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1. Introduction 
 

Visual servoing is a control strategy that uses a vision system with one or more cameras to 
establish the movement of a robotic system (Hutchinson et al., 1996) and emerges as a good 
alternative to close the control loop between the robot and its environment. Vision is a non-
contact method that can relax the setup on an industrial robot and can give more 
characteristic of autonomy to advanced robots, which operate in adverse ambient or execute 
service tasks. Depending on the place where the cameras are located, visual servoing is 
classified by the fixed-camera and camera-in-hand configurations. 
This chapter addresses the regulation of a planar manipulator by the visual servoing 
strategy in fixed-camera configuration. To simplify the problem, it is considered that the 
camera optical axis is perpendicular to the robot motion plane. The specification of the robot 
motion by the visual servoing strategy must be established trough image features obtained 
from target objects in the scene or robot workspace. However, most of the developed theory 
in this area is based on the use of target objects with simple geometry like points, lines, 
cylinders or spheres (local features); or in more complex target objects but simplifying them 
to simple geometric objects trough image processing techniques (Collewet & Chaumette, 
2000; Benhimane & Malis, 2006). On the other hand, image moments represent global 
features of an arbitrary target object projected in image plane. The main objective of this 
chapter is to extend the use of simple target objects toward the use of a more complex target 
objects in the direct visual servoing of manipulators. Particularly, the target object will be a 
planar object with arbitrary shape and the image features will be computed trough image 
moments combinations of this planar target. 
The direct visual servoing term refers to the class of visual servo-controllers where the 
visual feedback is converted to joint torques instead to joint or Cartesian velocities; it does 
mean that the full nonlinear dynamic model of the robot is considered in the control analysis 
(Hager, 1997). The first explicit solution to the direct visual servoing problem is due to 
Miyazaki & Masutani (1990). We can find similar works in Espiau et al. (1992) and Kelly et 
al. (2000) where the problem is approached for a 6 degrees of freedom (6 d.o.f.) manipulator 
in camera-in-hand configuration. In Kelly (1996); Zergeroglu et al., (1999); Fang et al., (2002); 
Cheah et al., (2007); and Wang et al. (2008) we can see works that consider the dynamic 
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model of the manipulator in the control analysis and the robustness against to parametric 
uncertainties of the vision system.  
The definition of image moments as image features for the visual servoing was expressed 
rigorously in Bien et al. (1993); although image moment combinations like the area, the 
orientation and the centroid were used to control 4 d.o.f. of a manipulator in an 
approximated manner. The analytic form of the time variation for the image moments was 
developed first in Tu & Fu (1995) and later in Chaumette (2004). This time variation for the 
image moments is expressed in terms of a matrix named image Jacobian (due to the image 
moments) which is essential for the design of a visual servoing scheme (Espiau et al., 1992; 
Hutchinson et al., 1996). This image Jacobian depends on the target object and the vision 
system 3D parameters. 
In Chaumette (2004) is addressed a visual servo-control for the regulation of a 6 d.o.f.  
manipulator in camera-in-hand configuration by means of 6 image features that are based 
on combinations of image moments of a planar target with arbitrary shape; and in Tahri & 
Chamette (2005) is continued the later work with 6 image features based on image moments 
invariants to uncoupling the manipulator degrees of liberty and to achieve a better 
convergence domain with an adequate robot trajectory. It is worth noticing that these works 
do not belong to the direct visual servoing scheme because they just consider the cinematic 
model in the control analysis.  
Specifically, in this chapter the controller is designed under the transpose Jacobian structure 
(Takegaki & Arimoto, 1981) and the robotic system stability and parametric robustness are 
analyzed in the Lyapunov sense. Also, we propose an alternative method for the 
determination of the time variation of the image moments based on the transformation of 
moments. 
This chapter is organized as follows. Section 2 presents some definitions and the 
transformation between the two-dimensional Cartesian moments of a planar object and their 
corresponding image moments. Section 3 describes the formulation of the control problem. 
The design of the visual servo-controller is developed in Section 4 together with a 
robustness analysis. Section 5 proposes the selection of acceptable image features. To 
corroborate the performance of a robotic system with the designed controller, Section 6 
presents some simulation data. Finally, the concluding remarks are exposed in Section 7.  

 
2. Transformation of moments 
 

2.1 Definitions 

Consider a dense planar object S  placed on the plane 1 2S S-  of a frame 

1 2 3{ , , }S S S SS = , also consider that the object is compound by a set of closed contours; 
then the two-dimensional Cartesian moments S ijm  of S  (respect to SS ), of order i j+  
( , {0,1,2,...}i j Î ), are defined as (Prokop & Reeves, 1992)  
 

 1 2 1 2 1 2( )
S

S i j
ijm S S f S S dS dS= ,òò  (1) 

 
where 1 2( )f S S,  is the density distribution function of S .        
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A special class of moments are determined placing the object S  such that its centroid 

1 2 10 00 01 00[ ] [ ]T S S S S T
g g gS S S m m m m= = / /  matches with the origin of the plane 1 2S S- , 

these moments are called Cartesian centered moments S ijm  of the object S ; which are 
computed by 

 
1 21 2 1 2 1 2

[ ] [ ] ( )
S

S i j
ij g g

S S S S f S S dS dSm = - - ,òò  (2) 

 

where 1 2( )f S S,  is the density distribution function of S .  
There exist the next relations between the regular moments and the centered moments:  
 

 
1 2

1 2

0 0

0 0

[ ] [ ]
ji

S i k j l S
ij g g kl

k l

k l
S k m l n S

kl g g mn
m n

i j
S S m

k l

k l
m S S

m n

m

m

- -

= =

- -

= =

æ öæ ö÷ ÷ç ç÷ ÷ç ç= - -÷ ÷ç ç÷ ÷ç ç÷ ÷ç çè øè ø
æ öæ ö÷ ÷ç ç÷ ÷ç ç= ÷ ÷ç ç÷ ÷÷ ÷ç çè øè ø

åå

åå
 (3) 

where  
 

 
( )

i i
k k i k

æ ö !÷ç ÷ç =÷ç ÷ç ÷ ! - !çè ø
. 

 
2.2 The transformation 
In this subsection is detailed the transformation between the two-dimensional Cartesian 
moments of a planar object with arbitrary shape O  (respect to a plane 1 2O O- ) and the 
image moments computed from the projection of this object O  over y  in the image plane 

1 2y y- . The used camera model corresponds to the thin lens model one and it is considered 
that the camera optical axis is perpendicular to the object plane. 
Figure 1 shows a view of the object perpendicular to the camera optical axis. Notice that it 
has been placed several Cartesian frames: the object frame OS  attached, precisely, to the 
object; the world frame WS  fixed somewhere in the scene or workspace; the camera frame 

CS ; and the image plane 1 2y y- . The variable q  denotes the orientation of the object 
frame respect to the world frame, y  represents also the orientation of the object frame but 
now respect to the image plane and f  is the rotation of the camera frame respect to 3W ; in 
such a way that q y f= + .  

A point 
1 2 3

[ ]TO O O Ox x x x=  in the object, respect to OS , can be transformed to WS  by 

means of 
 

where the vector 3O
WO Î Â  denotes the position of the origin of OS  respect to WS  and  

 ( )O O
WW W Ox R x Oq= +  (4) 

 

represents the rotation matrix of the frame OS  respect to WS . 
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Fig. 1. View of the object perpendicular to the camera optical axis 
 

 

cos( ) sin( ) 0

( ) sin( ) cos( ) 0

0 0 1

O
WR

q q

q q q

é ù-ê ú
ê ú

= ê ú
ê ú
ê ú
ê úë û

 

 
In its turn, the vector 

1 2 3
[ ]TW W W Wx x x x=  can be transformed to camera frame 

coordinates through 

 ( )TC C
WC WWx xR Of é ù= -ê úë û  (5) 

 

where 3C
WO Î Â  is the position vector of CS  origin respect to WS  and 

 

 

cos( ) sin( ) 0

( ) sin( ) cos( ) 0

0 0 1

C
WR

f f

f f f

é ù
ê ú
ê ú

= -ê ú
ê ú
ê ú-ê úë û

 (6) 

 

is the rotation matrix of the camera frame respect to WS .  
For this particular case, the components of the vector Cx , after the substitution of (4) in (5) 
and simplifying, are 

 
1 1 2

2 1 2

3 3 3

1

2

cos( ) sin( )

sin( ) cos( )

[ ]

C O O

C O O

O C
C W W

x x x c

x x x c

x O O

y y

y y

= - +

=- - +

=- -

 (7) 

 

where  

 1 1 2 2

1 1 2 2

1

2

cos( )[ ] sin( )[ ]

sin( )[ ] cos( )[ ].

O C O C
W W W W

O C O C
W W W W

c O O O O

c O O O O

f f

f f

= - + -

= - - -
 

www.intechopen.com



Direct visual servoing of planar manipulators using moments of planar targets 407

 

In this way, the mapping of a point Ox  in the object (respect to OS ) to the image plane is 
obtained through the coordinate transformations (4) and (5) and the next thin lens camera 
model (Hutchinson et al., 1996; Kelly, 1996):  
 

 
1

2
3

1

2

0

0

C

C
C

y
y y

x u

x vx
al
l

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

é ù
ê ú
ê ú
ê ú
ê ú
ê úë û

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

=

= +
-

 

 
where a  is a conversion factor from meters to pixels, l  is the focal length of the lens, the 
vector 0 0[ ]Tu v  denotes the image center and 

1 2 3
[ ]TC C C Cx x x x=  is the position vector of 

the point Ox  respect to the camera frame; which is expressed in (7). 
Observe that the depth 

3C
x  of all the points in the 1 2O O-  plane is the same for this 

adopted camera configuration. For the sake of notation, define  
 

 
3C
x
al

g
l

= ,
-

 

 
which, therefore, is a constant. Hence, the imaging model, for the adopted camera 
configuration, can be expressed as 
 

 1

2

0

0

C

C

x u
y x vg

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

é ù
ê ú
ê ú
ê ú
ê ú
ê úë û

= + . (8) 

 
Now, according to (1), the two-dimensional Cartesian moments O ijm  of the object O  

respect to 1 2O O-  are computed through 
 

 
1 2 1 2

O

O i j
ij O Om x x dO dO= òò  (9) 

 
where, in this case, 1 2( ) 1f O O, =  for a point Ox  in O  and null elsewhere. And the image 
moments y ijm  of the object y  respect to the image plane 1 2y y-  in a binarized image 

1 2( )f y y,  are defined as  

 1 2 1 2
y

y i j
ijm y y dy dy= òò  (10) 

 
where 1 2( ) 1f y y, =  for a point 1 2[ ]Ty y y=  inside the object y  and null elsewhere.  
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The purpose is to find the relation between the Cartesian moments of the object and their 
respective image moments. To this end, consider the following theorem for the change of 
variables with multiple integrals (Swokowski, 1988). 
Theorem 1. If 1 1 2( )S g U U= ,  and 2 1 2( )S h U U= ,  is a coordinate transformation from US  
to SS , then  

 1 2
1 2 1 2 1 2 1 2 1 2

1 2

( )
( ) ( ( ) ( ))

( )S U

S S
f S S dS dS f g U U h U U dU dU

U U

¶ ,
, =  , , ,

¶ ,òò òò 
 

 
where U  is the object respect to US , S  is the transformed object from US  to SS  and  
 

 

1 1

1 21 2

2 21 2

1 2

( )

( )

S S
U US S
S SU U
U U

é ù¶ ¶
ê ú
ê ú¶ ¶¶ , ê ú= ê ú¶ ¶¶ , ê ú
ê ú¶ ¶ë û

 

 
is the determinant of the transformation Jacobian.  
It is chosen the positive or the negative sign depending on the fact that, if when a point 

1 2[ ]TU U in the frontier of U  travels in the positive sense ( U  always remains at the left 

side), the corresponding point 1 2[ ]TS S  in S  travels in the positive or the negative sense, 

respectively. 
Therefore, following Theorem 1 and using (7)-(10), we have that  
 

 

1 2

1 2

1 2

2
0 0 1 2

2
1 0

2 0 1 2

[ ] [ ]

[ cos( ) sin( ) ]

[ sin( ) cos( ) ]

O

O

y i j
ij C C

i
O O

j
O O

m x u x v dO dO

x x c u

x x c v dO dO

g g g

g g y g y g

g y g y g

= + +

= - + + ⋅

- - + +

òò

òò



 (11) 

 
where the determinant of the transformation Jacobian is  
 

 21 2

1 2

sin( ) cos( )( )
cos( ) sin( )( )

y y

O O

g y g y
g

g y g y

é ù- -¶ , ê ú= = - .ê ú-¶ , ê úë û
 

 
Note that it has been selected the negative sign in the application of the theorem because the 
axis 3C  of the camera frame and the 3O  axis of the object frame point in opposite directions 
and this provokes a negative sense in the motion of a point in the object frontier.  
According to the multinomial theorem and the distributive law for multiple sums (Graham 
et al., 1989), (11) can be expressed as 
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1 2 3

1 2

1 2 3

1 2 3

1 2

1 2 3

1 2 3 1 2

2
1 0

1 2 3

2 0 1 2
1 2 3

2

[ cos( ) ] [ sin( ) ] [ ]

[ sin( ) ] [ cos( ) ] [ ]

O

y k k k
ij O O

k k k

l l l
O O

l l l

k k k l l l

i
m x x c u

k k k

j
x x c v dO dO

l l l

g g y g y g

g y g y g

g

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

, ,

, ,

, , , ,

!
= - + ⋅

! ! !

!
- - +

! ! !

=

åòò

å

å



1 2 3

3

1 2 3 1 1 2 2

1 2

1 2 3

1 2 3 1 2 3

1 0
1 2 3 1 2 3

2 0 1 2

2
1 0

1 2 3 1 2 3

[ cos( )] [ sin( )] [ ]

[ sin( )] [ cos( )] [ ]

[ cos( )] [ sin( )] [ ]

[ si

O

k k k

l l l k l k l
O O

k k k

k k k l l l

i j
c u

k k k l l l

c v x x dO dO

i j
c u

k k k l l l

g y g y g

g y g y g

g g y g y g

g

+ +

, , , ,

! !
- + ⋅

! ! ! ! ! !

- - +

! !
= - + ⋅

! ! ! ! ! !

-

å

òò

å å


1 2 3

1 1 2 22 0n( )] [ cos( )] [ ]l l l O
k l k lc v my g y g + , +- +

 (12) 

 
where 1k , 2k , 3k , 1l , 2l  and 3l  are nonnegative integers such that 1 2 3k k k i+ + =  and 

1 2 3l l l j+ + = . Notice that in the last step it has been used (9).  
In this way, it is shown that by means of (12) the image moments of a planar object with 
arbitrary shape, in the adopted camera configuration, can be computed from the previous 
knowledge of the Cartesian moments of this object respect to its plane of definition. Though, 
it may be necessary to know camera parameters and the posture of the object frame OS  
respect to the camera frame CS . 
Particularly, the object centroid in image plane gy  is related to the corresponding centroid 

in the object plane 
1 2

[ ]O O O

T
g g gx x x=  by 

 

 

1

2

1 0

2 0

cos( ) sin( )
.

sin( ) cos( ) O

g

g
g

g

y
y

y

c u
x c v

y y g
g gy y

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

é ù
ê ú
ê ú
ê ú
ê ú
ê úê úë û

=

é ù- +ê ú= +ê ú +- -ê úë û

 (13) 

 
Following similar arguments we can find the next relation for the centered moments: 
 

 
1 2

1 2 1 2

1 2

1 1 2 2

2

1 2 1 2

[ cos( )] [ sin( )]

[ sin( )] [ cos( )]

k ky
ij

k k l l
l l O

k l k l

i j

k k l l
m g g y g y

g y g y m
, ,

+ , +

! !
= - ⋅

! ! ! !

- -

åå
 (14) 

 
where 1k , 2k , 1l  and 2l  are nonnegative integers such that 1 2k k i+ =  and 1 2l l j+ = . 
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3. Formulation 
 

Consider a planar manipulator of n  d.o.f. with the next dynamic model (Sciavicco & 
Siciliano, 2000): 
 ( ) ( ) ( )M q q C q q q g q t+ , + =    (15) 
 

where nq Î Â  is the vector of joint displacements, nt Î Â  is the vector of applied joint 
torques, ( ) n nM q ´Î Â  is the symmetric and positive definite inertia matrix, ( ) n nC q q ´, Î Â  
is the matrix associated with the centrifugal and Coriolis torques, and ( ) ng q Î Â  is the 
vector of the gravitational torques. 
Two important properties of the dynamics of a manipulator are as follows (Spong & 
Vidyasagar, 1989): 
Property 1. The matrix ( )C q q,   and the time derivative ( )M q  of the inertia matrix satisfy 
 

1
( ) ( ) 0, ,

2
nTq M q C q q q q q

é ù
- , = " Î Âê ú

ê úë û
    . 

 

Property 2. The matrix ( )C q q,   satisfies 
 

( 0) 0, nC q q, = " Î Â . 

 

 
Fig. 2. View of the planar manipulator in fixed-camera configuration 
 
Now, consider also a fixed camera observing the manipulator with a planar target object of 
arbitrary shape attached in its end-effector. Figure 2 presents a view of this robotic system. 
Also, in this figure, it can be observed the world frame WS  in the manipulator base, the 
camera frame CS  fixed somewhere in such a way that the planar target object can always be 
projected in the image plane 1 2y y- , and the object frame OS  attached to the manipulator 
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end-effector where the target object is located. Notice that it is used the imaging model (8) 
where the camera optical axis is perpendicular to the manipulator motion plane; in this way 
the planes 1 2W W- , 1 2O O- , 1 2C C- , and 1 2y y-  are parallel (this keep relation with the 
system already described in the previous section). The angle f  denotes the rotation of the 
camera frame respect to 3W , q  is the orientation of the plane 1 2O O-  respect to 1W  and 
y q f= -  is the orientation of the plane 1 2O O-  in the image plane. The position of the 

manipulator end-effector respect to WS  is expressed trough the vector 3O
WO Î Â  because 

the frame OS  is attached to the end-effector.  
Observe that if the planar manipulator is rotational, that is, with only revolute joints, then 

1
2

n

ii
qq p

=
= - /å  and 

1
2

n

ii
qy p f

=
= - / -å . Otherwise, just the revolute joints 

would contribute to the sum. If such contribution is denoted by 
rq

S , then  
 

 2
rq

q p= S - /  and  2
rq

y p f= S - / - .  
 

Now define an image feature vector rs Î Â  (r m³ , where m  is the dimension of the 
operational space) in function of the image moments y ijm  of the projection in the image 
plane of the target object. It is worth noticing that also the centered image moments y ijm  
can be used since there exist the relation (3). According to (12) and (14) the image moments 
are in function of the variables y  and O

WO , which in their turn are in function of the vector 
of joint displacements q ; this means that  
 

 
( ( ))

( )

y
ijs s m q

s q

=

= .
 

 

Thus, the time variation of the image feature vector s  can be determined by  
 

 

( )

( )y
s ij

s q
s q

q
J q m q

¶
=

¶
= ,

 


 

where  

 
( )

( )y
s ij

s q
J q m

q
¶

, = .
¶

 

 

If the next factorization for the image feature vector s  is valid: 
 

 ( ) ( )s A f qg f= , (16) 
 

with ( ) r rA f ´Î Â  an orthogonal and constant matrix, then 

 

( )
( )

( ) ( )y
ij

f q
s A q

q
A J q m q

g f

g f

¶
=

¶
= ,

 


 (17) 
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where 

 
( )

( )y
ij

f q
J q m

q
¶

, = .
¶

 (18) 
 

On the other hand, denote with r
ds Î Â  the desired vector of image features which is 

supposed constant. Also, it is supposed that there exist at least one vector of joint 
displacements dq , unknown but isolated, where the manipulator end-effector satisfies ds . 
One way to establish such a reference ds  is by means of the teach-by-showing strategy 
(Weiss et al., 1987).  
Finally, define the error vector of image features s  as  
 
 dss s= - .  
If ( ) ( )s A f qg f= , then  
 ( )[ ( ) ( )]dqs A f f qg f= - .  (19) 
 
In short, the control problem is to design a control law for the system just described such 
that determines the torques t  to move the manipulator in such a way that the image feature 
vector s  reaches the constant desired image feature vector ds  established previously; that 
is, the control objective is to drive asymptotically to zero the image feature error vector s , 
which is expressed by 
 lim ( ) 0

t
s t

¥
= .  (20) 

 
4. Control design 
 

The designed controller corresponds to the transpose Jacobian structure, which was originally 
introduced by Takegaki & Arimoto (1981) and applied to the direct visual servoing in the case 
of punctual image features in Kelly (1996). Assuming that the image feature vector meets 

( ) ( )s A f qg f= , which is described in (16); the controller is expressed by  
 

 ( ) ( ) ( )y T T
ij p vJ q m K A s K q g qt f= , - +  (21) 

 

where r r
pK

´Î Â  is a symmetric and positive definite matrix called proportional gain and 
n n

vK
´Î Â  is another symmetric and positive definite matrix named derivative gain. 

It is worth noticing that the controller needs the measures of the joint positions q  and the joint 
velocities q , the knowledge of the gravitational torques vector ( )g q  and the computation of the 
Jacobian ( )y

ijJ q m, . This Jacobian, depending on the selection of the image feature vector s , 
requires the direct measure in the image plane of certain image moments and the previous 
knowledge of some 3D parameters from the target object, the camera and the manipulator. 
However, it is no necessary to solve the inverse kinematics of the robotic system.  
The closed-loop system corresponds to a nonlinear autonomous differential equation and it 
is obtained substituting in the manipulator dynamic model (15) the controller (21):  
 

 ( ) ( ) ( ) ( )y T T
ij p vM q q C q q q J q m K A s K qf+ , = , - ;     
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which, in terms of the state vector  2[ ]T nTTq q Î Â , it is expressed by means of 
 

 
1( ) ( ) ( ) ( )y T T

ij p v

qqd
qdt M q J q m K A s K q C q q qf-

é ùé ù ê úê ú = .ê úê ú é ù, - - ,ê úë û ë ûë û



   
 (22)  

 

The equilibrium points of the closed-loop system (22) satisfy  
 

 
0

eqq

q

é ùé ù
ê úê ú = ê úê ú ê úë û ë û

  

where n
eq Î Â  is the solution of  

 

 ( ) ( ) ( ) 0y T T
ij pJ q m K A s qf, = .  

 

Suppose that the Jacobian ( )y
ijJ q m,  is continuously differentiable with respect to each 

element of q  and that it is of full range in dqq = ; then the equilibrium  
 

 
0

dqq

q

é ùé ù
ê úê ú = ê úê ú ê úë û ë û

  

 

is a isolated equilibrium of (22), since it is also supposed that ( ) 0s q =  has isolated solution 
in dqq = .  
The stability analysis will be held trough the direct method of Lyapunov (see Vidyasagar 
(1993) for example). In this way, consider the next Lyapunov function candidate:  
 

 
1 1

( ) ( ) [ ( ) ( )] [ ( ) ( )]
2 2

TT
d d dp
q q qqV q q M q q f f q K f f qg- , = + - - ,   (23) 

 

which is a locally definite positive function because in the first term, ( ) ( ) 0TM q M q= > ; 

and in the second term 0g > , 0T
p pK K= >  by design and it is supposed that 

( ) ( )[ ( ) ( )] 0dqs q A f f qg f= - =  has an isolated solution in dqq = . Notice that (19) is used.  
The time derivative of (23) yields  
 

 
1

( ) ( ) ( ) [ ( ) ( )] [ ( ) ( )]
2

TT T
d d dp
q q qq qV q q M q q M q q f f q K f f qg- , = + + - - .        (24) 

 

Notice that ( ) 0dqf =  and, according to (18), ( ) ( )y
ijf q J q m q= ,  ; in this way, substituting 

the later and the closed-loop system (22) in (24), (23) can be simplified to  
 

 
( ) ( ) ( ) ( ) [ ( ) ( )]

1
( ) ( )

2

y T T y TT
d dij p ij p v

T

q qqV q q J q m K A s J q m K f f q K q

q M q C q q q

f gé ù- , = , - , - - +ë û
é ù

- ,ê ú
ê úë û

  

  
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Now, by means of Property 1 of the manipulator dynamic model and the fact that related 
with (19): 1( ) ( ) ( )Tdqf f q A sg f- =  , since ( )A f  is an orthogonal matrix; the time derivative 
of (23) finally yields  
 ( ) T

d v
q qV q q K q- , = -   . 

 
And, because 0T

v vK K= >  by design, then ( )dqV q q- ,  is a globally negative 
semidefinite function. Therefore, according to the direct Lyapunov method, the equilibrium  
 

 
0

dqq

q

é ùé ù
ê úê ú = ê úê ú ê úë û ë û

  

 
of the closed-loop system (22) is a stable equilibrium.  
As mentioned, the closed-loop system is an autonomous one, hence it can be studied the 
asymptotic stability of the equilibrium by LaSalle’s theorem (see Vidyasagar (1993) for 
example). For this purpose, in the region  
 

 ( ) 0d

q
qV q q

q

ì üé ùï ïï ïê úW = : - , = ,í ýê úï ïï ïë ûî þ

   

 
it is obtained the invariant set over the close-loop system (22) as 0q =  and 

( ) ( ) ( ) 0n y T T
ij pq J q m K A s qfÎ Â : , = . And according to the assumptions imposed on 

( )y
ijJ q m,  and ( )s q , the later is satisfied in dqq = . Hence, by LaSalle’s theorem it is 

demonstrated that the equilibrium point  
 

 
0

dqq

q

é ùé ù
ê úê ú = ê úê ú ê úë û ë û

  

 
is asymptotically stable, it means that lim [ ( )] 0dt

q q t¥ - =  and lim ( ) 0t q t¥ =  
provided that (0)dq q-  and (0)q  are sufficiently small. Now, since 0dq q- =  implies that 

( ) ( ) 0dqf f q- = , then, according to (20), ( ) ( ) 0dqf f q- =  is true if and only if 0s = ; 
therefore, the control objective (21) is satisfied. 

 
4.1 Robustness analysis 
Based on the results found in Kelly (1996), here it is analyzed the robustness of the controller 
(21) against uncertainties in 3D parameters of the target object and the camera. To this end, 
it will be used the first Lyapunov method instead of the direct Lyapunov method (see 
Vidyasagar (1993) for example).  
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Basically, it will be analyzed the uncertainty to f  and to parameters in the Jacobian 

( )y
ijJ q m, ; therefore there will be only an estimate f̂  of the angle f  and an estimate 

(̂ )y
ijJ q m,  of the Jacobian ( )y

ijJ q m, . This modifies the control law (21) to the next: 
 
 ˆ ˆ( ) ( ) ( )y T T

ij p vJ q m K A s K q g qt f= , - + .  (25) 
 
The closed-loop system with (25) as control law in terms of the state vector [ ]TTTq q , where 

dqq q= - , can be written as 
 

 
1 ˆ ˆ( ) ( ) ( ) ( )y T T

ij p v

qqd
qdt M q J q m K A s K q C q q qf-

é - ùé ù ê úê ú = ê úê ú é ù, - - ,ê úê ú ê úë û ë ûë û



   
, (26) 

 
which is an autonomous system with the origin as an equilibrium point. 
To linearize the system (26), it will be applied the next lemma (Kelly, 1996):  
Lemma 1: Consider the nonlinear system 
 
 ( ) ( ) ( )x D x x E x h x= +  (27) 
 
where nx Î Â , ( )D x  and ( )E x  are n n´  nonlinear functions of x  and ( )h x  is a 1n´  
nonlinear function of x . Suppose that (0) 0h = , hence 0 nx = Î Â  is an equilibrium point 
of system (27). Then, the linearized system of (27) around the equilibrium point 0x =  is 
given by 

 (0) (0) (0)
h

z D E z
x

é ù¶
= +ê ú
ê ú¶ë û

  (28) 

 
where nz Î Â .  
Following Lemma 1, defining [ ]TTTq qx =   and using Property 2 of the manipulator 

dynamic model; the system (26) linearized around the origin results 
 

 
1 1

0

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )y yT T
d d d dij ijp v

I
z z

q q q qm mM J K A A J M Kg f f

é ù
ê ú
ê ú
ê ú
ê ú* *- -ê ú
ê ú
ê úë û

-
=

, , -
  (29) 

 
where y ijm

*  is y ijm  evaluated in dqq =  and I  is the identity matrix.  

Now, define the error matrix of the Jacobian estimation ( )y
ijJ q m,  as 

 
 ˆ( ) ( ) ( )y y y

ij ij ijJ q m J q m J q m, = , - , ,  (30) 
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and the error of angle estimation f  as  
 

 ˆf f f= - .  
 

In what follows, to simplify the development, it will be considered a 2 d.o.f. manipulator 
(nonredundant) with the dimension of the image feature space equal to the dimension of the 
operational space, that is, 2n m r= = = . Also, it will be considered 2 2

p pK k I ´= Î Â  

(with 0pk > ) and 2 2( )A f ´Î Â  an elementary rotation matrix (see Sciavicco & Siciliano 
(2000) for example), so that  
 

 
2

2

ˆ( ) ( ) ( ) ( )

( ) ( )
sin( )

2
( ) ( )

cos( )
2

T T

T

a

T

A A A A

A A
I

A A
I

f f f f

f f
f

f f
f

= = -

-
=

+
=

 

 


 


 (31) 

 

where 
2a
I  is a 2 2´  skew symmetric matrix with unitary norm and 2I  is the 2 2´  identity 

matrix. The last equation implies that if cos( ) 0f >  then ( ) 0A f > .  

Observing that 1 2[ ]TT Tz zz = , (29) can be rewritten as 
 

 
1 1

1 12 2

0

( ) [ ] ( )d d v

Iz zd
z zq qM F G M Kdt

é ù
ê ú
ê ú
ê ú
ê ú- -ê ú
ê ú
ê úë û

-é ù é ù
ê ú ê ú=ê ú ê ú+ -ë û ë û

 (32) 

 

where  
 ( ) ( ) ( )y yT T

d dij ijp
q qm mF k J A Jg f* *= , ,  (33) 

 

and 
 ( ) ( ) ( )y yT T

d dij ijp
q qm mG k J A Jg f* *= , , .   (34) 

The stability analysis of (32) will be held trough the next Lyapunov function candidate 
proposed in Kelly (1996):  
 

 2
1 2 1 2 1 2 11

1 1
( ) [ ] ( )[ ] [ ( )]

2 2
T T

d dv
q qz z z z z z z zV M F K Me e e e, = - - + + -  (35) 

 

where1  

 
{ }

2 { ( )}
m v

dM

K
qM

l
e

l
=  

                                                                 
1The notations { }m Al  and { }M Al  indicate the smallest and largest eigenvalues of a matrix 
A , respectively. 
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is a positive constant, since both vK  and ( )dqM  are symmetric and positive definite matrices. 
This also means that { } { ( )}dm v M

qK Ml el> , which implies that the matrix  ( )dv
qK Me-  

is positive definite. Finally, suppose that ( ) 0A f > , if this is the case then the matrix F  will 
be positive definite (due to the full range assumption for ( )y

d ij
qJ m, ). Hence, the Lyapunov 

function candidate, under the previous implications, is globally positive definite function.  
The time derivative of the Lyapunov function candidate (35) along the trajectories of the 
system (32) after some algebraic manipulations, results (eliminating the obvious arguments 
for simplicity)  
 

 

1 11 1

2 12 2

21

ˆ ˆ ˆ ˆ( ) ( ) ˆ ( )
2

ˆ[ ( )] ( ) [ ]

1 ˆ ˆ ˆ ˆ[ ] ( ) [ ] [ ] ( )[ ]
2

T T T
T TT T

p p

T TT T
dv p

T T TT
p

J A J J A J
z z z zV k k J A J

qz z z zK M k J A J J

z zk J J A J J J J A J J

f f
g e g e f

e g f

g f f

é ù+ê ú= - + -ê úê úë û
é ù- + - -ê úë û

é ù- - - - - .ê úë û

   

  

     

 (36) 

 

Observe that for any matrix 2 2N ´Î Â , the following is true:  
 

 
2 2

det{ }T
a aN I N N I= .  

 

According to the above and considering (31), (36) satisfies  
 

 

2 2
1 1

2
2 2

2 2 1 2 1 2

1 2

11211
1 2

221 22

ˆ ˆ ˆ{cos( ) }

ˆ{ } { }

ˆ ˆsin( ) det{ } 2 det{ }

T
p m p

m v M p p

p

z zV k J J k J J

z z z z z zK M k J J k J

z zk J J J J

v v z
z z v v z

g el f g e

l el g g

g f

é ù
ê ú
ê ú
ê ú
ê ú
ê úë û

£- + -

+ + + +

é ù| | | | + + | |ê úë û
é ùé ù ê ú£ - ê ú ê úë û ë û

  

 

    

where  

 

11

2

12 21

22

ˆ ˆ ˆ{cos( ) }

1 ˆ ˆ ˆsin( ) det{ } 2 det{ }
2

1
{ }

2

T
p m p

p

m v

v k J J k J J

v v k J J J J J J J

v K

g el f g e

g f

l

= -

é ùé ù= = - + + | | | | + + | |ê úê úë ûë û

= .

 

      

 

Consequently, the time derivative of the Lyapunov function candidate is negative definite if 

11 0v >  and if 2
11 22 12 0v v v- > . This leads to next inequalities:  

 

 
ˆ ˆ{ }

cos( )
ˆ

T
m J JJ
J

l
f<   (37) 
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22

2

ˆ ˆ ˆ{ } sin( ) det{ } 2 det{ }
{ }

ˆ ˆ ˆcos( ) { }

p M

m v T
m

k M J J J J J J J
K

J J J J

g l f
l

f l

é ùé ù+ + | | | | + + | |ê úê úë ûë û> .
-

    

  (38) 

 
The assumption ( ) 0A f >  implies that cos( ) 0f > . In conclusion, if the inequality (37) is 
satisfied, then the inequality (38) indicates that there will be a symmetric and positive 
definite matrix vK  sufficiently large such that the equilibrium point 4

1 2[ ] 0TT Tz z = Î Â  of 

the linearized system (32) be asymptotically stable. This means, according to the first 
Lyapunov method, that the equilibrium point 4[ ] 0TTTq q = Î Â  of the original closed-

loop system (26) is asymptotically stable and by the implications at the end of the previous 
subsection, then it is guaranteed the fulfillment of the control objective (20). 

 
5. Selection of image features 
 

In this section will be described two image feature vectors that are in function of image moments 
and that satisfy the requirements of the controllers (21) and (25). The first one is the object 
centroid in the image plane and the second one is a combination of image moments of order two.  

 
5.1 Centroid 
Equation (13) represents the mapping of the centroid 

Og
x  of the target object (respect to OS ) 

located on the manipulator end-effector (see Figure 2) to the image plane. Note that 
/2

rqy p f= - -S  and both 1c  and 2c come from (7); also note that their time derivatives 

are expressed by 

 
1 2

1 2

1

2

cos( ) sin( )

sin( ) cos( )

rq

O O
W W

O O
W W

c O O

c O O

y

f f

f f

= S

= +

= - .

 

 

 

 (39) 

 

Now, since it is a planar manipulator, the linear and angular velocities (respect to WS ) 
denoted by Wv  and  Ww , respectively; can be expressed as  
 

 
1 2

0 0 0 ( )
W

W T
O O

GW WW

v
J q qO Ow y

é ù é ùê ú = =ê úê ú ë ûë û
    

 

where ( )
WG
J q  is the geometric Jacobian of the manipulator; or simplifying 

 
1

1262
( )

W

O
W

O
GW

O

J q qO

y

é ù
ê ú
ê ú
ê ú =ê ú
ê ú
ê ú
ë û



 



 (40) 
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where 
126

( )
W

GJ q  are the rows 1, 2 and 6 of the geometric Jacobian ( )
WG
J q .  

Consequently, the time derivative of (13) can be written as  
 

 
126

3

4

( ) ( )

cos( ) sin( ) 1 0 ( )
( )

sin( ) cos( ) 0 1 ( )

( ) ( )

O

W
O

y
ij

g

g G
g

A J q m

y
ij

xc q
y J q q

xc q

A J q m q

f

f f
g

f f

g f
,

é ù é ù- ,
ê ú ê ú= ê ú ê ú- - ,ê ú ê úë û ë û

= ,

 

 



 

where 

 1 2

1 2

3

4

( ) cos( ) sin( )

( ) sin( ) cos( ) ;

O r O r O

O r O r O

g q g q g

g q g q g

xc q x x

xc q x x

, = S - S

, = S + S
 (41) 

 
that is, the centroid gy , which depends on the image moments of order one, fulfills the 
requirement of (16) and can be used in the controllers (21) or (25). It is worth noticing that 
the Jacobian ( )y

ijJ q m,  depends on Ogx , which is a 3D parameter of the target object; on the 

geometric Jacobian of the manipulator 
126

( )
W

GJ q ; and on the measures of the joint 

displacements q . If the centroid of the target object Ogx  coincides with the origin of the 
frame OS , then we have the same robotic system as in Kelly (1996). 

 
5.2 Image features in function of image moments of order two 
Next, it is described an image feature vector in function of the image moments or order two 
that fulfills the requirements of the controllers (21) and (25). In this sense, it is necessary to 
compute the time variation of the image moments of order two.  
Thus, from (49), (39) and (40):  
 

 
126

126

1001 3

11
0110 4

02 20

1 0 ( )
cos( ) sin( ) ( )

0 1 ( )

0 0 ( ) .

O

W
O

W

y y g
y

Gy y g

y y
G

xm m c q
J q qm

m m xc q

J q q

g f f

m m

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê úê úë û

é ù- ,
ê úé ù= - +ê úê úë û - - ,ê úë û

é ù-ê úë û





 (42) 

 
Now, consider 1

2 02 20[ ]y y
auxs m m= - , in such a way that from (49), (39) and (40), auxs  

results  

 
126

126

1001 3

0110 4

11

1 0 ( )
sin( ) cos( ) ( )

0 1 ( )

0 0 2 ( )

O

W
O

W

y y g

aux Gy y g

y
G

xm m c q
J q qs

m m xc q

J q q

g f f

m

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê úê úë û

é ù- ,
ê úé ù= -ê úê úë û - - ,ê úë û

é ù .ê úë û





 (43) 

 
The time variation of the centered image moments can be computed from (50), (39) and (40), 
yielding  
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126

126

126

11 02 20

20 11

02 11

0 0 ( )

0 0 ( )

0 0 ( ) .

W

W

W

yy y
G

yy
G

yy
G

J q q

J q q

J q q

m m m

m m

m m

é ù= -ê úë û
é ù= ê úë û
é ù-= ê úë û

 

 

 

 (44) 

 
The proposed image feature vector in function of image moments of order two 2ms  is 
expressed as  

 2

11 11

02 20 20 02

1
[ ]

2

y y

m
y yy y

m
s

m m

m

m m

é ù-
ê ú
ê ú=
ê ú- + -ê úë û

, 

 
which from (42)-(44) has the next time derivative: 
 

 
2 126

1001 3

0110 4

( ) ( )

cos( ) sin( ) 1 0 ( )
( )

sin( ) cos( ) 0 1 ( )

( ) (

O

W
O

y
ij

y y g

m Gy y g

A J q m

xm m c q
J q qs

m m xc q

A J q

f

f f
g

f f

g f

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê úê úë û

,

é ù é ù- - ,
ê ú ê ú= ê ú ê ú- - ,ê ú ê úë û ë û

= ,


 

) ,y
ij qm 

 (45) 

 
therefore 2ms  is another image feature vector that fulfills the conditions of the controllers 
(21) and (25). 
Notice that  

 
2

11 11

00

02 20 20 02

' 1
[ ]

2

y y

py
m y yy y

m

s m
m m

m

m m

é ù-
ê ú
ê ú=
ê ú- + -ê úë û

 (46) 

 
where p Î Â  is a constant, with time derivative  
 

 
2 126

31001
00

10 01 4

( ) ( )

cos( ) sin( ) 1 0 ( )
( )'

sin( ) cos( ) 0 1 ( )

O

W
O

y
ij

y y g
py

m Gy y
g

A J q m

xc qm m
J q qs m m m xc q

f

f f
g

f f

g

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

,

é ù é ù- ,-ê ú ê ú= ê ú ê ú- - ,ê ú ê úë û ë û

=


 

( ) ( )y
ijA J q qmf , ,

 

 
is another acceptable image feature vector (since 00

ym  is constant in the configuration of 
the robotic system considered). 
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6. Simulations 
 

To illustrate the performance of the direct visual servoing just described, it will be presented 
simulations using the model of a 2 d.o.f. manipulator that is in the Robotics Laboratory of 
CICESE. A scheme of such manipulator can be seen in Figure 3. 
 

 
Fig. 3. Scheme of the manipulator 
 
Respect to its dynamic model (15), their elements are expressed by 
 

 

2 2 2

2

2 1 22 2 2

12

0 3353 0 0244 cos( ) 0 0127 0 0122 cos( )
( ) [Nm sec rad]

0 0127 0 0122 cos( ) 0 0127

0 0122 sin( ) 0 0122 sin( ) 0 0122 sin( )
( ) [Nm sec rad]

0 0122 sin( ) 0

11 50
( )

q q
M q

q

q q qq q q
C q q

qq

g q

é ù. + . . + .
ê ú= /ê ú. + . .ê úë û
é ù- . - . - .
ê ú, = /ê ú.ê úë û
.

=

  




1 1 2

1 2

81sin( ) 0 4596 sin( )
[Nm]

0 4596 sin( )

q q q

q q

é ù+ . +
ê ú .ê ú. +ê úë û

 (47) 

 
 

Description Notation Value Units 
Conversion factor 

([m] to [pixels]) a  72000 pixels/m 

Focal length of the lens l  0.0075 m 

Image center 0 0[ ]Tu v  [160 120]T  pixels 

Camera frame position C
WO  [0 0 3]T  m 

Camera frame orientation f  10p /180 rad 
Table 1. Camera parameters 
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Now, its geometric Jacobian 
126

( )
W

GJ q  is 
 

 
126

1 1 2 1 2

1 1 2 1 2

[cos( ) cos( )] cos( )

( ) [sin( ) sin( )] sin( )

1 1
W

G

l q q q l q q

J q l q q q l q q

é ù+ + +ê ú
ê ú

= + + +ê ú
ê ú
ê ú
ê úë û

 (48) 

 
where 0 26l = .  [m]. 
 

 
Fig. 4. The planar target object 
 
Table 1 presents the intrinsic and extrinsic camera parameters, which correspond to the 
adopted camera configuration. Note that there are eight camera parameters, however, the 
controller only needs a estimation of the parameter f .  
Figure 4 shows the planar target object which has a relative complex shape to facilitate the 
simulations, but the target can be a more sophisticated planar object like a photography for 
example.  The two-dimensional Cartesian moments of this target object to order two, respect 
to the plane 1 2O O- , are concentrated in Table 2. 
 

Moment Value Units 

00
Om  1.6 310-´  m 2  

10
Om  2.4 510-´  m 3  

01
Om  4 510-´  m 3  

Ogx  2[1 5 2 5] 10T -. . ´  m 

11
Om  4.8 710-´  m 4  

20
Om  5.3333 710-´  m 4  

02
Om  1.4933 610-´  m 4  

11
O m  -1.2 710-´  m 4  

20
O m  1.7333 710-´  m 4  

02
O m  4.9333 710-´  m 4  

Table 2. Two-dimensional Cartesian moments of the target object respect to 1 2O O-  
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Respect to the 3D parameters of the target object, the controller only needs a estimation of 
the object centroid Ogx .  
The image feature vector selected corresponds to (46) with 1p = - , denote with as  this 
image feature vector expressed with  
 

 
11 11

00 02 20 20 02

1
1

[ ]
2

y y

a
y yy y y

m
s

m m m

m

m m

é ù-
ê ú
ê ú= ,
ê ú- + -ê úë û

 

 

with Jacobian ( )y
ijJ q m,  described by  

 

 
12

126
1 2

3

4

1 0 ( )
( ) ( )

0 1 ( )

O

W
O

ggg
y

ij G
g g g

xy y c q
J q J qm y y xc q

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

é ù- ,
ê ú, = .ê ú- - ,ê úë û

 

 

The initial condition is the manipulator at rest with position vector (0) 0q =  [rad]. By means 
of the teach-by-showing method it is computed the desired image feature vector das  on the 
desired manipulator configuration, such that [45 180 90 180]Tdq p p= / /  [rad], obtaining  

 4 2
2 8408

10 [pixels ]
1 7333das

é . ù
ê ú= ´ .ê ú- .ê úë û

 

 

The controller (25) was tuned with the gains:  
 

 6
24 10pK I -= ´    and    20 8vK I= . ; 

 

but with the next estimations:  

1 1

2 2

ˆ 0.5

ˆ 0.5

ˆ 0.5

ˆ 0.95 .

O O

O O

g g

g g

x x

x x

l l

f f=

=

=

=

 

 

This satisfies the inequalities (37) and (38), since  
 

22

2

ˆ ˆ{ }
cos( )

ˆ

7 8242 15 8702

ˆ ˆ ˆ{ } sin( ) det{ } 2 det{ }
{ }

ˆ ˆ ˆcos( ) { }

0 6400 0 5524

T
m

p M

m v T
m

J J
J

J

k M J J J J J J J
K

J J J J

l
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g l f
l

f l
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. < .
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. > . .

 

    
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Fig. 5. Evolving respect to time of as  
 
Observe trough figures 5 and 6 that the performance of the robotic system is satisfactory. 
The error image feature vector is practically null in about 3 [sec], as can be seen in Figure 5; 
this shows that the control objective is reached. Likewise, the trace of the centroid gy  of the 
target object is reported in Figure 6 together with 3 snapshot of the manipulator and the 
target object configuration at the initial condition when 0t =  [sec], when 0 2t = .  [sec] and 
when the simulation ends at 5t =  [sec]. 
 

 
Fig. 6. Trace of the target object centroid gy  

 
7. Conclusions 
 

In this chapter is designed a direct visual servo control for planar manipulators in fixed-
camera configuration, with the camera optical axis perpendicular to the robot motion plane. 
The target is a planar object with arbitrary shape, that is, it can be of complex geometry. It 
has been proposed a global image feature vector in function of the image moments of such a 
target object; and in base on the transformation of moments it is computed the time 
variation of this global image features. This represents an alternative development 
compared to the one described in Chaumette (2004).  

www.intechopen.com



Direct visual servoing of planar manipulators using moments of planar targets 425

 

The designed controller corresponds to the transpose Jacobian structure and, by means of the 
Lyapunov theory, it is demonstrated that the controller is robust against uncertainties in 3D 
parameters of the target object, the camera and the geometric Jacobian of the manipulator. 
Finally, simulations are presented to validate the fulfillment of the control objective.  

 
8. Appendix 
 

In this appendix is developed the analytic form of the time variation for the regular and 
centered image moments with the configuration of the system detailed in Section 2.  

 
8.1 Regular image moments 
The time variation of the regular image moments y ijm  can be computed by the time derivative 
of (12), therefore 

1 2 3 4 5 6
y
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and 1k , 2k , 3k , 1l , 2l  and 3l  are nonnegative integers such that 1 2 3k k k i+ + =  and 

1 2 3l l l j+ + = .  
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Simplifying,   
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Finally,   
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8.2 Centered image moments 
The time variation of the centered image moments y ijm  can be computed by the time 
derivative of (14), hence 
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and 1k , 2k , 1l , and 2l  are nonnegative integers such that 1 2k k i+ =  and 1 2l l j+ = .  
Simplifying,   

1 2 1 1

3 4 1 1

y
i j

y
i j

b b i

b b j

m y

m y

- , +

+ , -

+ =

+ = - .




 

Finally, 
 1 1 1 1[ ]y y y

ij i j i ji jm m m y- , + + , -= - .  (50) 
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