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1. Introduction    
 

Parallel manipulators have separate serial kinematic chains that are linked to the ground 
and the moving platform at the same time. They have some potential advantages over serial 
robot manipulators such as high accuracy, greater load capacity, high mechanical rigidity, 
high velocity and acceleration (Kang et al., 2001; Kang & Mills, 2001). Planar Parallel 
Manipulators (PPMs), performing two translations along the x and y axes, and rotation 
through an angle of  around the z axis are a special group among the parallel robot 
manipulators. They have potential advantages for microminiaturization (Hubbard et al., 
2001) and pick-and-place operations (Heerah et al., 2003). However, due to the complexity 
of the closed-loop chain mechanism, the kinematics analysis of parallel manipulators is 
more difficult than their serial counterparts. Therefore selection of an efficient mathematical 
model is very important for simplifying the complexity of the kinematics problems in 
parallel robots. In this book chapter, the forward and inverse kinematics problems of PPMs 
are solved based on D-H method (Denavit & Hartenberg, 1955) which is a common 
kinematic modelling convention using 4x4 homogenous transformation matrices. The easy 
physical interpretation of the robot mechanisms is the main advantage of this method. The 
Forward kinematics problem calculates the position and orientation of the end-effector if the 
set of joint angles are known. The inverse kinematics problem solves for the joint angles 
when the position and orientation of the end effector is given. In contrast to serial 
manipulators, the forward kinematics problem is much more difficult than the inverse 
kinematic problem for parallel manipulators. Afterwards very practical definitions are 
provided for Jacobian matrix and workspace determination of PPMs which are required for 
singularity and dexterity analyses. Rest of this book chapter is composed of the following 
sections. Some fundamental definitions about D-H method as a kinematics modelling 
convention, Jacobian matrix, condition number, global dexterity index, singularity and 
workspace determination are presented in Section 2. A two-degree-of-freedom (2-dof) PPM 
and a 3-dof Fully Planar Parallel Manipulator (FPPM) are given as examples to illustrate the 
methodology in the following Section. FPPMs are composed of a moving platform linked to 
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the ground by three independent limbs including one active (actuated) joint in each (Merlet, 
1996). The conclusions with final remarks are presented in the last section. 

 
2. Background  
 

2.1 Denavit-Hartenberg convention 
The D-H convention (Denavit & Hartenberg, 1955) based on 4x4 homogenous 
transformation matrices is commonly used kinematic modelling convention for the robotics 
community. The easy physical interpretation of the robot mechanisms is the main advantage 
of this method. A spatial transformation between two consecutive links can be described by 
a set of parameters, namely ,1j  1ja  , j  and jd . Using these parameters, the general 

form of the transformation matrix for adjacent coordinate frames, j-1 and j is obtained as 
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The transformation of the link n coordinate frame into the base coordinate frame of the 
robot manipulator is given by 
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where j=1, 2, 3, ..., n. 
 
2.2 Jacobian Matrix, Condition Number and Global Dexterity Index 
Dexterity is an essential topic for design and conceptual control of robotic manipulators. It 
can be described as the ability to perform infinitesimal movement in the arbitrary directions 
as easily as possible in the workspace of the robotic manipulators. It is based on the 
condition number () of the manipulator Jacobian matrix (Gosselin & Angeles, 1991). 
 

1JJ   (3) 

 
where J illustrates the Jacobian matrix and   denotes the Frobenius norm of the matrix.  
varies between 1 to . In general, =1/ is used for limiting the dexterity between 0 and 1. 
Thus dexterity of a manipulator can be easily measured. It is well known that as =1 
represents a perfect isotropic dexterity, =0 illustrates singular configuration. Then the 
kinematic relations for the planar parallel manipulators can be expressed as 
 

f(x,q)=0 (4) 
 

 

where f is the function of x ),y,x(  T and q=(q1, q2, and qn) T, and 0 is n dimensional zero 
vector.  The parameters x, y and  are the position and orientation of the end-effector in 
terms of base frame. Additionally, q1, q2 and qn represent the actuated joint variables. The 
following term is obtained differentiating the equation 4 with respect to the time. 

Ax+Bq=0 (5) 
 
where x and q are the time derivatives of x and q, respectively. A and B are two separate 
Jacobian matrices. The overall Jacobian matrix for a parallel manipulator can be obtained as  
 

ABJ 1  (6) 
 
Since the dexterity demonstrates the local property of a mechanism, designers requires a 
global one. Gosselin and Angeles (1991) introduced Global Dexterity Index (GDI) in order to 
measure the global property of the manipulators. GDI defined as 
 

B
AGDI   (7) 

 
where B represents the area of the workspace and A is 
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2.3 Singularity  
Three types of singularities exist for planar parallel manipulators (Tsai, 1999; Merlet, 2000). 
They occur when either determinant of the matrices A or B or both are zero. When the 
determinant of A and B goes to zero, the direct and inverse kinematics singularities occur, 
respectively. Direct kinematics singularity occurs inside the workspace of the manipulator. 
Inverse kinematics singularity occurs at the boundaries of the manipulator’s workspace 
where any limb is completely stretched-out or folded-back.  

 
2.4 Workspace Determination 
Workspace determination is a very significant step in analyzing robot manipulators. Its 
determination is necessary for conceptual design and trajectory planning. Many researches 
(Agrawal, 1990; Gosselin, 1990; Merlet, 1995; Merlet et al., 1998) focused on the workspace 
determination of parallel manipulators. Merlet, Gosselin and Mouly (1998) outlined some 
workspace definitions for PPMs such as constant orientation workspace, reachable 
workspace and dexterous workspace. The constant orientation workspace (considered also 
in this book chapter) is the area that can be reached by the end-effector with constant 
orientation. In general, geometrical (Bonev & Ryu, 2001; Gosselin & Guillot, 1991) and 
numerical methods (Kim et al., 1997) are used for workspace determination of parallel 
manipulators. Computation of workspace based on geometrical method is difficult and may 
not be obtained due to the complexity of the closed-loop chain mechanisms (Fichter, 1986). 
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the ground by three independent limbs including one active (actuated) joint in each (Merlet, 
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vector.  The parameters x, y and  are the position and orientation of the end-effector in 
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following term is obtained differentiating the equation 4 with respect to the time. 
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where x and q are the time derivatives of x and q, respectively. A and B are two separate 
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2.3 Singularity  
Three types of singularities exist for planar parallel manipulators (Tsai, 1999; Merlet, 2000). 
They occur when either determinant of the matrices A or B or both are zero. When the 
determinant of A and B goes to zero, the direct and inverse kinematics singularities occur, 
respectively. Direct kinematics singularity occurs inside the workspace of the manipulator. 
Inverse kinematics singularity occurs at the boundaries of the manipulator’s workspace 
where any limb is completely stretched-out or folded-back.  

 
2.4 Workspace Determination 
Workspace determination is a very significant step in analyzing robot manipulators. Its 
determination is necessary for conceptual design and trajectory planning. Many researches 
(Agrawal, 1990; Gosselin, 1990; Merlet, 1995; Merlet et al., 1998) focused on the workspace 
determination of parallel manipulators. Merlet, Gosselin and Mouly (1998) outlined some 
workspace definitions for PPMs such as constant orientation workspace, reachable 
workspace and dexterous workspace. The constant orientation workspace (considered also 
in this book chapter) is the area that can be reached by the end-effector with constant 
orientation. In general, geometrical (Bonev & Ryu, 2001; Gosselin & Guillot, 1991) and 
numerical methods (Kim et al., 1997) are used for workspace determination of parallel 
manipulators. Computation of workspace based on geometrical method is difficult and may 
not be obtained due to the complexity of the closed-loop chain mechanisms (Fichter, 1986). 
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Alternatively, numerical methods based on the discretization of Cartesian space (Kim et al., 
1997) in general, are also used in this study due to their simplicity according to the 
geometrical methods. In discretization method, firstly a Cartesian area is discretized into 
“PxQ” points along the X and Y axes. Secondly each pose in this discretized Cartesian area 
is examined whether belonging to the workspace of the manipulator. 

 
3. Examples 
 

3.1. The 2-dof RPR planar parallel manipulator 
The 2-dof RPR (Revolute-Prismatic-Revolute) planar parallel manipulator given by Figure 1 
has two limbs BiMi, where i=1, 2, a moving platform M1M2 and a fixed base B1B2. The 
lengths of the actuated prismatic joints vary between di(min) and di(max). The end-effector is 
attached to the pint P on the moving platform. The position P(px, py) and orientation () of 
the end-effector is defined with respect to the {XYZ}  coordinate system.  
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Fig. 1. The planar 2-dof RPR parallel manipulator. 
 
The following equation can be written using the geometric identities on Figure 1.  
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In order to solve the inverse kinematics problem, the relation in equation 9 is adapted to 
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where 1  and 2 . Since the position vectors of 1M
O Ti

i
and 2M

O Ti
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matrices are 

equal, one can write the following equations easily. 
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Summing the squares of the both sides in the equation 12, we obtain, after simplification, 
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The active joint variables di can be found using equation 13 as follows. 
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Once the active joint variables d1 and d2 are solved, the passive joint variable θ1 and θ2 can 
be found from the equation 12 by back substitution. 
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Fig. 1. The planar 2-dof RPR parallel manipulator. 
 
The following equation can be written using the geometric identities on Figure 1.  
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The Jacobian matrix of the 2-dof RPR is computed using the equation 13 as follows. 
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The overall Jacobian matrix is obtained as 
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Numerical example for the inverse kinematics: The dimensions of the planar 2-dof RPR 
parallel manipulator are given as l1=l2=12, PM1=PM2=3, OBx1=0, OBy1=0, OBx2=15, OBy2=0, 
px=11, py=20 and =30º. According to the data above, the active joint variables d1 and d2 can 
be found as 8.3185 and 9.5457, respectively. The passive joint variables θ1 and θ2 are found as 
-24.4256 and 3.7307, respectively by back substitution. 
 
Numerical example for the Jacobian matrix and condition number: Using the dimensions of 
the inverse kinematics example above, the Jacobian matrix and condition number are found as  
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Numerical example for the workspace determination: The dimensions of the manipulator 
are given as l1=l2=10, PM1=PM2=2, OBx1=0, OBy1=0, OBx2=20 and OBy2=0 and. The lengths of 
the actuated prismatic joints vary between di(min)=0 and di(max)=7, where i=1,2. The 
workspace is obtained as 102.3888 for =0º orientation. The limits of the discretized 
Cartesian area are denoted by the red rectangle shown in Figure 2a. The black and green 
areas show reachable and non-reachable workspaces of the manipulator, respectively. 
Numerical example for the dexterity and singularity analysis: The Figure 2b shows the 
inverse dexterity of the manipulator using the same dimensions given by example for 
workspace determination. The GDI of the manipulator are found as 0.0012. As seen in 
Figure 2b, since the inverse of the condition numbers colored with red areas are so close to 

 

the unity, there isn’t any singular point occurred inside reachable workspace. The red and 
blue areas show reachable and non-reachable workspaces of the manipulator, respectively. 

 
3.2. The 3-dof RPR planar parallel manipulator 
The 3-dof RPR planar parallel manipulator shown in Figure 3 has three limbs BiMi, where 
i=1, 2, 3. P denotes the point where the end-effector is located at the moving platform which 
is chosen as equilateral triangle. The angle  represents the orientation of the end-effector. If 
a line AB passing through the point P is drawn parallel to the M1M2, the angles PM1M2  ( 1 ) 
and PM2M1 ( 2 ) are equal to the angles APM1 and M2PB, respectively. The angles between 
the lines BP and PM1, M2P and PB, BP and PM3 are denoted as λ1, λ2 and λ3, respectively.  
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Fig. 2. a) Workspace, b) dexterity graph, for planar 2-dof RPR parallel manipulator. 
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The Jacobian matrix of the 2-dof RPR is computed using the equation 13 as follows. 
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Numerical example for the inverse kinematics: The dimensions of the planar 2-dof RPR 
parallel manipulator are given as l1=l2=12, PM1=PM2=3, OBx1=0, OBy1=0, OBx2=15, OBy2=0, 
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areas show reachable and non-reachable workspaces of the manipulator, respectively. 
Numerical example for the dexterity and singularity analysis: The Figure 2b shows the 
inverse dexterity of the manipulator using the same dimensions given by example for 
workspace determination. The GDI of the manipulator are found as 0.0012. As seen in 
Figure 2b, since the inverse of the condition numbers colored with red areas are so close to 

 

the unity, there isn’t any singular point occurred inside reachable workspace. The red and 
blue areas show reachable and non-reachable workspaces of the manipulator, respectively. 

 
3.2. The 3-dof RPR planar parallel manipulator 
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i=1, 2, 3. P denotes the point where the end-effector is located at the moving platform which 
is chosen as equilateral triangle. The angle  represents the orientation of the end-effector. If 
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Fig. 2. a) Workspace, b) dexterity graph, for planar 2-dof RPR parallel manipulator. 
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If the relation in equation 9 is adapted to the manipulator in Figure 3, the 1M
O Ti

i
 and 

2M
O Ti

i
homogeneous transformation matrices can be obtained as 
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where i=1, 2, 3. 
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where 11   and 22  . Since the position vectors of 1M

O Ti
i

 and 2M
O Ti

i
matrices are 

equal, one can write easily the following equations. 
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where  iix cosPM

i
  and iiiy sinPM  . Summing the squares of the both sides in the 

equation 21, we obtain, after simplification,  
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The inverse kinematics problem is solved using the equation 22 as follows. 
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Once the d1, d2 and d3 are obtained, the angles θ1, θ2 and θ3 can be determined from the 
equation 21 by back substitution. 
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The forward kinematics problem is found rearranging the equation 22 as follows. 
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One can obtain the following new system of equations using equation 25. 
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One can write the following equations using the equation 26. 
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1313 ccc  . The px and py can be obtained applying the elimination method to the 
equation 27 as  
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The orientation angle (  ) can be found using i=3 in equation 25. 
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where i=1, 2, 3. 
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The inverse kinematics problem is solved using the equation 22 as follows. 
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Once the d1, d2 and d3 are obtained, the angles θ1, θ2 and θ3 can be determined from the 
equation 21 by back substitution. 
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The forward kinematics problem is found rearranging the equation 22 as follows. 
 

      0cpbpapp iyixi
2
y

2
x      (i=1,2,3)                                       (25) 

 
where )sinOB(cos2a

iii yxxi  , )OBsin(cos2b
iii yxyi   and 2

xi i
OBc   

2
iixyyxyyxx

2
y

2
x

2
y )ld()OBOB(sin2)OBOB(cos2OB

iiiiiiiiiii
  

       
One can obtain the following new system of equations using equation 25. 
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(26) 

 
One can write the following equations using the equation 26. 
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where 2112 aaa  , 2112 bbb  , 1212 ccc  , 3113 aaa  , 3113 bbb   and 

1313 ccc  . The px and py can be obtained applying the elimination method to the 
equation 27 as  
 

)abab(
cbcbp

12131312

12131312
x 


   and  

)baba(
cacap

13121213

13121213
y 


   (28) 

 
The orientation angle (  ) can be found using i=3 in equation 25. 
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If px and py  in equation 28 are substituted in equation 29, one can obtain after simplification 
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where )abab( 12131312  , 12131312 cbcb   and 13121213 caca  . The equation 30 

can be converted into the eight-degree polynomial using 2t1
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The roots of this polynomial are the answer of the forward kinematics problem. Once  is 
determined, px and py can be found easily substituting the angle  in equation 28. After 
having position (px, py) and orientation (), the passive joint angles can be found using the 
equation 21 by back substitution   
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The Jacobian matrix of the 3-dof PPM shown in Figure 3 is computed as follows. 
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(32) 

 
where  
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The overall Jacobian matrix is obtained as 
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Numerical example for the inverse kinematics: The dimensions of the planar 3-dof RPR 
parallel manipulator are given as l1=10, l2=10, l3=10, OBx1=0, OBy1=0, OBx2=20, OBy2=0, 
OBx3=10, OBy3=45, M1M2=15. The position of the point P in terms of the coordinate frame 
{xyz} attached to the M1 corner of the moving platform is chosen as (4, 5). The angles λ1, λ2 
and λ3 are computed as 231.3402, -24.4440 and 66.3453, where 51.34021   and 

24.4440,2   respectively. Moreover, the lengths PM1, PM2 and PM3 are determined as 
6.4031, 12.0830 and 8.7233, respectively. If the position and orientation in terms of the base 
frame {XYZ} are given as px=12, py=18 and =30º, the active joint variables d1 d2 and d3 can 
be found as 6.0617, 9.5881 and 8.3594, respectively. The passive joint variables θ1, θ2 and θ3 

are found as    -43.4006, -11.8615 and -176.7655, respectively by back substitution.  
 
Numerical example for the forward kinematics: The dimensions of manipulator are given as 
l1=11, l2=11, l3=11, OBx1=0, OBy1=0, OBx2=10, OBy2=0, OBx3=5, OBy3=32, M1M2=10. The 
position of the point P in terms of the coordinate frame {xyz} is chosen as (5, 2.8868). The 
angles λ1, λ2 and λ3 are computed as 210.0004, -30.0004 and 90, where 301   and 

30.0004,2   respectively. Moreover, the lengths PM1, PM2 and PM3 are determined as 
8.4853, 7.8102 and 3.5616, respectively. If the active and passive joint variables are given as 
d1=8, d2=7.9999, d3=7.9999 and θ1=-52.1046, θ2=-52.105, θ3=-127.8937, the position and 
orientation of end-effector in terms of base coordinate frame {XYZ} are found as px=19,9936 
py=14.5569 and =0.000932º, respectively.  
 
Numerical example for the Jacobian matrix and condition number: Using the dimensions of 
numerical example for the inverse kinematics above, the Jacobian matrix and condition 
number are found as  
 
















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0.47340.9984-0.0564
11.52900.97860.2055
3.64890.72660.6871

J  and  8.1351  (37) 

 
Numerical example for the workspace determination: The dimensions of the manipulator 
are given as l1=l2=l3=8.5, OBx1=0, OBy1=0, OBx2=17, OBy2=0, OBx3=9, OBy3=40, M1M2=16.   
The lengths of the actuated prismatic joints vary between di(min)=0 and di(max)=8.5, where 
i=1,2,3. If the position of the point P in terms of the coordinate frame {xyz} is chosen as (7, 7), 
the angles λ1, λ2 and λ3 are computed as 225, -37.8750 and 81.7020, where 541   and 
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If px and py  in equation 28 are substituted in equation 29, one can obtain after simplification 
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where )abab( 12131312  , 12131312 cbcb   and 13121213 caca  . The equation 30 

can be converted into the eight-degree polynomial using 2t1
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The roots of this polynomial are the answer of the forward kinematics problem. Once  is 
determined, px and py can be found easily substituting the angle  in equation 28. After 
having position (px, py) and orientation (), the passive joint angles can be found using the 
equation 21 by back substitution   
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The Jacobian matrix of the 3-dof PPM shown in Figure 3 is computed as follows. 
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where  
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The overall Jacobian matrix is obtained as 
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Numerical example for the inverse kinematics: The dimensions of the planar 3-dof RPR 
parallel manipulator are given as l1=10, l2=10, l3=10, OBx1=0, OBy1=0, OBx2=20, OBy2=0, 
OBx3=10, OBy3=45, M1M2=15. The position of the point P in terms of the coordinate frame 
{xyz} attached to the M1 corner of the moving platform is chosen as (4, 5). The angles λ1, λ2 
and λ3 are computed as 231.3402, -24.4440 and 66.3453, where 51.34021   and 

24.4440,2   respectively. Moreover, the lengths PM1, PM2 and PM3 are determined as 
6.4031, 12.0830 and 8.7233, respectively. If the position and orientation in terms of the base 
frame {XYZ} are given as px=12, py=18 and =30º, the active joint variables d1 d2 and d3 can 
be found as 6.0617, 9.5881 and 8.3594, respectively. The passive joint variables θ1, θ2 and θ3 

are found as    -43.4006, -11.8615 and -176.7655, respectively by back substitution.  
 
Numerical example for the forward kinematics: The dimensions of manipulator are given as 
l1=11, l2=11, l3=11, OBx1=0, OBy1=0, OBx2=10, OBy2=0, OBx3=5, OBy3=32, M1M2=10. The 
position of the point P in terms of the coordinate frame {xyz} is chosen as (5, 2.8868). The 
angles λ1, λ2 and λ3 are computed as 210.0004, -30.0004 and 90, where 301   and 

30.0004,2   respectively. Moreover, the lengths PM1, PM2 and PM3 are determined as 
8.4853, 7.8102 and 3.5616, respectively. If the active and passive joint variables are given as 
d1=8, d2=7.9999, d3=7.9999 and θ1=-52.1046, θ2=-52.105, θ3=-127.8937, the position and 
orientation of end-effector in terms of base coordinate frame {XYZ} are found as px=19,9936 
py=14.5569 and =0.000932º, respectively.  
 
Numerical example for the Jacobian matrix and condition number: Using the dimensions of 
numerical example for the inverse kinematics above, the Jacobian matrix and condition 
number are found as  
 

















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J  and  8.1351  (37) 

 
Numerical example for the workspace determination: The dimensions of the manipulator 
are given as l1=l2=l3=8.5, OBx1=0, OBy1=0, OBx2=17, OBy2=0, OBx3=9, OBy3=40, M1M2=16.   
The lengths of the actuated prismatic joints vary between di(min)=0 and di(max)=8.5, where 
i=1,2,3. If the position of the point P in terms of the coordinate frame {xyz} is chosen as (7, 7), 
the angles λ1, λ2 and λ3 are computed as 225, -37.8750 and 81.7020, where 541   and 
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37.8750,2   respectively. Moreover, the lengths PM1, PM2 and PM3 are determined as 
9.8995, 11.4018 and 6.9289, respectively. The workspace is obtained as 110.6180 for =0º 
orientation. The red rectangle given by Figure 4 illustrates the limits of the discretized 
Cartesian area. Additionally, the black region shows the reachable workspaces of the 
manipulator. 
 

 
Fig. 4. The workspace of the planar 3-dof RPR parallel manipulator. 
 
Numerical example for the dexterity and singularity analysis: The Figure 5 shows the 
inverse dexterity of the manipulator using the same dimensions given by the example for 
workspace determination. The GDI of the manipulator is found as 0.00018179. As can be 
illustrated in Figure 5, as the inverse of the condition numbers increase the manipulator 
accomplish better gross motion capability like the regions represented with red color.  At the 
same time, the diagonal line divides the workspaces of the manipulator into two regions, 
illustrates the singular points.  The dark blue areas illustrate the non-reachable workspaces 
of the manipulator. 

 
Fig. 5. The inverse dexterity graph for planar 3-dof RPR parallel manipulator. 

 

4. Conclusion 
 

In this book chapter, the forward and inverse kinematics problems of planar parallel 
manipulators are obtained using Denavit & Hartenberg (1955) kinematic modelling 
convention. Afterwards some fundamental definitions about Jacobian matrix, condition 
number, global dexterity index, singularity and workspace determination are provided for 
performing the analyses of a two-degree-of-freedom (2-dof) PPM and a 3-dof Fully Planar 
Parallel Manipulator. 
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37.8750,2   respectively. Moreover, the lengths PM1, PM2 and PM3 are determined as 
9.8995, 11.4018 and 6.9289, respectively. The workspace is obtained as 110.6180 for =0º 
orientation. The red rectangle given by Figure 4 illustrates the limits of the discretized 
Cartesian area. Additionally, the black region shows the reachable workspaces of the 
manipulator. 
 

 
Fig. 4. The workspace of the planar 3-dof RPR parallel manipulator. 
 
Numerical example for the dexterity and singularity analysis: The Figure 5 shows the 
inverse dexterity of the manipulator using the same dimensions given by the example for 
workspace determination. The GDI of the manipulator is found as 0.00018179. As can be 
illustrated in Figure 5, as the inverse of the condition numbers increase the manipulator 
accomplish better gross motion capability like the regions represented with red color.  At the 
same time, the diagonal line divides the workspaces of the manipulator into two regions, 
illustrates the singular points.  The dark blue areas illustrate the non-reachable workspaces 
of the manipulator. 

 
Fig. 5. The inverse dexterity graph for planar 3-dof RPR parallel manipulator. 

 

4. Conclusion 
 

In this book chapter, the forward and inverse kinematics problems of planar parallel 
manipulators are obtained using Denavit & Hartenberg (1955) kinematic modelling 
convention. Afterwards some fundamental definitions about Jacobian matrix, condition 
number, global dexterity index, singularity and workspace determination are provided for 
performing the analyses of a two-degree-of-freedom (2-dof) PPM and a 3-dof Fully Planar 
Parallel Manipulator. 
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