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1. Introduction  
 

In practice the robotic manipulators present some degree of unwanted vibrations. The 
advent of lightweight arm manipulators, mainly in the aerospace industry, where weight is 
an important issue, leads to the problem of intense vibrations. On the other hand, robots 
interacting with the environment often generate impacts that propagate through the 
mechanical structure and produce also vibrations. 
In order to analyze these phenomena a robot signal acquisition system was developed. The 
manipulator motion produces vibrations, either from the structural modes or from end-
effector impacts. The instrumentation system acquires signals from several sensors that 
capture the joint positions, mass accelerations, forces and moments, and electrical currents 
in the motors. Afterwards, an analysis package, running off-line, reads the data recorded by 
the acquisition system and extracts the signal characteristics. 
Due to the multiplicity of sensors, the data obtained can be redundant because the same 
type of information may be seen by two or more sensors. Because of the price of the sensors, 
this aspect can be considered in order to reduce the cost of the system. On the other hand, 
the placement of the sensors is an important issue in order to obtain the suitable signals of 
the vibration phenomenon. Moreover, the study of these issues can help in the design 
optimization of the acquisition system. In this line of thought a sensor classification scheme 
is presented. 
Several authors have addressed the subject of the sensor classification scheme. White 
(White, 1987) presents a flexible and comprehensive categorizing scheme that is useful for 
describing and comparing sensors. The author organizes the sensors according to several 
aspects: measurands, technological aspects, detection means, conversion phenomena, sensor 
materials and fields of application. Michahelles and Schiele (Michahelles & Schiele, 2003) 
systematize the use of sensor technology. They identified several dimensions of sensing that 
represent the sensing goals for physical interaction. A conceptual framework is introduced 
that allows categorizing existing sensors and evaluates their utility in various applications. 
This framework not only guides application designers for choosing meaningful sensor 
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subsets, but also can inspire new systems and leads to the evaluation of existing 
applications.  
Today’s technology offers a wide variety of sensors. In order to use all the data from the 
diversity of sensors a framework of integration is needed. Sensor fusion, fuzzy logic, and 
neural networks are often mentioned when dealing with problem of combing information 
from several sensors to get a more general picture of a given situation. The study of data 
fusion has been receiving considerable attention (Esteban et al., 2005; Luo & Kay, 1990). A 
survey of the state of the art in sensor fusion for robotics can be found in (Hackett & Shah, 
1990). Henderson and Shilcrat (Henderson & Shilcrat, 1984) introduced the concept of logic 
sensor that defines an abstract specification of the sensors to integrate in a multisensor 
system. 
The recent developments of micro electro mechanical sensors (MEMS) with unwired 
communication capabilities allow a sensor network with interesting capacity. This 
technology was applied in several applications (Arampatzis & Manesis, 2005), including 
robotics. Cheekiralla and Engels (Cheekiralla & Engels, 2005) propose a classification of the 
unwired sensor networks according to its functionalities and properties.  
This paper presents a development of a sensor classification scheme based on the frequency 
spectrum of the signals and on a statistical metrics.  
Bearing these ideas in mind, this paper is organized as follows. Section 2 describes briefly 
the robotic system enhanced with the instrumentation setup. Section 3 presents the 
experimental results. Finally, section 4 draws the main conclusions and points out future 
work. 

 
2. Experimental platform 
 

The developed experimental platform has two main parts: the hardware and the software 
components (Lima et al., 2005). The hardware architecture is shown in Fig. 1. Essentially it is 
made up of a robot manipulator, a personal computer (PC), and an interface electronic 
system. 
The interface box is inserted between the robot arm and the robot controller, in order to 
acquire the internal robot signals; nevertheless, the interface captures also external signals, 
such as those arising from accelerometers and force/torque sensors. The modules are made 
up of electronic cards specifically designed for this work. The function of the modules is to 
adapt the signals and to isolate galvanically the robot’s electronic equipment from the rest of 
the hardware required by the experiments. 
The software package runs in a Pentium 4, 3.0 GHz PC and, from the user’s point of view, 
consists of two applications: the acquisition application and the analysis package. The 
acquisition application is a real time program for acquiring and recording the robot signals. 
After the real time acquisition, the analysis package processes the data off-line in two 
phases, namely, pre-processing and processing. The preprocessing phase consists of the 
signal selection in time, and their synchronization and truncation. The processing stage 
implements several algorithms for signal processing such as the auto and cross correlation, 
and Fourier transform (FT). 
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Fig. 1. Block diagram of the hardware architecture 

 
3. Experimental results 
 

According to the platform described in Section 2 a set of experiments is developed. Based on 
the signals captured from the robot this section presents several results obtained both in the 
time and frequency domains. 
In the experiments a flexible link is used that consists of a long and round flexible steel rod 
clamped to the end-effector of the manipulator. In order to analyze the impact phenomena 
in different situations two types of beams are used. Their physical properties are shown in 
Table 1. The robot motion is programmed in a way such that the rods move against a rigid 
surface. Figure 2 depicts the robot with the flexible link and the impact surface. 
During the motion of the manipulator the clamped rod is moved by the robot against a rigid 
surface. An impact occurs and several signals are recorded with a sampling frequency of 
fs = 500 Hz. The signals come from several sensors, such as accelerometers, force and torque 
sensor, position encoders, and current sensors. 
In order to have a wide set of signals captured during the impact of the rods against the 
vertical screen thirteen trajectories were defined. Those trajectories are based on several 
points selected systematically in the workspace of the robot, located on a virtual Cartesian 
coordinate system (see Fig. 3). This coordinate system is completely independent from that 
used on the measurement system. For each trajectory the motion of the robot begins in one 
of these points, moves against the surface and returns to the initial point. A parabolic profile 
was used for the trajectories. 
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Fig. 2. Steel rod impact against a rigid surface 
 

 
 
 
 
 
 
 
Table 1. Physical properties of the flexible beams 
 

 
Fig. 3. Schematic representation 3D (left) and 2D (right) of the robot and the impact surface 
on the virtual cartesian coordinate system 

 
3.1 Analysis in the time domain 
Figures 4 to 7 depict some of the signals corresponding to the cases: (i) without impact, (ii) 
the impact of the rod on a gross screen and (iii) the impact of the rod on a thin screen using 
either the thin or the gross rod. 
In this chapter only the most relevant signals are depicted, namely the forces and moments 
at the gripper sensor, the electrical currents of the robot’s axes motors, and the rod 
accelerations. The signals present clearly a strong variation at the instant of the impact that 
occurs, approximately, at t = 3 s. Consequently, the effect of the impact forces (Fig. 4 left) 

Characteristics Thin rod Gross rod 
Material Steel Steel 
Density [kg m] 4.34 × 10 4.19 × 10 
Mass [kg] 0.107 0.195 
Length [m] 0.475 0.475 
Diameter [m] 5.75× 10 7.9× 10 

 

and moments (Fig. 4 right) is reflected in the current required by the robot motors (Fig. 6). 
Moreover, as expected, the amplitudes of forces due to the gross screen (case ii) are higher 
than those corresponding to the thin screen (case iii). On the other hand, the forces with the 
gross rod (Fig. 4 right) are higher than those that occur with the thin rod (Fig. 4 left). The 
torques present also an identical behavior in terms of its amplitude variation for the tested 
conditions (see Fig. 5). 
 

  
Fig. 4. Forces { Fx, Fy, Fz } at the gripper sensor: thin rod (left); gross rod (right) 
 

  
Fig. 5. Moments { Mx, My, Mz } at the gripper sensor: thin rod (left); gross rod (right) 
 
Figure 7 presents the accelerations at the rod free-end (accelerometer 1), where the impact 
occurs, and at the rod clamped-end (accelerometer 2). The amplitudes of the accelerometers 
signals are higher near the rod impact side. Furthermore, the values of the accelerations 
obtained for the thin rod (Fig 7 left) are higher than those for the gross rod (Fig 7 right), 
because the thin rod is more flexible. 

 
3.2 Analysis in the frequency domain 
Figures 8 and 9 show, as examples, the amplitude of the Fast Fourier Transform (FFT), of 
two signals captured during the same impact trajectory. These figures illustrate the different 
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behaviors of the spectrum, depending on the signal in study. All the signals of the 
trajectories set referred previously were studied, but only the most relevant are depicted. 
 

  
Fig. 6. Electrical currents { I1, I2, I3, I4, I5 } of the robot’s axes motors: thin rod (left); gross rod 
(right) 
 

  
Fig. 7. Rod accelerations { A1, A2 }: thin rod (left); gross rod (right) 
 
In order to examine the behavior of the FT signal, in a systematic way, a trendline was 
superimposed over the spectrum over, at least, one decade. The trendline is based on the 
power law approximation (Lima et al., 2006). 
 

  mcf(t) F  (1) 

 

 

where F is the FT of the signal, c is a constant that depends on the amplitude, ω is the 
frequency, and m is the slope. 
For each type of signal, the frequency interval was defined approximately in the middle 
range of the frequency content of the signal. 
Figure 8 shows the FFT amplitude of the electrical current of the axis 3 motor that occurs in 
the case of impact with the thin rod. A trendline was calculated, and superimposed to the 
signal (case ii), with slope m = −1.31. The others current signals were studied, revealing also 
an identical behavior in terms of its spectrum spread, both under impact and no impact 
conditions, either for the thin rod or the gross rod. The spectrum was approximated by 
trendlines in a frequency range larger than one decade.  
According to the robot manufacturer specifications (Robotec, 1996) the loop control of the 
robot has a cycle time of tc = 10 ms. This fact is observed approximately at the fundamental 
(fc = 100 Hz) and multiple harmonics in all spectra of motor currents. 
The FFT amplitudes of the axes positions signals were studied (Lima et al., 2007), revealing 
also a behavior similar to the electrical current in terms of the spectrum spread for the tested 
conditions (impact, no impact, thin rod and gross rod). 
Figure 9 shows the FFT amplitude of the Fz force (case i) due to the impact with the thin rod. 
This spectrum is not so well defined in a large frequency range. Nevertheless, the spectrum 
was approximated by a trendline in a frequency range of approximately one decade in order 
to get a systematic method of comparison. The trendline has a slope of m = −0.13. 
The torques and accelerations signals were studied also for the distinct test conditions, 
namely: impact, no impact, thin rod and gross rod. Their FFT amplitudes revealed also an 
identical behavior in terms of its spectrum spread for the tested conditions. 
Whereas the trendlines used for the electrical currents and position signals FT seem 
appropriate, the same technique used for the forces/moments and acceleration signals is 
questionable. However, in spite of this, trendlines were used for all FT signals in order to 
obtain comparable units. In fact, the purpose of this research is to establish a relationship 
between signals of the same system based on the spectrum behavior. 
 

 
Fig. 8. Spectrum of the axis 3 motor current I3 for the thin rod 
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Fig. 9. Spectrum of the Fz force for the thin rod 

 
3.3 Analysis of the spectrum trendlines slopes 
Based on the several values of the spectrum trendlines slopes several statistics can be 
performed. During each trajectory of the robot eighteen signals were captured. For each 
trajectory there are three cases: (i) without impact, (ii) the impact of the rod on a gross 
screen, and (iii) the impact of the rod on a thin screen. As referred before, thirteen 
trajectories were defined. Additionally, the same trajectories were executed with the thin rod 
and with the gross rod. These samples lead to a population of 1404 slope values. 
A box plot provides a visual summary of many important aspects of a data distribution. It 
indicates the median, upper and lower quartile, upper and lower adjacent values (whiskers), 
and the outlier individual points. Figure 10 shows a box plot of the spectrum trendlines 
slopes for the three cases of the thin rod impact, namely: (i) without impact, (ii) the impact of 
the rod on a gross screen, and (iii) the impact of the rod on a thin screen. Moreover, Fig. 11 
depicts the respective interquartile range (IQR) versus the median. The IQR is obtained by 
subtracting the lower (first) quartile value from the upper (third) quartile value. 
 

 
Fig. 10. Statistics of spectrum trendlines slopes for all the cases (i, ii, iii) using the thin rod 

 

 
Fig. 11.  IQR versus median for all the cases (i, ii, iii) using the thin rod 
 
The IQR is a robust way of describing the dispersion of the data. From Fig. 11 three groups 
of signals can be defined. The ellipses depicted in the chart represent these groups. The 
forces {Fx, Fy, Fz} and the accelerations {A1, A2} signals are located close to each other. 
Positions {P1, P2, P3, P4, P5}, moments {Mx, My}, and I3 signals are located on the left side of 
the Fig. 11. Finally, the other electrical currents {I1, I2, I4, I5} are situated in the middle of the 
chart and near each other. It rests the Mz signal that apparently is alone. 
Figures 12 and 13 show the same statistic analysis described previously, but now for the 
gross rod. In Fig. 13 again three groups of signals can be defined. One groups the {Fx, Fy, Fz, 
A1, A2} signals, and the second is formed of the {I1, I2, I4, I5} signals. The third group consists 
of the {P1, P2, P3, P4, P5, Mx, My, Mz, I3} signals. Comparing with the thin rod case, it can be 
seen that now the Mz signal joined the group of “torques and positions”. 
Finally, figures 14 to 15 depict the statistics of the overall spectrum trendlines slopes, 
considering the data for the thin and gross rods. Three groups are observed again: the group 
of “positions and torques”, the group of “currents” and the group of “forces and 
accelerations”. As can be seen the I3 signal continues to remain in the same group of 
“positions and torques”. A deeper insight into the nature of this feature must be envisaged 
to understand the behavior of the I3 signal. 
 

 
Fig. 12.  Statistics of spectrum trendlines slopes for all the cases (i, ii, iii) using the gross rod 
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Fig. 13.  IQR versus median for all the cases (i, ii, iii) using the gross rod 

 
Fig. 14.  Statistics of spectrum trendlines slopes for all the cases (i, ii, iii) using the thin and 
gross rods 

 
Fig. 15.  IQR versus median for all the cases (i, ii, iii) using  the thin and gross rods 
 
 

 

3.4 Metrics in the time domain 
Several indices can be used to evaluate the relashionship between the signal, including 
statistical, entropy and information theory approaches. These metrics are based on a 
bidimensional probability density function associated with the two signals x1(t) and x2(t) 
acquired in the same time interval and can be calculated according with the expression: 
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where β is the bidimensional histogram. 
The marginal probability distributions of the signals x1(t) and x2(t) are denoted as P(x1) and 
P(x2), respectively. The expected values, E(x1) and E(x2), and the variances, V(x1) and V(x2), 
are then easily obtained. 
The correlation coefficient R (Orfanidis, 1996) is a statistical index that provides a 
measurement of the similarity between two signals x1(t) and x2(t) and is define as 
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where E(x1x2) is the joint expected value. 
The mutual information (Shannon, 1948; Cover, 2006), or transinformation (Spataru, 1970) is 
the index that measures the dependence of two variables in the viewpoint of the information 
theory. The mutual information for the two signals  x1(t) and x2(t) is: 
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The average mutual information between the two signals is given by: 
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The entropy (Shannon, 1948) is a statistical measure of randomness. This index applied to 
the two signal x1(t) and x2(t)  gives the join entropy (MacKay, 2003 ) between the two signal 
defined as: 
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Figure 16 shows the squared correlation coefficient R2 between the signals captured during 
the same impact trajectory, for an experiment in the case of (i) using the gross rod. The 
results obtain with R2 are simetric relative to the diagonal formed by R2(xi,xj) for i = j, where 
the metric is maximum, as expected. To clearly visualize the results only one side is shown. 
The correlation between the same families of signals is higher than the correlation between 
different families. For example, the correlation between the currents and positions are low. 
The same occurs between the currents and the forces, moments and accelerations. It exists a 
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strong correlation between the positions and the forces, moments and accelerations that 
depends, as expected, on the trajectory. 

 
Fig. 16. Correlation between  the signals for the case (i) using the gross rod 

 
Fig. 17. Average mutual information between  the signals for the case (i) using the gross rod 
 
Figure 17 shows the average mutual information between the signals for the same 
experiment used previously for the correlation. Again the results obtain with Iav(x1, x2) are 
simetric relative to the diagonal where the metric is maximum. Due to the same reason 
referred before only one side is shown. The values presented are normalized. The values of 
the index Iav(x1, x2) between the positions are high. 

 

Figure 18 shows a chart based on the entropy between the signals for the same experiment 
used previously for the other metrics. In fact, the values shown are proportional to the 
inverse of the index H(x1, x2) due to the normalization used. Again, the values of this index 
between the positions are high. 
The metrics shown in figures 16–18 were obtained for an experiment corresponding to one 
trajectory. In future this approach should be applied for all the thirteen trajectories referred 
before. 

 
Fig. 18. Metric based on the entropy between  the signals for the case (i) using the gross rod 

 
4. Conclusion 
 

In this paper an experimental study was conducted to investigate several robot signals. A 
new sensor classification strategy was proposed. 
One of the adopted methodologies leads to arrange the robotic signals in terms of identical 
spectrum behavior, obtaining three groups of signals: the group of “positions and torques”, 
the group of “currents” and the group of “forces and accelerations”. 
The other methodology is based on several metrics used to evaluate the relashionship 
between the signals in the time domain, namely the correlation, the average mutual 
information and the entropy. These indices revealed the hidden relationships between the 
signals. 
The results merit a deeper investigation as they give rise to new valuable concepts towards 
instrument control applications. In this line of thought, in future, we plan to pursue several 
research directions to help us further understand the behavior of the signals.  
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