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1. Introduction

We introduce an approach to accelerate low-level vision in robotics applications, including its
formalisms and algorithms. We depict in detail image the processing and computer vision
techniques that provide data reduction and feature abstraction from input data, also includ-
ing algorithms and implementations done in a real robot platform. Our model shows to be
helpful in the development of behaviorally active mechanisms for integration of multi-modal
sensory features. In the current version, the algorithm allows our system to achieve real-time
processing running in a conventional 2.0 GHz Intel processor. This processing rate allows our
robotics platform to perform tasks involving control of attention, as the tracking of objects,
and recognition.
This proposed solution support complex, behaviorally cooperative, active sensory systems
as well as different types of tasks including bottom-up and top-down aspects of attention
control. Besides being more general, we used features from visual data here to validate the
proposed sketch. Our final goal is to develop an active, real-time running vision system able to
select regions of interest in its surround and to foveate (verge) robotic cameras on the selected
regions, as necessary. This can be performed physically or by software only (by moving the
fovea region inside a view of a scene).
Our system is also able to keep attention on the same region as necessary, for example, to
recognize or manipulate an object, and to eventually shift its focus of attention to another
region as a task has been finished. A nice contribution done over our approach to feature
reduction and abstraction is the construction of a moving fovea implemented in software that
can be used in situations where avoiding to move the robot resources (cameras) works better.
On the top of our model, based on reduced data and on a current functional state of the
robot, attention strategies could be further developed to decide, on-line, where is the most
relevant place to pay attention. Recognition tasks could also be successfully done based on
the features in this perceptual buffer. These tasks in conjunction with tracking experiments,
including motion calculation, validate the proposed model and its use for data reduction and
abstraction of features. As a result, the robot can use this low level module to make control
decisions, based on the information contained in its perceptual state and on the current task
being executed, selecting the right actions in response to environmental stimuli.
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The developed technique is implemented in a built stereo head robot operated by a PC with
a 2.0 GHz processor. This head operates on the top of a Pioneer AT robot with an embed-
ded PC with real-time operating system. This computer is linked to the stereo head PC by a
dedicated bus, thus allowing both to run different tasks (perception and control). The robot
computer provides control of the robotic devices, as taking navigation decisions according to
the goal and sensors readings. It is also responsible for moving the head devices. On its way,
the stereo head computer provides the computing demands for the visual information given
by the stereo head, including image pre-processing and feature acquisition, as motion and
depth. Our approach is currently implemented and running inside the stereo head computer.
Here, besides better formalizing the proposed approach for reduction of information from the
images, we also describe shortly the stereo head project.

2. Related works

Stereo images can be used in artificial vision systems when a unique image does not pro-
vide enough information of the observed scene. Depth (or disparity) calculation (Ballard &
Brown, 1982; Horn, 1986; Marr & Poggio, 1979; Trucco & Verri, 1998) is such kind of data that
is essential to tasks involving 3D modeling that a robot can use, for example, when acting in
3D spaces. By using two (or more) cameras, by triangulation, it is possible to extract the 3D
position of an object in the world, so manipulating it would be easier. However, the computa-
tional overloading demanded by the use of stereo techniques sometimes difficult their use in
real-time systems Gonçalves et al. (2000); Huber & Kortenkamp (1995); Marr (1982); Nishihara
(1984). This extra load is mostly caused by the matching phase, which is considered to be the
constriction of a stereo vision system.
Over the last decade, several algorithms have been implemented in order to enhance preci-
sion or to reduce complexity of the stereo reconstruction problem (Fleet et al., 1997; Gonçalves
& Oliveira, 1998; Oliveira et al., 2001; Theimer & Mallot, 1994; Zitnick & Kanade, 2000). Re-
sulting features from stereo process can be used for robot controlling (Gonçalves et al., 2000;
Matsumoto et al., 1997; Murray & Little, 2000) that we are interested here between several
other applications. We remark that depth recovering is not the only purpose of using stereo
vision in robots. Several other applications can use visual features as invariant (statistical
moments), intensity, texture, edges, motion, wavelets, and Gaussians. Extracting all kind of
features from full resolution images is a computationally expensive process, mainly if real
time is a need. So, using some approach for data reduction is a good strategy. Most methods
aim to reduce data based on the use of the classical pyramidal structure (Uhr, 1972). In this
way, the scale space theory (Lindeberg, n.d.; Witkin, 1983) can be used towards accelerating
visual processing, generally on a coarse to fine approach. Several works use this approach
based on multi-resolution (Itti et al., 1998; Sandon, 1990; 1991; Tsotsos et al., 1995) for allow-
ing vision tasks to be executed in computers. Other variants, as the Laplacian pyramid (Burt,
1988), have been also integrated as a tool for visual processing, mainly in attention tasks (Tso-
tos, 1987; Tsotsos, 1987). Besides we do not rely on this kind of structure but a more compact
one that can be derived from it, some study about them would help to better understanding
our model.
Another key issue is related to feature extraction. The use of multi-features for vision is a
problem well studied so far but not completely solved yet. Treisman (Treisman, 1985; 1986)
provides an enhanced description of a previous model (Treisman, 1964) for low-level per-
ception, with the existence of two phases in low-level visual processing: a parallel feature
extraction and a sequential processing of selected regions. Tsotsos (Tsotsos et al., 1995) depicts
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an interesting approach to visual attention based on selective tuning. A problem with multi-
feature extraction is that the amount of visual features can grow very fast depending on the
task needs. With that, it can also grow the amount of processing necessary to recover them.
So using full resolution images can make processing time grows up.
In our setup, the cameras offer a video stream at about 20 frames per second. For our real-
time machine vision system to work properly, it should be able to make all image operations
(mainly convolutions) besides other attention and recognition routines at most in 50 millisec-
onds. So to reduce the impact of image processing load, we propose the concept of multi-
resolution (MR) retina, a dry structure that used a reduced set of small images. As we show in
our experiments, by using this MR retina, our system is able to execute the processing pipeline
including all routines in about 3 milliseconds (that includes calculation of stereo disparity, mo-
tion, and several other features).
Because of a drastic reduction on the amount of data that is sent to the vision system, our
robot is able to react very fast to visual signals. In other words, the system can release more
resources to other routines and give real-time responses to environmental stimuli, effectively.
The results show the efficiency of our method compared to other traditional ways of doing
stereo vision if using full resolution images.

3. The stereo head

A stereo head is basically a robotic device composed by an electronic-mechanical apparatus
with motors responsible for moving two (or more) cameras, thus able to point the cameras
towards a given target for video stream capture. Several architectures and also built stereo
systems can be found in the literature (A.Goshtasby & W.Gruver, 1992; D.Lee & I.Kweon,
2000; Garcia et al., 1999; Nickels et al., 2003; S.Nene & S.Nayar, 1998; TRACLabs, 2004; Truong
et al., 2000; Urquhart & Siebert, 1992; W.Teoh & Zhang, 1984). Here, we use two video cameras
that allow capture of two different images from the same scene. The images are used as ba-
sis for feature extraction, mainly a disparity map calculation for extracting depth information
from the imaged environment. A stereo should provide some angle mobility and precision
to the cameras in order to minimize the error when calculate the depth making the whole
system more efficient. As said previously, the aim of using stereo vision is to recover three-
dimensional geometry of a scene from disparity maps obtained from two or more images of
that scene, by way of computational processes and without reduction of data this is com-
plex. Our proposed technique helps solving this problem. It has been used by our built stereo
head that is shown in Figure 1 to reduce sensory data. Besides using analogic cameras, tests
were also successfully performed using conventional PCs with two web cameras connected to
them. Structures Multiresolution (MR) and Multifeatures (MF) used here represent the map-
ping of topological and spatial indexes from the sensors to multiple attention or recognition
features.
Our stereo head has five degrees of freedom. One of them is responsible for vertical axis
rotation of the whole system (pan movement, similar to a neck movement as a "not" with our
head). Other two degrees of freedom rotate each camera horizontally (tilt movement, similar
to look up and look down). The last two degrees of freedom rotate each camera in its vertical
axis, and together converge or diverge the sight of stereo head. Each camera can point up or
down independently. Human vision system does not have this behavior, mainly because we
are not trained for that despite we are able to make the movement.
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Fig. 1. UFRN Stereo Head platform with 5 mechanical degrees of freedom

The stereo head operate in two distinct behaviors, in the first, both cameras center the sight
in the same object, so in this case we will use stereo algorithm. But the second behavior each
camera can move independently and deal with different situations.

Fig. 2. Illustration of stereo head simulator operating in independent mode.

Figure 2 illustrates the robotic head operating in Independent Mode with each camera focusing
a distinct object. Figure 3 illustrates it operating in Dependent Mode. The images captured are
high correlated because the two cameras are pointing to the same object. This is essential for
running stereo algorithms. This initial setup, in simulation, is done to test the correct working
of the kinematic model developed for stereo head, seen next.

3.1 Physically modeling the head

Figure 4 shows an isometric view of the stereo head. The two cameras are fixed on the top
of a U structure. A motor responsible for neck rotation (rotation around main vertical axis)
is fixed on the basis of the head (neck). The motors responsible for rotation around vertical
axis of each camera are fixed on the upper side of the basis of the U structure. Finally, motors
responsible for the horizontal rotation of each camera are fixed beside the U structure, moving
together with the camera. This structure is built with light metals like aluminum and stainless
steel giving to the system a low weight structure generating a low angular inertial momentum
to the joint motors. With this design, the motors are positioned at each axis center of mass, so
efforts done by the motors are minimized and it is possible to use more precise and less power
motors.
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Fig. 3. Illustration of stereo head simulator operating in dependent mode.

Fig. 4. Isometric view of the Stereo Head

3.2 Kinematics of the stereo head

In the adopted kinematics model, the stereo head structure is described as a chain of rigid
bodies called links, interconnected by joints (see Figure 5). One extremity of the chain is fixed
on the basis of the stereo head, which is on the top of our robot, and the cameras are fixed on
two end joints. So each camera position is given by two rotational joints plus the rotational
joint of the basis.
From current joint values (angles) it is possible to calculate the position and orientation of the
cameras, allowing the mapping of the scene captured by the cameras to a specific point of
view. Direct kinematics uses homogeneous transforms that relate neighbor links in the chain.
On agreement with the parameters obtained by Denavit-Hartenberg method (Abdel-Malek
& Othman, 1999) and due to the symmetry of stereo head, the matrix for calculating direct
kinematics for one of the cameras is quite similar to the other. At the end, the model for
determining position and orientation for each camera uses two matrices only. The Denavit-
Hartenberg parameters are shown below, in Table 1.
The link transformation matrices, from the first to the last one, are given by:
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Fig. 5. Kinematics model of the robotic stereo head, L1=12cm, L2=12cm, L3=6cm.

i ai − 1 αi − 1 di θi

1 0 0 0 θ1 + θ2
2 L1 0 0 0
3 0 θ3 L2 0
4 L3 0 0 0

Table 1. Denavit-Hartenberg parameters for modeling the direct kinematics of the stereo head

T0
1 =









cos(θ1 + θ2) −sin(θ1 + θ2) 0 0
sin(θ1 + θ2) cos(θ1 + θ2) 0 0

0 0 1 0
0 0 0 1









,

T1
2 =









1 0 0 L1

0 1 0 0
0 0 1 0
0 0 0 1









,

T2
3 =









1 0 0 0
0 cos(θ3) −sin(θ3) 0
0 sin(θ3) cos(θ3) L2
0 0 0 1









,

T0
4 =









1 0 0 L3

0 1 0 0
0 0 1 0
0 0 0 1









By composing the link transforms, the direct kinematics matrix is obtained as:

T0
4 =









c12 −c3s12 s2
12 L1L3c2

12
s12 c2

12 −s3c12 L1L3s2
12

0 s3 c3 L2

0 0 0 1









where c12 = cos(θ1 + θ2), s12 = sin(θ1 + θ2), c3 = cos(θ3), s3 = sin(θ3).
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3.3 Head control

The control of the head motors is done by microcontrollers all interconnected by a CAM bus.
Each motor that is responsible for a joint movement has its own microcontroller. A module
operating in software is responsible for coordinating the composed movement of all joints ac-
cording to a profile of the angular velocities received from each motor. In order to do this, it
is necessary to correct drive the five joint’s motors and to perform the calibration of the set
before it starts operating. The head control software determines the signal position by calcu-
lating the error between the desired position and de actual position given by the encoders.
With this approach, the second embedded computer, which is responsible for the image pro-
cessing, has only this task. This solution makes the two tasks (head’s motors control and high
level control) faster. This is also a fundamental factor for the functioning of the system in real
time.

4. The proposed solution

Figure 6 shows a diagram with the logical components of the visual system. Basically, the
acquisition system is composed by two cameras and two video capture cards, which convert
analog signals received from each camera into a digital buffer in the memory system. The
next stage is the pre-processing functions that create various small images, in multiresolution,
all with the same size in a schema inspired by the biological retina. The central region of the
captured image that has the maximum of resolution, called fovea, is represented in one of the
small images (say the last level image). Then, growing to the periphery of the captured image,
the other small images are created by down-sampling bigger regions, increasing in sizes on
the captured image, but with decreasing degrees of resolution according to the augmentation
of the distance to the fovea. This process is made for both images and, thus, feature extraction
techniques can be applied on them, including stereo disparity, motion and other features as
intensity and Gaussian derivatives. This set of characteristic maps are extracted to feed higher
level processes like attention, recognition, and navigation.

Fig. 6. Stereo vision stages

4.1 Reduction of resolution

Performing stereo processing in full resolution images usually requires great power of pro-
cessing and a considerable time. This is due to the nature of the algorithms used and also to
the huge amount of data that a pair of large images have. Such restrictions make the task of
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doing real-time stereo vision difficult to execute. Data reduction is a key issue for decreasing
the elapsed time for processing the two stereo images. The system evidenced here proposes
to make this reduction by breaking an image with full resolution (say 1024×768 pixels) into
several small images (say 5 images with 32 × 24 pixels) that represent all together the original
image in different resolutions. This resulting structure is called a multiresolution retina (MR)
that is composed of images with multiple levels of resolution. Application of this technique
can be observed in Figure 7.

Fig. 7. Building multiresolution images

As it can be seen, the image with higher resolution corresponds to the central area of the
acquired image (equivalent to the fovea) and the image with lower resolution represents a
large portion of the acquired image (peripheral vision). In the level of best resolution, the
reduced image is simply constructed by directly extracting the central region of the acquired
image. For the other levels of resolution, a different method is used. In these cases, each
reduced image is formed by a pixel sampling process combined with a mean operation over
the neighborhood of a pixel with a given position.
This process is done by applying a filter mask with dimensions h×h in the interest region
at intervals of h pixels in horizontal direction and h pixels in vertical direction. In the first
sampling, the mask is applied to pixel P1, in the next sampling it will take the pixel P2, which
is horizontally far by h pixels from P1 and so on, until a total of image height × image width
(say 32 × 24) pixels is obtained forming the resulting reduced image. The interval h is chosen
accordingly, of course. To speedup this process while avoiding unexpected noise effects in
the construction of the reduced images, a simple average is taken between the target pixel
(P(x,y)) and the horizontal neighborhood pixels (P(x + subh, y) and P(x - subh, y)) and vertical
neighborhood too (P(x, y - subh) and P(x, y + subh), where subh is the value of dimension
h divided by 3. In the case where h is not multiple of 3, it should be taken the first multiple
above it. With this, it is guaranteed that subh is an integer value. The implementation of this
procedure is presented in the Algorithm 1.
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Algorithm 1 Multi-resolution algorithm

Input: Image Im, Level N, Size DI, Size DJ;
Output: SubImage SubIm;

Calculate h;
Calculate subh;

for i = 0;i ++;i < DI do
for j = 0;j ++;j < DJ do

SubIm(i,j) = (Im(i*h, j*h) +
Im(i*h + subh, j*h) +
Im(i*h - subh, j*h) +
Im(i*h, j*h + subh) +
Im(i*h, j*h - subh)) / 5;

end for
end for

5. Feature extraction (images filtering)

To allow extraction of information from the captured images, a pre-processing phase should
be done before other higher level processes as stereo matching, recognition and classification
of objects in the scene, attention control tasks (Gonçalves et al., 1999), and navigation of a
moving robot. The use of image processing techniques (Gonzales & Woods, 2000) allows to
extract visual information for different purposes. In our case, we want enough visual infor-
mation in order to provide navigation capability and to execute tasks like object manipulation
that involves recognition and visual attention.

5.1 Gaussian filtering

The use of smoothing filters is very common in the pre-processing stage and is employed
mainly for noise reduction that can mix up the image in next stages. Among the most com-
mon smoothing filters are the Gaussian filters, that can be described by the formula shown in
Equation 1.

G(x, y) =
1

2πσ
2

e
−

x2+y2

2σ
2 (1)

The mask 3×3 of Gaussian filter used in this work can be seen in Table 2.

1

16

1 2 1

2 4 2

1 2 1

Table 2. Gaussian filtering

5.2 Sharpening spatial filters

Extraction of edges is fundamental for construction of feature descriptors to be used, for ex-
ample, in identification and recognition of objects in the scene. The most usual method to
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perform this task is generally based on the gradient operator. The magnitude of the gradi-
ent of an image f (x, y), at the position (x, y), is given by Equation 2. We implemented the
Gaussian gradient as an option for treatment of high frequency noises at the same time that it
detects edges.

∇ f = mag(∇f) =

[

(

∂ f

∂x

)2

+

(

∂ f

∂y

)

]1/2

(2)

For determining the direction of the resultant gradient vector at a pixel (x, y), we use Equation
3 that returns the value of the angle relative to the x axis.

α(x, y) = tan−1

(

Gy

Gx

)

(3)

So, for the implementation of gradient filter, we have chosen the Sobel operator because it
incorporates the effect of smoothing to the partial differentiation processes giving better re-
sults. Tables 3 and 4 show the masks used for calculating the gradient in directions x and y,
respectively.

-1 -2 -1

0 0 0

1 2 1

Table 3. Gradient filter in direction x

-1 0 -1

-2 0 -2

-1 0 -1

Table 4. Gradient filter in direction y

5.3 Applying the Laplacian filter

The Laplacian of an image is defined as been the second-order derivative of the image. When
applied to an image, this function is defined by equation 4. Often used together with gra-
dient filters, this filter helps out some segmentation tasks in an image, and can also be used
for texture detection. Here again, we implemented also the option of blurring together with
Laplacian, in other words, the use the Laplacian of Gaussian filter in order to allow the reduc-
tion of high frequency noise.

∇
2 f =

∂2 f

∂x2
+

∂2 f

∂y2
(4)

The mask used to implement the Laplacian of Gaussian filter is shown in Table 5.

0 -1 0

-1 4 -1

0 -1 0

Table 5. Laplacian Filter
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5.4 Motion detection

Motion detection plays an important role in navigation and attention control subsystem, mak-
ing the robot able to detect changes in the environment. The variation between an image I in
a given instance of time t and an image captured in a moment before t−1 is given by the
equation 5, which has a simple implementation.

Motion = ∆I = I(t)− I(t − 1) (5)

In the same way, to reduce errors, motion images can be computed by applying a Gaussian
equation in the above “difference” retina representation, which is given by Equation 6, where

g
(1)
d represents the Gaussian first derivatives.

Md=x,y = g
(1)
d ∗ [∆I] (6)

In fact, the above equation implements the smoothed derivatives (in x and y directions) of the
difference between frames, that can be used to further approximate motion field.

5.5 Calculation of stereo disparity

The bottle-neck for calculation of a disparity map is the matching process, that is, given a pixel
in the left image, the problem is to determine its corresponding pixel in the right image, such
that both are projections of the same point in the 3D scene. This process most often involves
the determination of correlation scores between many pixels in both images, that is in practice
implemented by doing several convolution operations (Horn, 1986; Hubber & Kortenkamp,
1995; Marr, 1982; Nishihara, 1984). As using convolution in full images is expensive, this is one
more reason for using reduced images. Besides a small image is used, we also use one level
to predict disparity for the next one. Disparity is computed for images acquired from both
cameras, in both ways, that is, from left to right and from right to left. We measure similarities
with normalized cross correlations, approximated by a simple correlation coefficient. The
correlation between two signals x and y with n values is computed by Equation 7, below.

rx,y =
n ∑(xiyi)− ∑(xi)∑(yi)

√

n ∑(x2
i )− (∑ xi)2

√

n ∑(y2
i )− (∑ yi)2

. (7)

6. Results

Initial tests for the methodology used for reduction of resolution were made using a system
that captures a single frame per turn. In this first case, images of 294×294 pixels wide are
acquired from two cameras using frame grabbers. Reduction process takes 244 micro-seconds
for each image, thus approximately 0.5 ms for the stereo cameras. We note that this processing
can be done in the interval window while other image pair is being acquired. The whole
process of feature extraction takes 2.6 ms, without stereo disparity calculation that takes other
2.9 ms. The result is some 5.5 ms, for each reduced MR image, against 47 ms if using each
of the full captured images. Disparity computation using original images takes 1.6 seconds,
what is impracticable to do in real time. These and other results can be seen in Table 6 that
shows times taken in a PC with a 2.4 Ghz processor. Overall, a gain of 1800% in processing
time could be observed from using original images to reduced ones.
When using images with 352 × 288, from a web camera, times grow up a little due to image
acquisition, but yet allowing real time processing. Table 7 shows the times for this experiment.
Four images of 32 × 32 are generated and its features calculated. Filtering process indicated
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Phase Multiresolution (µs) Original (µs)

Multiresolution 244 –

Gaussian 584 10480

Gradient 1169 21020

Laplacian 579 10506

Motion 62 5355

Stereo (3x3) 2916 1653555

Stereo (5x5) 5081 3053555

Total w/ st 2638 47361

Table 6. Results obtained in PC implementation

on the Table involves gradient in x and y, gradient magnitude plus a threshold, Gaussian,
Gaussian gradient in x and y, Gaussian gradient magnitude plus a threshold, and the Lapla-
cian of Gaussian. We note that copying to memory can be avoided. Also, if the capture gets
implemented as a thread, it would enhance performance, taking off waiting time.

Phase Multiresolution (ms)

Acquiring 21.8

Memory copy 1.5

Multiresolution 1.2

Filtering 3.6

Stereo 2.9

Total (without acq.) 9.2

Table 7. Results obtained using web cameras

As a rate of about 20 frames per second is enough for our needs and the process of acquisition
of new frame can be executed in parallel with the graphics processing, it can be seen that the
time available for graphics processing plus the time employed for intelligence of the robot can
easily be under 50 ms. That is, Table 6 has proven that an overall time of 11 ms, for both cam-
eras including filtering and disparity calculation in both ways, is enough to the pre-processing
necessary. So it remains about 39 ms to other high level processes eventually involving robot
intelligence. Compared with the time necessary for processing over the original image, it is
notable a gain of 1800%, which undersigns the viability of our acquisition rate.
In order to visually illustrate the results of our method, Figure 8 shows a fully acquired (origi-
nal) image and Figure 9 shows the resulting multiresolution images constructed by using our
algorithm.
Figures 10 to 14 show resulting images of the feature extraction processes for the image pre-
sented at Figure 8.
As an interesting application of our implementation, an experiment was performed to test
a moving fovea approach (Gomes et al., 2008). In this case, a hand holding a ball appears in
front the camera mount and the system should track it without moving resources, in principle,
by only changing the position of the fovea in the current viewing position by software. If the
ball tends to leave the visual field during the tracking, that is, the fovea center is at the image
boundary, the system suggests the camera mount to make a movement, putting the ball inside
the image limits again. Figure 15 shows the system performing the tracking of the ball. By
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Fig. 8. Original image

Fig. 9. Multiresolution representation

Fig. 10. Gaussian filter

Fig. 11. Gradient filter in X direction

Fig. 12. Gradient filter in Y direction

Fig. 13. Laplacian filter

Fig. 14. Detection of motion

using the moving fovea, it is possible to disengage attention from one position and to engage
it to another position from a frame to another. If using our stereo head robot, even using the
default MRMF approach (fovea in the image center), this task could take some 500 because it
needs a motion of the cameras. Of course, even with the moving fovea, when it gets the image
periphery a physical motion is necessary. Then the robot has to eventually wait for this task
to be completed in order to acquire other pair of frames.
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Fig. 15. Tracking a ball using a moving fovea.

As a last experiment with this implementation, two objects, a tennis ball and a domino, were
presented in several positions to the system. About 35 images were taken for each one, on-
line. Then, the above model was applied to all of them and the BPNN was then trained with
1300 epochs, using the processed input data. Then, the same objects were presented again to
the cameras and the activation calculated in the net. It was taken 79 different samples for the
ball, from which 8 were classified as domino (domino < 0.5 and ball < 0.1), 5 were classified
as probable domino (0.2 < domino < 0.4 and ball < 0.1), 10 were not classified (0.2 < ball and
domino < 0.3), and 56 were classified as ball (ball > 0.5 and domino < 0.1). For the domino,
it was taken 78 samples, from which 6 were classified as ball (ball > 0.6 and domino < 0.1), 6
were not classified (0.2 < ball and domino < 0.3), 5 were classified as probable domino (0.2 <

domino < 0.4 and ball < 0.1), and 62 were classified as domino (domino > 0.4 and ball < 0.1).
This results in about 70% of positive identification for the ball and about 85% for the domino.

7. Conclusions and Perspectives

We have built useful mechanisms involving data reduction and feature abstraction that could
be integrated and tested in attention control and recognition behaviors. To do that, the first
step is data reduction. By using an efficient down-sampling schema, a structure derived from
the classical pyramid, however much more compact, is constructed in real-time (2.7 ms in a
PC 2.0 GHz). Then computer vision techniques, as shape from stereo, shape from motion,
and other feature extraction processes are applied in order to obtain the desired features (each
single filter costs about 500 µs). By using this model, tested behaviors have accomplished real-
time performance mainly due to the data reduction (about 1800% of gain) and abstraction of
features performed. A moving fovea representation could be implemented on the top of this
low-level vision model, allowing tasks as overt attention to be done in real-time, that can be
applied to accelerate some tasks. So the main contribution of this work is the schema for data
reduction and feature abstraction. Besides, other experiments involving attention and recog-
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nition, with novel approaches were also done. So we believe that the main result obtained
was the definition of a methodology that can be applied to different types of tasks involving
attention and recognition, without needs of strong adaptation, just by changing weight tuning
strategies and thus the set of features on the robot platforms. So, high-level processes can rely
on this methodology, in order to accomplish other tasks, as navigation or object manipulation
for example. Main results of this work show the efficiency of the proposed method and how
it can be used to accelerate high level algorithms inside a vision system.
Besides using only visual data in this work, similar strategies can be applied to a more general
system involving other kind of sensory information, to provide a more discriminative feature
set. We believe that the low level abilities of data reduction and feature abstraction are the
basis not only for experiments described here, but also for other more complex tasks involved
in robot cognition. This model was inspired by the biological model in the sense that the more
precise resolution levels are located in the center of the image. In this way, the less resolution
levels can be used for example to detect motion or features to be used in navigation tasks
(mainly bottom-up stimuli) and the finer levels of resolution can be applied to tasks involving
recognition as reading or object manipulation. A search task can use a combination of one or
more levels. Of course, in this case, a moving fovea does play an important role, avoiding the
head of performing motions, only if necessary.
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