        
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           
         
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  

111 112 113 1

1 2 2 121 122 123 2

131 132 122 2

1 211 212 213 1

2 1 2 2 221 222 223 2

3 231 232 222 2

311 312 313

1 2 2 3

h h h
h h h
h h h

h h h h
h h h h
h h h h

h h h
h





 
 
 
 
 
 
 
 
 
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For the Determination of the gravity force vector C: 
 

   1 2 3( ) Tc c c c   

 


  
3

                    1,2,3j
i j ji j

j i
c m gU r i  

   1 2 3
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  3

3 3 33 3c m gU r  

    
       
      

1 2 3
1 1 11 1 2 21 2 3 31 3

2 3
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3
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The vector r in the reference system of rotation axes is: 
 

 
 
 
 
 
 

1
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 
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  0 0 0g g  

 
The total system is then as follows: 
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3. Control 
 

3.1 Kinematic Control  
For the robot control, the first stage is to make a kinematical control. The different types of 
Kinematical control are shown below: 
 
Control of position in open loop 
This control is appropriated in the case of low operation velocities or in case that the 
dynamics of the robot does not perturb the behavior of the manipulator. The figure 10 
presents the open loop kinematics control. 
 


1k

 
Fig. 10. Block Diagram to open loop kinematics control 
 
In the figure 10 the operator K-1 corresponds to inverse kinematics model.  
 
Control of position in closed loop  
To make the kinematical position control iterative in a closed loop, it is required to work 
whit the inverse jacobian J-1 as is shown in the figure 11. The operator f(.) corresponds to the 
inverse kinematic model. 
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Thus the vector h of centrifugal and Coriolis forces is: 
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For the Determination of the gravity force vector C: 
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The vector r in the reference system of rotation axes is: 
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The total system is then as follows: 
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3. Control 
 

3.1 Kinematic Control  
For the robot control, the first stage is to make a kinematical control. The different types of 
Kinematical control are shown below: 
 
Control of position in open loop 
This control is appropriated in the case of low operation velocities or in case that the 
dynamics of the robot does not perturb the behavior of the manipulator. The figure 10 
presents the open loop kinematics control. 
 


1k

 
Fig. 10. Block Diagram to open loop kinematics control 
 
In the figure 10 the operator K-1 corresponds to inverse kinematics model.  
 
Control of position in closed loop  
To make the kinematical position control iterative in a closed loop, it is required to work 
whit the inverse jacobian J-1 as is shown in the figure 11. The operator f(.) corresponds to the 
inverse kinematic model. 
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Fig. 11. Iterative control position 
 
Joint Control 
Other option is to make a joint level control. In this case, the control is represented in the 
equation (19) in state variables. 

 
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( )
v

J
w

                                                              (19) 

 
Considering that  most of the robots usually have a speed control loop at the level of joints: 
where for one input  

du  and a high-gain control k is found, the error tends to zero 

0e and consequently   u , the desired angular velocity. Figure 12. 

 
Fig. 12. Joint velocity control 
 
Therefore, the manipulator motion can be described by  ,   1,..., ,i iu i n    were iu  is a 
signal applied to the motor speed of the  i-th joint. Then the control system to be considered 
is presented in the equation (20): 
 


 

 
 

( )
v

J u
w

                                                        (20) 

 
For the problem of trajectory tracking and to avoid errors in steady state, the control law u 
can be chosen as a proportional control adding one feed forward term. 
Equation (21) and figure 13 
 

   d du x K x x                                                           (21) 
 

 
Fig. 13. Control law. 

 
3.2 Control in a parallel processing platform  
The Parallel Processing is the ability of an entity to carry out multiple operations or tasks 
simultaneously, obtaining a better performance and achieving lower response time. There 
are different platforms of parallel processing like DSPs (Digital Signal processor), FPGAs 
(Field Programmable Gate Array ), among others. In this work the Inverse kinematic model 
was implemented into a DSP and a microprocessor used to compare its performance. To 
implement the inverse kinematics model an algorithm based on the gradient method or 
Newton's method were used (Tsai, 1999). In this case the algorithm calculates the position 
error and the number of iterations needed to get the result. It is notable that the bigger the 
number of iterations, the bigger the calculation time will be for the control system, (Archila 
& Dutra, 2007), which is the response speed limit allowed by the robot and/or the task to 
realize. An overview of the algorithm is presented in Figure 14. 
 

‘' 

 
Fig. 14. Algorithm for inverse kinematics. 

 
4. Numeric Simulation 
 

To validate the kinematic and dynamic models Matlab 7.0® was used evaluating the 
behaviour of each mathematical model to be applied in the KUKA robot controller. The 
validation of the models works with oblique trajectories passing through two singularities of 
the robot geometry.  

www.intechopen.com



Kinematical and Dynamical Models of KR 6 KUKA Robot,  
including the kinematic control in a parallel processing platform 615

 

 
Fig. 11. Iterative control position 
 
Joint Control 
Other option is to make a joint level control. In this case, the control is represented in the 
equation (19) in state variables. 

 
 

 
 

( )
v

J
w

                                                              (19) 

 
Considering that  most of the robots usually have a speed control loop at the level of joints: 
where for one input  

du  and a high-gain control k is found, the error tends to zero 

0e and consequently   u , the desired angular velocity. Figure 12. 

 
Fig. 12. Joint velocity control 
 
Therefore, the manipulator motion can be described by  ,   1,..., ,i iu i n    were iu  is a 
signal applied to the motor speed of the  i-th joint. Then the control system to be considered 
is presented in the equation (20): 
 


 

 
 

( )
v

J u
w

                                                        (20) 

 
For the problem of trajectory tracking and to avoid errors in steady state, the control law u 
can be chosen as a proportional control adding one feed forward term. 
Equation (21) and figure 13 
 

   d du x K x x                                                           (21) 
 

 
Fig. 13. Control law. 

 
3.2 Control in a parallel processing platform  
The Parallel Processing is the ability of an entity to carry out multiple operations or tasks 
simultaneously, obtaining a better performance and achieving lower response time. There 
are different platforms of parallel processing like DSPs (Digital Signal processor), FPGAs 
(Field Programmable Gate Array ), among others. In this work the Inverse kinematic model 
was implemented into a DSP and a microprocessor used to compare its performance. To 
implement the inverse kinematics model an algorithm based on the gradient method or 
Newton's method were used (Tsai, 1999). In this case the algorithm calculates the position 
error and the number of iterations needed to get the result. It is notable that the bigger the 
number of iterations, the bigger the calculation time will be for the control system, (Archila 
& Dutra, 2007), which is the response speed limit allowed by the robot and/or the task to 
realize. An overview of the algorithm is presented in Figure 14. 
 

‘' 

 
Fig. 14. Algorithm for inverse kinematics. 

 
4. Numeric Simulation 
 

To validate the kinematic and dynamic models Matlab 7.0® was used evaluating the 
behaviour of each mathematical model to be applied in the KUKA robot controller. The 
validation of the models works with oblique trajectories passing through two singularities of 
the robot geometry.  

www.intechopen.com



Robot Manipulators, New Achievements616

 

4.1 Computational model to validate the direct kinematics model  
In the validations of this model, the input data are angular positions for each joint and the 
positions for terminal elements are obtained, Figure 15. In this case the joint 2 and 3 takes 
angular increments up to a 90 degrees rotation in each link. 

 
Fig. 15. Direct kinematic model. 

 
4.2 Computational model to validate the inverse kinematics model  
The validation of this model requires knowledge of the spatial positions for the robot, the 
validation used an oblique path obtaining the following results Figure 16. 

 
Fig. 16. Inverse kinematic model. 
 
Figure 16 shows that the inverse kinematics model follows the path requested, providing 
the angular positions needed to achieve the desired positions even for singular points in the 
workspace of the manipulator. 

 
4.3 Computational model to validate the dynamical model  
To validate the dynamic model, the input data were oblique trajectories and tasks that 
require the motion of the terminal element  with constant speed, working load of 16 kg 

which corresponds to the maximum load recommended by KUKA Roboter (2005). Through 
the validated inverse kinematics algorithm the angular positions are calculated. Once 
obtained, the angular positions, it is calculated the angular velocities using the Jacobian 
inverse, obtaining the following joint speeds Figure 17. 
 

 
Fig. 17. Angles and angular velocity for the joints. 
 
The angular accelerations required to perform the requested trajectory were calculated and 
the values are presented in Figure 18. 
 

 
Fig. 18. Angular accelerations obtained in the joints. 
 
With the data of angular positions, angular velocities, angular accelerations and loads 
applied on the dynamic model of equation (14), the following values of the torques of the 
robot actuators are obtained, Figure 19. 
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Fig. 19. Torques obtained in the joints. 
 
The data provided by KUKA Roboter (2005) are presented in Table 4, It  shows the 
operational limits of the robot. 
 

  KUKA KR 6 
Maximum Torque 3400 Nm 
Total mass 206 Kg + 16 Kg 
Maximum Velocity  600 Degrees/sec 
Repeatability  +/- 0,1 mm 

Table 4. Technical data to KR6 KUKA Robot 

 
4.4 Implementation in a parallel processing platform  
The inverse kinematics algorithm was implemented in VisualDSP®, Matlab® and C® to 
observe its performance, evaluating the processing time and the position error. 
 
Processing Time  
To evaluate the processing time, oblique trajectories were used in the same way as in the 
case of the dynamic model validation. The processing times obtained are presented in 
Figure 20 which clearly shows that the DSP has the shortest processing time. 
 

     
Fig. 20.  Comparation of processing time 

Evaluation of processing time  
The Figure 20 shows that the DSP processing time is the shortest. However, we must assess 
whether it is appropriate to implement it as a Possible driver. For this purpose it is necessary to 
review the technical data of the robot to know its response speed. This data can be seen in Table 
5, where the main information are: the encoder pulses and maximum angular velocity to which 
the robot can move, due to technical characteristics of the servo motors used to its operation.  
 

Encoder 512 Pulses/Rev 
 1,422 Pulses/Degree 

W Max 600 Degrees/sec 
Frequency 853,33 Pulses/sec 

Period 0,00117 sec/pulse 
 0,703 Degrees/pulse 
 0,0123 Radians/pulse 

Table 5. Technical data to calculus of response speed of KR6 KUKA Robot 
 
The Figure 21 shows that the DSP processing time is appropriated to be implemented as a 
controller because it offers a maximum response of 0.55 ms, and the robot required 1.17 ms. 

 
Fig. 21. DSP Processing time 
 
Position Error  
Another important characteristic to evaluate, is the position error which corresponds to two main 
factors: the first one is the quantization  error and the second one the error due to the calculation 
method. The Figure 25 shows the position errors. The comparison parameter corresponds to the 
repeatability of the robot, which for this case is 0.1 mm in accordance to Figure 22. 

 
Fig. 22. Position error 
 
In the figure 22, the maximum position error of the DSP is 0.08 mm. 
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In the figure 22, the maximum position error of the DSP is 0.08 mm. 
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5. Conclusions 
 

The work presents the direct kinematics model of the robot KUKA KR 6, which was 
evaluated, obtaining suitable results for the kinematic control implemented. 
The inverse kinematics model using the quadratic equation was shown to be an 
appropriated method. It presents the possible configurations of the robot in order to achieve 
the desired position to follow a trajectory. 
The calculation of the inertia tensor was performed with the aid of CAD software, which 
gives us the principal inertia moments, products of inertia, and the centroid location of each 
link of the robot 
Is Important to show that the inertia tensor obtained needs to be understood and translated 
to the appropriate reference system for the dynamic model. 
The dynamic model was evaluated, obtaining values of 1250 Nm of torque to the oblique 
trajectory at constant speed work-rate. Obtaining as a maximum speed 12.7 RPM in the joint 
two, working well within the parameters of the KUKA Roboter. 
The performance evaluation of the DSP was adequate, obtaining a processing time of 0.55 
ms, appropriate for the given operation. 
The position error found corresponds to the calculation method  and  the quantization error 
The maximum error value found was 0.08 mm which is below  the repeatability value given 
by KUKA Roboter. 
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