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A Visual Navigation Strategy Based
on Inverse Perspective Transformation

Francisco Bonin-Font, Alberto Ortiz and Gabriel Oliver
University of the Balearic Islands
Spain

1. Introduction

Vision-Based Navigation Techniques can be roughly divided in map-based and mapless sys-
tems. Map-based systems plan routes and their performance and are labeled as delivera-
tive, while mapless systems analyze on-line the environment to determine the route to follow
(Bonin et al., 2008). Some reactive vision-based systems include the implementation of local
occupancy maps that show the presence of obstacles in the vicinity of the robot and try to
perform a symbolic view of the surrounding world. The construction of such maps entails the
computation of range and angle of obstacles in a particularly accurate manner. These maps
are updated on-line and used to navigate safely (Badal et al., 1994) (Goldberg et al., 2002).
Many of the local map-based and visual sonar reactive navigation solutions are vulnerable to
the presence of shadows or inter-reflections and they are also vulnerable to textured floors,
since they are mostly based on edge computation or on texture segmentation. Solutions based
on homography computation fail in scenarios that generate scenes with multiple planes. Some
road line trackers based on Inverse Perspective Transformation (IPT) need to previously find
lines in the image that converge to the vanishing point. Some other IPT-based solutions project
the whole image onto the ground, increasing the computational cost.

This chapter presents a new navigation strategy comprising obstacle detection and avoid-
ance. Unlike previous approaches, the one presented in this chapter avoids back-projecting
the whole image, presents a certain robustness to scenarios with textured floors or inter-
reflections, overcomes scenes with multiple different planes and combines a quantitative pro-
cess with a set of qualitative rules to converge in a robust technique to safely explore unknown
environments. The method has been inspired on the visual sonar-based reactive navigation
algorithms and implements a new version of the Vector Field Histogram method (Borenstein
& Koren, 1991) but here adapted for vision-based systems.

The complete algorithm runs in five steps: 1) first, image main features are detected, tracked
across consecutive frames, and classified as obstacle or ground using a new algorithm based
on IPT; 2) the edge map of the processed frames is computed, and edges comprising obstacle
points are discriminated from the rest, emphasizing the obstacle boundaries; 3) range and
angle of obstacles located inside a Region of Interest (ROI), centered on the robot and with
a fixed radius, are estimated computing the orientation and distance of those obstacle points
that are in contact with the floor; 4) a qualitative occupancy map is performed with the data
computed in the previous step; and 5) finally, the algorithm computes a vector which steers
the robot towards world areas free of obstacles.
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62 Robot Vision

This chapter is structured as follows: related work is presented in section 2, the method is
outlined in Sections 3, 4 and 5, experimental results are exposed and discussed in Section 6,
and finally, conclusions and forthcoming work are given in Sections 7 and 8, respectively.

2. Related Work

2.1 Feature Detection and Tracking

Visual techniques for detecting and tracking significant elements of the scene, so called fea-
tures, have been extensively improved over the last years and used for localization and/or
navigation purposes. Significant scene features are categorized using the concept of distinc-
tiveness. The distinctiveness notion is related with the size of the window used to define
the neighborhood captured by the feature descriptor and with the amount and type of infor-
mation processed and extracted from the feature neighborhood. Distinctive features can be
characterized by a vector of values including location, scale, orientation, intensities and gra-
dients in several directions. Distinctive features can be tracked without using a motion model
and more accurately than the nondistinctive features.

Harris (Harris & Stephens, 1988) and Shi and Tomasi (Shi & Tomasi, 1994) are early and
fast techniques to find and/or track little discriminative features. Zhou and Li (Zhou & Li,
2006) detected features located on the ground plane grouping all coplanar points that have
been found applying the Harris corner detector. Nister et al. estimated the motion of mo-
bile robots tracking nondistinctive Harris corners. Saeedi et al (Saeedi et al., 2006) presented
a stereo vision-based 3-D trajectory tracker for localization of mobile robots in unexplored
environments. This work proposed a new corner detector to extract image features. Features
were matched in consecutive frames minimizing the mean-squared error and searching for the
highest cross correlation as a similarity measure. Rabie et al (Rabie et al., 2001) used a feature-
based tracking approach to match in consecutive images nondistinctive points detected using
the Shi and Tomasi algorithm. The algortihm was applied for traffic flow speed estimation in
a system addressed to automatically monitor traffic conditions.

Lowe (Lowe, 2004) developed the Scale Invariant Feature Transform (SIFT) method to extract
high discriminative image features. SIFT is robust to image scaling, rotation, illumination
changes or camera view-point changes. Stephen et al. performed global simultaneous lo-
calization and mapping in mobile robots tracking distinctive visual SIFT landmarks in static
environments (Stephen et al., 2005). Rodrigo et al. (Rodrigo et al., 2009) combined a set of se-
lected relevant distinctive SIFT features with a collection of nondistinctive features to perform
a robust navigation algorithm based on feature or landmark tracking. SIFT features were used
to compute the homographies of the different planar structures in the scene. Nondistinctive
features were used to refine the motion model. Once the homographies of the different planes
were computed it was possible to determine the motion of nondistinctive features across con-
secutive images.

Mikolajczyk and Schmid (Mikolajczyk & Schmid, 2005) compared the performance of differ-
ent descriptors for image local regions. Experimental results of different matching approaches
used to recognize the same region in different viewing conditions showed that SIFT yields the
best performance in all tests.

2.2 Inverse Perspective Transformation-based Obstacle Detection

To detect obstacles, Mallot et al (Mallot et al., 1991) analyzed variations on the optical flow
computed over the Inverse Perspective Mapping (IPM) of consecutive images. Bertozzi and
Broggi (Bertozzi & Broggi, 1998) projected two stereo images onto the ground applying the
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IPM concept. Then, they subtracted both projections to generate a non-zero pixel zone that
evidenced the presence of obstacles. Batavia et al (Batavia et al., 1997) used the IPT and the
camera ego-motion to predict future frames and compare them with the corresponding new
real frames. Differences between the predicted and real images showed the presence of obsta-
cles. The system was designed to detect vehicles in the blind spot of the cars rear-view mirror.
Shu and Tan (Shu & Tan, 2004) also employed the IPM to detect road lanes for self-guided ve-
hicles. Ma et al (Ma et al., 2007) presented an automatic pedestrian detection algorithm based
on IPM for self-guided vehicles. The system predicted new frames assuming that all image
points laid on the floor. The distorted zones of the predicted image corresponded to objects. Si-
mond combined the IPM with the computation of the ground plane super-homography from
road lines to discriminate obstacles from road in an autonomous guided vehicle application
(Simond & Parent, 2007).

2.3 Visual Sonar

Some other researchers explored the idea of Visual Sonar. Visual Sonar techniques provide
depth and orientation of elements in the scene, using visual sensors in an analogous way
to ultrasonic sensors (Horswill, 1994) (Choi & Oh, 2005) (Martin, 2006). In some cases, the
application of the visual sonar concept results in the computation of local occupancy maps
(Lenser & Veloso, 2003) (Fasola et al., 2005).

3. Obstacle Detection: Overall Description

3.1 The Inverse Perspective Transformation

The Perspective Transformation is the method for mapping three-dimensional points onto a
two-dimensional plane called the plane of projection. This Perspective Transformation mod-
els the process of taking a picture, being the image plane the plane where the spatial scene
is projected. The line that connects a world point with the camera lens intersects the image
plane defining the corresponding and unique image point of that world point. The inverse
process, that is, the projection of every image point back to the world is modeled by the In-
verse Perspective Transformation. The back projected point will be somewhere in the line that
connects the image point with the center of projection (camera lens).

The direct and the inverse perspective projections are usually modelled assuming a pinhole
camera and a flat ground (Duda & Hart, 1973) (Hartley & Zisserman, 2003). Three coordinate
systems are involved: the world, the camera and the image coordinate systems. The linear
mapping between world to image points, both expressed in homogeneous coordinates, can
be written as (Hartley & Zisserman, 2003):

xp 100 0 y
yp=0100T§UZ, 1)
f 0010 ;

where (x,,yp) are the image point coordinates, f is the focal length, (x,y,z) are the corre-
sponding scene point world coordinates and Ty, is the 4 x 4 transformation matrix from world
to the camera coordinates.

It is possible to compute the scene point world coordinates corresponding to an image point
knowing either the distance between the camera and the point in the space or any of the
(x,y,z) world coordinates, as for example, for points lying on the floor (z=0). The expressions
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Fig. 1. (a) Coordinate frame conventions. (b) The IPT-based obstacle detection.

in closed form to calculate the world coordinates for points lying on the floor are (Duda &
Hart, 1973):

Zoxpcost 4 (ypsing — fcosg)(Zosind)

* =X Ypcos@ + fsing @
Zyxpsing — ne — ZpcosB
Yo — 0Xpsind — (ypsing fCOS(p)( 0c0s6) 3)
Ypcosp + fsing

where (x*,y*) are the ground point world coordinates, (Xy, Yo, Zg) are the camera world co-
ordintes at the moment in which the frame has been taken, and 6 and ¢ are the camera yaw
and pitch angles, respectively. Coordinate system conventions and notation are illustrated in
tigure 1-(a).

3.2 Discrimination Between Obstacle and Ground Points

The (x*,y*) values computed by means of equations (2) and (3) for an image point that corre-
sponds to a point lying on the floor are equal when they are computed from two consecutive
images, and exactly correspond to the point (x,y) world coordinates. However, for an image
point that belongs to an object protruding vertically from the floor, the assumption z = 0 is
incorrect and the (x*,y*) values turn out to be different when they are calculated from two con-
secutive images, and different to the object point real (x, y) world coordinates. Hence, one can
distinguish if the point belongs to an obstacle or to the floor assuming z = 0 and comparing
the distance between the resulting (x*,y*) values calculated for two consecutive images:

. / A2 AW if D > B=> obstacle,
(discrepancy) D = \/(xz ()24 (5 —vyi)? = {ifD < B = ground
where (x],y]) and (x3,y5) correspond to instants ¢ and #,, respectively, and B is the threshold
for the maximum difference admissible between (x7,y7) and (x3,y5) to classify the feature as
ground point. Ideally B should be 0.

The idea is illustrated in figure 1-(b). Two frames of a scene are taken at instants ¢; and ¢5.
Point P, is on the floor. Its projection into the image plane at instants ¢; and t; generates,
respectively, the image points P,;y and P,;1. The Inverse Transformation of P;y and P;;; gen-
erates a unique point Py,,. Pjy, is an obstacle point. Its projection into the image plane at t;
and t, generates, respectively, the points Py;y and P;;;. However, the Inverse Transformation
of Pjjp and Pjj; back to the world assuming z = 0 (e.g. projection onto the ground plane),

(4)

generates two different points on the ground, namely, Piw and wa.
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3.3 Feature Detection and Tracking

The first key step of the algorithm is to detect a sufficiently large and relevant set of image
features and match them across consecutive images. SIFT features (Lowe, 2004) have been
chosen as the features to track because of their robustness to scale changes, rotation and/or
translation as well as changes in illumination and view point. Wrong correspondences be-
tween points in consecutive frames are filtered out in four steps, using RANSAC and impos-
ing the epipolar constraint: x),Fx, = 0, where x), and x, are the point image coordinates in
two consecutive frames, and F is the fundamental matrix (Hartley & Zisserman, 2003):

1. Compute SIFT features and match them in the two consecutive images,

2. starting with 7 correspondences randomly generated, compute the Fundamental Matrix
taking the one with the lowest standard deviation of inliers (RANSAC robust estima-
tion),

3. re-compute F from the correspondences classified as inliers,

4. update the correspondences using the updated F.

Steps 3 and 4 can be iterated until the number of correspondences is stable.

4. Obstacle Detection: Enhanced Feature Classification

4.1 Direct Identification of Some Obstacle Points
The set of scene points that map to a given image point can be written as (Duda & Hart, 1973):

p=p+Mpp—p) ®)
where p is the scene object point (x,y,z), p; is the camera center (Xy, Yy, Zy), pp is the image
point corresponding to the scene point p, expressed in the world coordinate system,

Xo xpcos® — fcos@sind + ypsingsingd
pp = | Yo | + |xpsinf + fcospcost) — ypsingcoso | , (6)

Z fsing +ypcose
and A is a free parameter leading to a certain world point somewhere on the image point-lens
line. The idea is illustrated in figure 2-(a).
The back-projection onto the ground of all these image features (p,) which correspond to scene
points (p) located below the plane parallel to the flat ground and that contains the lens center
(p;) requires a positive A, while A has to be negative for all image features corresponding to
scene points located above the mentioned plane. The idea is illustrated in figure 2-(b). p;
is a point lying on the floor, and its corresponding image point is p,1. In equation (5) p; is
obtained from p,; with A > 0. Likewise, p, and P/Zw result from py; for A > 0. However, py3

leads to a point on the ground p/?,w for which A is < 0

Clearly, image points with A negative necessarily correspond to scene points above the
ground, while image points with A positive can correspond either to elevated points or to
points lying on the floor. Consequently, the process of inverse projection and discrepancy
computation can be omitted for all these image features that need a A < 0 to be projected onto
the ground, as they can be directly classified as obstacle points.

The goal then is to find which is the location in the image of all these features that can be
directly classified as obstacle points. Doing some manipulations on equation (5), the z world
coordinate of a scene point can be calculated as (Duda & Hart, 1973):
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Fig. 2. (a) The IPT: p = p; + A(pp — p1) (b) A's positives and negatives

z = Zo + A(fsing + ypcosg) (7)
where A determines the exact position of the scene point in the inverse perspective projecting
ray.

If z = 0, we can solve for A:
P . (8)
fsing +ypcose
Making A < 0 means that (fsing + y,cos@) > 0, then solving for y:
Yp > —ftang. )

Expressing the v, image coordinate in pixels and translating the origin of the image coordinate
system from the image center to the upper left corner (see figure 3), we obtain that:

v <vg+kyftang (10)

where k, factor is the relation [pixels/length] of the used images.
Therefore, all image points with a vertical coordinate v lower that vy + k; f tan ¢ pixels corre-
spond to obstacle points of the scene.

4.2 Selection of Threshold

Those image features that do not admit a direct identification as obstacles must be classified
using equation (4). In order to select an appropriate value for § in this equation, we have stud-
ied the behavior of discrepancy D for all the pixels of one image under reasonable conditions
of application in the navigation strategy. More precisely: a) the distance between the camera
and a scene point (DST) was fixed to a constant value for all pixels of one image, and tested
with 1000mm, 1500mm and 2000mm, b) according to the experimental setup, the camera sep-
aration between two consecutive images was 31mm along the direction of motion, the image
resolution was set to 256x192 pixels, the focal length was set to 3.720mm, and the camera
angles ¢ and 0 were set to —9° and 0°, respectively, c) the rotation matrix R representing the
orientation of the camera in the world coordinate system was defined for rotation only around
the x, axis.
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u Image plane

Ys

(ug =x12 vg=vyJ[2)
Fig. 3. Image plane coordinate system, where x; and ys are respectively, the horizontal and
vertical image resolution

This section describes next the algorithm to compute the discrepancy D for each pixel of one
image, under the aforementioned conditions.

I) We start from two consecutive images. First, given a point in the first image with coordinates
(xp1,Yp1), the world coordinates of its corresponding scene point are calculated assuming that
the distance between the camera and the point of the scene (DST) is known. The relation
between the coordinates (X1, Yc1,Z.1) of a scene point expressed in the coordinate system
attached to the camera and its corresponding image point (xp1,yp1) is (Hartley & Zisserman,
2003):

Xp1Zc1 Yp1Zc
X1 = ”fc Yo = Pf“. (11)
The distance between the camera and the point of the scene (DST) can be calculated as:
DST = /72 + Y2 + X3, (12)
combining (12) with (11), we obtain:
DST?
72 = : 13
cl yﬁ xfﬂ ( )

1+(f2)+(f_2)

The euclidean transformation between the world and camera homogeneous coordinates can
be expressed as:

X Xcl
Y| _ rw Ycl
z - TC ch 7 (14)
1 1
where
R T
=g 1] (15)

being R the 3 x 3 rotation matrix, and T; = (Xo1, Yo1,Zo) (the camera position at the first
image). Knowing R and T;, we can obtain the world coordinates (x,y,z) of the scene point
corresponding to the chosen image point.
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Fig. 4. All image points over a sphere of a defined radius DST are projected in the image
plane, and then tracked in two consecutive images, at instants f; and 5.

IT) Next, this scene point (x,y, z) is projected onto the second image, obtaining the point coor-
dinates (x,2,yp2) in the second frame. The camera position at the instant of taking the second
image is Tp = (Xo2, Y02, Zp). Assuming that R does not change, with the new camera position
and the calculated world point coordinates (x, y, z), the scene point expressed in the new cam-
era coordinates (X, Ye2, Zc) can be calculated using the equation (14). With (X, Y2, Ze2),
the image coordinates (x,2,yp2) can be calculated using equations (11).

1) Finally, (x,1,yp1) and (x,2,Yp2) are back-projected onto the floor using equations (2) and
(3) to obtain (x7,y7) and (x3,y5), which are used to calculate the discrepancy D defined in
equation (4).

The so far described process is illustrated in figure 4. Assuming a constant DST for all image
points means that all points located in the surface of a sphere surrounding the camera, with a
radius of DSTm are projected onto the image. If the radius is sufficiently long, the sphere will
intersect the plane z = 0. All points of the sphere that intersect this plane are on the floor, and
are projected at the bottom of the image.

Figure 5 plots three cases of function D(xp,y,) for all pixels of one image of 256 x 192 pixels,
using DST=1000mm, DST=1500mm and DST=2000mm, and setting the rest of parameters (f,
@ and 0) as stated at the beginning of this section. Note in plots (d) and (f) how pixels at the
bottom of the image present discrepancies equal to 0. These pixels correspond to those scene
points located on the floor or below the z = 0 world plane.

Figure 6 plots D(xy, ) for images with a resolution of 1024 x 768 pixels and the same param-
eters as stated previously in this section. D values reach their maximum around v=50 pixels
for images with a resolution of 256 x 192 pixels and v=200 for images with a resolution of
1024 x 768 pixels.

As can be observed in figures 5 and 6, discrepancy D exhibits different behavior depending
on the image pixel location. The dependance of D with the position of the feature in the
image suggests that the B threshold defined in equation (4) can be also dependent on the
image feature position. Adjusting  to a low value for image features near the bottom or to a
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Fig. 5. (a), (c) and (e), plot of D(xp,y) function for DST=1m, DST=1.5m and DST=2.0m,
respectively, for a resolution of 256192 pixels. (b), (d) and (f): respectively, detail of (a), (c)
and (e). In plots (c), (d), (e) and (f), D = 0 for world points lying on the sphere surface with
radius DST and such thatz <0
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Fig. 6. (a) D graphic for DST=1.5m and image resolution of 1024 x768. (b) detail of (a) for D
(discrepancy) low levels

higher value for image features near the zone with maximum D should decrease the number
of missclassified SIFT features.

5. The Navigation Strategy

5.1 Obstacle Profiles

SIFT features are usually detected at regions of high gradient (Lowe, 2004), thus they are
likely to be near or belong to an edge. Besides, features classified as obstacles are most likely
to be contained or near a vertical edge belonging to an obstacle. Hence, the next step of
the algorithm is the computation of edge maps and the association of such edges with real
obstacle points. This process permits isolating the obstacle boundaries from the rest of edges
and getting a qualitative perception of the environment.

In order to combine a high degree of performance in the edge map computation with a rela-
tively low processing time, the edge detection procedure runs in two steps (Canny, 1986):

1. First, the original image is convolved with a 1D gaussian derivative horizontal kernel.
This permits detecting zones with high vertical gradient from smoothed intensity val-
ues with a single convolution.

2. Next, a process of hysteresis thresholding is applied. Two thresholds are defined. A
pixel with a gradient above the highest threshold is classified as edge pixel. A pixel
with a gradient above the lowest threshold is classified as edge if it has in its vicinity
a pixel with a gray value higher than the highest threshold. In this way, edge pixels
with low gradient are not filtered if the threshold is defined too high, and noise is not
considered as an edge if the threshold is defined too low.

The algorithm locates every image feature classified as obstacle and then searches for all edge
pixels which are inside a window centered at the feature image coordinates. Then, every edge
is tracked down starting from the object point position until the last edge pixel or a ground
point is found. This will be considered as to be the point(/s) where the object rests on the
floor. This process permits isolating the obstacle boundaries from the rest of edges and to get
a qualitative perception of the environment.
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Fig. 7. Distance and orientation of an obstacle point with respect to the camera

5.2 Building the Local Occupancy Map

Knowing the camera position and the world coordinates of a point on the floor, the distance
dcp between the vehicle and the floor point and the angle ¢ defined by the direction of motion
and the relative orientation of this point with respect to the camera can be calculated as:

dep =/ (x — Xo)2 + (y — Yo)?
( i-b ) (16
¢ = arccos [ ——
a

where (x,y,0) are the world point coordinates, 7 is a vector with the same direction as the

vector from the world coordinate system origin to point (Xp, Y, 0), b is the vector from point
(X0, Y0,0) to point (x,y,0), and 7 - b is the dot product between both vectors. The idea is
illustrated in figure 7.

The orientation and distance of obstacles with respect to the robot can then be qualitatively es-
timated computing the distance and orientation between the camera and those obstacle points
in contact with the floor, using equations (16).

5.3 The Navigation Strategy

A semicircular area on the ground plane, of a fixed radius and centered at the robot position, is
defined as the Region of Interest (ROI). Only obstacles detected inside this ROI are considered
to be avoided. The ROI is in turn divided in angular regions. Histograms of obstacle-to-
ground contact points at each polar direction of the ROI are computed. Those polar directions
corresponding to angular regions occupied by a set of obstacle-to-ground contact points are
labeled as forbidden and those free of obstacle-to-ground contact points are included in the
set of possible next movement directions. This process results in a qualitative polar occupancy
map of free and occupied zones in the vicinity of the robot. Obstacle-free polar regions which
are narrower than a certain threshold (determined empirically and depending on the robot
size) are excluded from the possible motion directions. If all angular regions are narrower
than the defined threshold, the algorithm concludes that all space in front is occupied by
obstacles and returns a stop order.
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The next movement direction is given as a vector pointing to the center of the widest polar
obstacle-free zone. Positive angles result for turns to the right and negative angles for turns to
the left.

6. Implementation and Experimental Results

6.1 Overall Performance of the Classifier

To test the proposed strategy, a Pioneer 3DX robot with a calibrated wide angle camera
was programmed to navigate in different scenarios, such as environments with obstacles
of regular and irregular shape, with textured and untextured floor, and environments with
specularities or under low illumination conditions. The operative parameter settings were:
robot speed=40mm/s; the radius of the ROI=1'5m; for the hysteresis thresholding, low
level= 40 and high level= 50; camera height= 430mm; ¢ = —9°; initial § = 0°, and finally,
f = 3.720mm. For each scene, the complete navigation algorithm was run over successive
pairs of 0.77-second-separation consecutive frames so that the effect of IPT was noticeable.
Increasing the frame rate decreases the IPT effect over the obstacle points, and decreasing the
frame rate delays the execution of the algorithm. Frames were originally recorded with a reso-
lution of 1024 x 768 pixels but then they were down-sampled to a resolution of 256 x 192 pixels,
in order to reduce the computation time. All frames were also undistorted to correct the er-
ror in the image feature position due to the distortion introduced by the lens, and thus, to
increase the accuracy in the calculation of the point world coordinates. The implementation
of the SIFT features detection and matching process was performed following the methods
and approaches described in (Lowe, 2004). The camera world coordinates were calculated for
each frame by dead reckoning, taking into account the relative camera position with respect
to the robot center.

First of all, the classifier performance was formally determined using ROC curves (Bowyer
et al., 2001). These curves were computed for every pair of consecutive images and plot the
recall of classified points vs the fall-out, varying the threshold p:

_ TP(B) _ FP(B)
recall (B) = TP(B) + FN(B) fallout(p) = FP(B) - TN(B)’ (17)

where TP is the number of true positives (obstacle points classified correctly), FN is the num-
ber of false negatives (obstacle points classified as ground), FP is the number of false positives
(ground points classified as obstacle) and TN is the number of true negatives (ground points
classified correctly). For every ROC curve, its Area Under the Curve (AUC) (Hanley & Mc-
Neil, 1982) was calculated as a measure of the success rate. The optimum p value was obtained
for every pair of images minimizing the cost function:

f(B) = FP(B) + OFN(B). (18)

During the experiments, § was set to 0.5 to prioritize the minimization of false positives over
false negatives. For a total of 36 different pairs of images, corresponding to a varied set of
scenes differing in light conditions, in the number and position of obstacles and in floor tex-
ture, a common optimum S value of 21mm resulted.

Figure 8 shows some examples of the classifier output. Pictures [(1)-(2)], [(4)-(5)], [(7)-(8)],
[(10)-(11)] show several pairs of consecutive frames corresponding to examples 1, 2, 3 and 4,
respectively, recorded by the moving robot and used as input to the algorithm. Pictures (2),
(5), (8) and (11) show obstacle points (in red) and ground points (in blue). Although some
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ground points were wrongly classified as obstacles, the AUC of the ROC curves for examples
1 to 4 (plots (3), (6), (9) and (12) of figure 8) suggest success rates of 97%, 94%, 92% and
95%, respectively. Notice that all scenes present inter-reflections, shadows and specularities,
although they do not affect the classifier performance.

Example 4: (10) (11) (12)
Fig. 8. (1),(4), (7) and (10): undistorted first frame of examples 1, 2, 3 and 4, respectively. (2),
(5), (8) and (11): undistorted second frame. (3), (6), (9) and (12): ROC curves for examples 1,
2,3 and 4, respectively (AUC;=0"9791, AUC,=0"9438, AUC3=0"9236, AUC4=0"9524).

]

08

6.2 The Classifier Refinement Routine
Features corresponding to points lying on the floor but classified as obstacle points can induce
the detection of false obstacles. In order to filter out as much FPs as possible, the threshold
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was varied with the feature image location and according to the concepts and results outlined
in section 4.2.

Taking the same values of f, ¢, camera height, image resolution, robot speed, ROI and
frame rate as stated in section 6.1, and with a k,=1000/ (4 * 4,65) (taking into account that
1 pixel=4.65um for the original image resolution of 1024 x 768 pixels, then, for the down-
sampled images with a resolution of 256 x 192 pixels, 1 pixel=4*4.65um), from equation (10)
resulted v <65 pixels. All features located between the top of the image and v=65 pixels were
directly classified as obstacle points.

Since the yaw angle of the camera with respect to the direction of motion was 0 and the camera
pitch angle was —9°, it was defined a rotation matrix corresponding to a unique rotation
around the x;, camera axis. The transformation from camera to world coordinates T/ was set
to:

0 0 Xo
sing cos¢ Y
cosep —sing Z

0 0 1

The radius of the ROI was set to 1.5m, so the DST (see equation (12)) reference value was also
set to 1.5m.

In a previous training phase, a number of image sequences were recorded in different sce-
narios with the moving robot remotely controlled. 36 image pairs were used to train the
adjustment. Every image was then virtually divided in four sectors, 1) zone 3, from v=0 to
v=65, where all points were automatically classified as obstacle points; 2) zone 2, from v=65 to
v=90, which is the zone where D reaches abruptly its maxima values; 3) zone 1, from v=90 to
v=169, where D changes gradually with the image v coordinate and 4) zone 0, from v=169 to
v=192, where D has a nearly constant value of 21mm, for a DST=1.5m. The threshold p used
to determine the maximum discrepancy admissible for a feature to be classified as ground
point was set differently for the different image zones: a) 2Imm in zone 0, b) in zones 1 and
2, the 8 value was chosen to minimize the number of FP(B) + 0.5FN(pB) in each image zone,
and for each different scenario. For example, scenario 2 required a higher B in zone 2 than
scenario 1. In zone 1, Bs resulted in a 20mm to 30mm range, and in zone 2, Bs resulted in a
30mm to 150mm range.

Also during the training phase, histograms accounting for the number of FP and TP for each
D value where computed over a number of pre-recorded images of different scenarios. Figure
9 shows some examples of these histograms. TP located in zone 2 are shown in green, TP
in zone 1 are shown in blue, FP in zone 1 are shown in red and FP in zone 2 are shown
in magenta. The majority of TP are located in zone 2 and have high D values. Only a few
obstacle points are located in zone 1. FP in the zone 2 do not affect our navigation algorithm
since they are out of the ROI. FP in the zone 1 can be inside the ROI and have to be filtered
out. For all the analyzed scenarios, all FP of zone 1 presented discrepancies (D) in a 20mm
and 85mm range.

Once B had been configured for every image zone and scenario, and the filtering criteria had
been defined, the algorithm could be run during the autonomous navigation phase. During
this autonomous process and for all tested scenes, all features of zone 1 that presented a dis-
crepancy between 20mm and 85mm were not classified. Combining the aforementioned filter
with a B changing at each different image zone, nearly all ground points classified as obsta-
cles were filtered out and some other points were well re-classified. This reduced the risk

¢ = (19)
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Fig. 9. (1), (2) and (3): Examples of histograms corresponding to scenario 1. (4) and (5):
Example of histograms corresponding to scenario 2. (6): Example of histogram corresponding
to scenario 3.

of detecting false obstacles, and although some true obstacle points were also removed, the
remaining ones were sufficient to permit the detection of those obstacles.

Figure 10 shows several results of the refinement routine. Pictures (1), (3), (5), (7), (9) and (11)
show images recorded during some navigation tests in different scenarios. Obstacle points
are shown in red and ground points in blue. Pictures (2), (4), (6), (8), (10) and (12) show the
corresponding images after the refinement routine was applied. See as in all these images
false obstacles in zone 1 were filtered out.

Table 1 shows some numerical results to compare the classifier assessment using a single 8
and no filtering process vs the results obtained using a changing f and the filtering routine.
Columns FPAF /Nbr and FP/Nbr show the percentage of FP with respect to the total number
of features at each scene, with and without the refinement process, respectively. In all cases
this percentage either maintains the value or decreases. The column AUC shows the area
under the ROC curve without the refinement process. All values suggest a classifier success
rate greater than 90%. The Fall Out for the optimum B in each image zone, calculated when
the refinement process was applied, decreases or maintains the value with respect to the Fall
Out computed with the single optimum g (21mm) without the refinement process.

6.3 The Complete Navigation Strategy

After image features have been classified, the algorithm successfully identifies the relevant
part of the obstacle contour. A 9x15 pixel window is used to find edge pixels near an obstacle
point and to track down the obstacle contours. The window is longer in the vertical direction
to overcome possible discontinuities in the obstacle vertical borders.
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(12)
Fig. 10. (1), (3), (5), (7), (9) and (11): Image with SIFT features classified. (2), (4), (6), (8), (10)
and (12): Image with SIFT features filtered and reclassified.

Scene FP/ Ny, AUC Fall-Out for | Recallfora | FPAF /Ny, | Fall Out | Recall
a unique unique p with with

refine- refine-

ment ment
scene 1 0.0078 0.9482 0.0600 0.9467 0.0042 0.0286 0.9415
scene 2 0.0275 0.9412 0.1500 0.8998 0.0096 0.0625 0.9034
scene 3 0.0313 0.9434 0.1156 0.9857 0.0108 0.0400 0.9850
scene 4 0.0081 0.9554 0.0416 0.7653 0.000 0.0000 0.7700
scene 5 0.0088 0.9834 0.0830 0.9010 0.0089 0.0833 0.9000
scene 6 0.0115 0.9376 0.0331 0.9818 0.0120 0.0357 0.9818
scene 7 0.0091 0.9827 0.0272 0.9315 0.0000 0.0000 0.9090
scene 8 0.0066 0.9350 0.0621 0.9700 0.0068 0.0625 0.9700
scene 9 0.0231 0.9100 0.1421 0.9459 0.0047 0.0294 0.9325
scene 10 0.0112 0.9036 0.0208 0.9047 0.0000 0.0000 0.9000

Table 1. Data results for some scenes. N, is the number of scene SIFT features, FP: number of
false positives; FPAF: number of false positives after the filter.
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Fig. 11. (1), (3), (5), (7): Undistorted second frame of different pairs of consecutive images of
Scenes 1, and 2. (2), (4), (6), (8): Obstacle contours.

Figure 11 shows four examples of the obstacle contour discrimination algorithm applied over
images of a sequence recorded by the mobile robot during the autonomous navigation phase
in two different scenarios. Pictures (1), (3), (5) and (7) are the second frame of four different
pairs of consecutive images. Pictures (2), (4), (6) and (8) show the corresponding edge map
with the obstacle profiles highlighted in orange. Note how the paper in picture (3) has not
been detected as an obstacle since all features lying on it were classified as ground points,
as well as, although picture (5) shows a very high inter-reflection on the ground and a very
granulated texture on the floor tiles, only real obstacle boundaries have survived.

Figures 12, 13, 14 and 15 show some examples of the complete navigation algorithm tested
on the moving robot. Missions consisted of navigating through several environments with
some special characteristics, avoiding the obstacles, including columns and walls. The nav-
igation algorithm was run with a variable B and the filtering process, and with all the same
settings reported at the beginning of this section. Pictures (1), (2), (3) and (4) in all four figures
show the second frame of some pairs of consecutive images recorded and processed during
the navigation through scenarios 1, 2, 3. Every image was taken before the robot had to turn
to avoid the frontal obstacles; obstacle points are shown in red and ground points in blue. Fig-
ure 12 (scenario 1) shows a room full of obstacles with regular and irregular shape. This scene
presents shadows and inter-reflections. Figure 13 (scenario 2) corresponds to a corridor with
a very high textured floor, columns, walls, inter-reflections and some specularities. Figures
14 and 15 (scenario 3) present bad illumination conditions, important inter-reflections and
specularities on the floor, and some image regions (white walls, shelves and lockers) have ho-
mogeneous intensities and/or textures, resulting in few distinctive features and poorly edged
obstacles which can complicate its detection. Pictures (5), (6), (7) and (8) in all four figures
show the vertical contours (in orange) comprising obstacle points. As shown, obstacle con-
tours were differentiated from the rest of the edges. Range and angle of the computed world
points with respect to the camera coordinates were estimated using equations (16). Those
obstacle-to-ground contact points closer than 1’5m were highlighted in pink.

Histograms (9), (10), (11) and (12) in figures 12, 13, 14 and 15 account for the number of
obstacle-to-ground contact points detected in each polar direction. Therefore, they turn out
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to be local occupancy maps in a bird’s-eye view of a semicircular floor portion with a radius
of 1’5m. These maps show the world polar coordinates, with respect to the camera position
(which is in the center of the semicircle), of those obstacle points in contact with the floor. The
grid gives a qualitative idea of which part of the robot vicinity is occupied by obstacles and
the proximity of them to the robot.

The algorithm analyzes next the polar histograms and defines the direction of the center of
the widest obstacle-free polar zone as the next steering direction (shown in green). The exper-
iments performed suggest a certain level of robustness against textured floors, bad illumina-
tion conditions, shadows or inter-reflections, and deals with scenes comprising significantly
different planes. In all scenes, features were well classified with success rates greater than
90% , obstacle profiles were correctly detected and the robot navigated through the free space
avoiding all obstacles.

Figure 16 shows in plots (1), (2), (3) and (4) the trajectories followed by the robot during the
navigation through the environments of experiments 1, 2, 3 and 4 displayed in figures 12, 13,
14 and 15. The blue circle denotes the starting point and the red circle denotes the end point.

7. Conclusions

Reactive visual-based navigation solutions that build or use local occupancy maps represent-
ing the area that surrounds the robot and visual sonar-based solutions are sensitive to floor
and obstacle textures, homogeneity in the color intensity distribution, edges or lighting con-
ditions. The construction of local maps is a suitable way to clearly identify the presence and
position of obstacles and thus to determine the direction to follow. But it is not essential to de-
termine or to identify exact obstacle shapes, dimensions, colors or textures. In this chapter, a
new navigation strategy including obstacle detection and avoidance has been presented. The
algorithm shows a certain robustness to the presence of shadows, inter-reflections, speculari-
ties or textured floors, overcomes scenes with multiple planes and uses only a certain number
of image points. The complete strategy starts with a novel image feature classifier that dis-
tinguishes with a success rate greater that 90% between obstacle features from features lying
on the ground. The detection of points that belong to obstacles permits: a) discriminating the
obstacle boundaries from the rest of edges, and b) the detection of obstacle-to-ground contact
points.

By computing the world coordinates of those obstacle-to-ground contact points detected in
the image, the system builds a radial qualitative model of the robot vicinity. Range and an-
gle information are quantitatively and accurately computed to create a qualitative occupancy
map. Navigation decisions are taken next on the basis of qualitative criteria. What is reflected
in these maps is not the total area that the obstacle occupies or its exact shape or identifica-
tion, but it is an evidence of the presence of something that has to be avoided in a determined
direction and at a defined distance.

The experimental setup consisted of different scenarios with different characteristics, different
obstacles, different illumination conditions and different floor textures. In all cases the mobile
robot was able to navigate through the free space avoiding all obstacles, walls and columns.

8. Future Work

The proposed strategy can be applied as an obstacle detection and avoidance module in more
complex robot systems, like programmed missions for exploration of unknown environments,
map-building tasks, or even, for example, as a guiding robot. The algorithm depicted does not
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Fig. 12. Scenario 1. Experiment 1: (1), (2), (3) and (4), undistorted second frames; (5), (6), (7)
and (8), corresponding edge maps with obstacle borders highlighted in orange. (9), (10), (11),
(12), histograms of obstacle-to-ground contact points for each polar direction between —90°
and 90°. (13), (14), (15) and (16), local occupancy map with the resulting steering vector, for
images (1), (2), (3) and (4) respectively.
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Fig. 13. Scenario 2. Experiment 2: floor with a very granulated texture. (1), (2), (3), (4), undis-
torted second frames; (5), (6), (7) and (8), corresponding edge maps with obstacle borders
highlighted in orange; (9), (10), (11), (12), histograms of obstacle-to-ground contact points for

each polar direction between —90° and 90°; (13), (14), (15) and (16), local occupancy map with
the resulting steering vector, for images (1), (2), (3) and (4), respectively.
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Fig. 14. Scenario 3. Experiment 3: some inter-reflections and bad illumination conditions.
(1), (2), (3) and (4), undistorted second frames; (5), (6), (7) and (8), corresponding edge maps
with obstacle borders highlighted in orange; (9), (10), (11) and (12) histograms of obstacle-
to-ground contact points for each polar direction between —90° and 90°; (13), (14), (15) and

(16), local occupancy map with the resulting steering vector, for images (1), (2), (3) and (4)
respectively.
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Fig. 15. Scenario 3. Experiment 4: few distinctive points, few borders, some inter-reflections
and bad illumination conditions.(1), (2), (3), (4), undistorted second frames; (5), (6), (7) and
(8), corresponding edge maps with obstacle borders highlighted in orange; (9), (10), (11), (12),
histograms of obstacle-to-ground contact points for each polar direction between —90° and
90°. (13), (14), (15) and (16), local occupancy map with the resulting steering vector, for images
(1), (2), (3) and (4) respectively.
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Fig. 16. (1), (2), (3) and (4), robot trajectories for tests of figures 12, 13, 14 and 15, respectively.

restrict the method used for feature detection and tracking. Depending on this method, the
number of detected features can change, features can be detected in different image points,
their classification can change and the algorithm time of execution can also be different. To
explore different choices for detecting and tracking features becomes necessary to optimize
our algorithm in terms of: a) number of necessary features, b) their location in the image, and
¢) time of execution
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