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1. Introduction 
 

Everyday people will observe, analyze, and interpret the motion and actions of the people 
surrounding them. This is a source of very valuable information about not only what each 
person is doing but also things like their intentions, their attitude towards the observer, 
situations they perceive as dangerous or interesting, etc. In open spaces where people are 
moving around the type of motion will be an important cue for a lot of this information. 
More specifically, the human gait has been actively investigated in different research areas 
for this reason. Within psychology the expression and perception of emotions through styles 
of motions has been investigated by e.g. (Montepare et al., 1987) and the question of how 
people infer intention from actions has been studied within neuroscience by e.g. (Blakemore 
& Decety, 2001). In biomechanics (Alexander, 2002) describes how the choice of different 
gait types (walking and running) are based on the minimizing of energy consumption in 
muscles and (Whittle, 2001) describes how gait analysis can be used within clinical 
diagnostics to diagnose a number of diseases. 
A lot of the information that is embedded in the gait can be extracted by simply observing a 
person. Systems that operate around people can benefit greatly from such observations. This 
fact has driven much research within robotics and computer vision to focus on analysis of 
human gait with a number of different applications as the aim. 
Robots that move and work around humans will be very dependant on their ability to 
observe people and to interact with humans in an efficient way and the ability to recognize 
basic human activities is furthermore necessary. Methods for recognizing human gestures to 
enable natural human-robot interaction has been presented in e.g. (Yang et al., 2006; Meisner 
et al., 2009; Waldherr et al., 2000). Natural human-robot interaction also requires the robot to 
behave in a way that is in accordance with the social rules of humans. A method for 
adapting the robot behavior according to the motion of people is presented in (Svenstrup et 
al., 2009). Since the human gait is a very distinctive type of motion it can be used in many 
contexts to detect the presence of people, e.g. from surveillance cameras (Cutler & Davis, 
2000; Ran et al., 2007; Viola et al., 2005). Gait as a biometric measure has also received much 
attention because it is non-intrusive (Collins et al., 2002; Liu & Sarkar, 2006; Veeraraghavan 
et al., 2005; Wang et al., 2004; Yam et al., 2002). Finally, there has been considerable interest 
in the computer vision community in the classification of gait types or, more generally, of 
different types of human action (Blank et al., 2005; Dollár et al., 2005; Schüldt et al., 2004). 
The research in human action recognition is applicable in a number of areas besides human-
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robot interaction, e.g. in advanced user interfaces, annotation of video data, intelligent 
vehicles, and automatic surveillance.  
An interesting and challenging area of human gait type recognition is motion in open spaces 
like town squares, courtyards, or train stations where one of the main human activities is 
that of gait, i.e. people are walking, jogging, or running. The movements of people in such 
spaces are however rarely constrained so seen from a camera this will result in challenges 
like changing direction of motion, significant changes in the scale of people, varying speeds 
of motion, and often also dynamics backgrounds. This chapter will show how to build a gait 
type classification system that can handle a number of the challenges that a real life scenario 
imposes on such a gait classification system. i.e. a general system which is invariant to 
camera frame rate and calibration, view point, moving speeds, scale change, and non-linear 
paths of motion. 
Much research concerned with gait attempts to extract features related to the person specific 
style of gait whereas this work is concerned with the three general types of gait (walking, 
jogging and running) and it is therefore more related to the action recognition research than 
the research on the use of gait in personal identification. 
Systems that are invariant to one or more of the factors listed above have been presented in 
the literature, but so far none has considered all these factors simultaneously. (Masoud & 
Papanikolopoulos, 2003) presents good results on classification of different types of human 
motion but the system is limited to motion parallel to the image plane. (Robertson & Reid, 
2005) describes a method for behavior understanding by combining actions into human 
behavior. The method handles rather unconstrained scenes but uses the moving speed of 
people to classify the action being performed. The moving speed cannot be used for gait-
type classification. A person jogging along could easily be moving slower than another 
person walking fast and human observers distinguishing jogging from running do typically 
not use the speed as a feature. Furthermore, estimation of speed would require scene 
knowledge that is not always accessible. (Blank et al., 2005) uses space-time shapes to 
recognize actions independently of speed. The method is robust to different viewpoints but 
cannot cope with non-linear paths created by changes in direction of movement. Other state-
of-the-art approaches are mentioned in section 8 along with a comparison of results. 
Current approaches to action classification and gait-type classification consider two or three 
distinct gait classes, e.g. (Masoud & Papanikolopoulos, 2003; Robertson & Reid, 2005) who 
consider walking and running, or (Blank et al., 2005; Dollár et al., 2005; Schüldt et al., 2004) 
who consider walking, jogging, and running. However, this distinct classification is not 
always possible, not even to human observers, and we therefore extend the gait analysis 
with a more appropriate gait continuum description. Considering gait as a continuum 
seems intuitive correct for jogging and running, and including walking in such a continuum 
makes it possible to apply a single descriptor for the whole range of gait types. In this 
chapter we present a formal description of a gait continuum based on a visual recognizable 
physical feature instead of e.g. a mixture of probabilities of walking, jogging, and running. 

 
1.1 Gait type description based on the Duty-factor 
The work presented in this chapter describe the major gait types in a unified gait continuum 
using the duty-factor which is a well established property of gait adopted from the 
biomechanics literature (Alexander, 2002). To enhance the precision in estimation of the 
duty-factor we use an effective gait type classifier to reduce the solution space and then 
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calculate the duty-factor within this subspace. The following section will elaborate and 
motivate our approach. 
A current trend in computer vision approaches that deal with analysis of human movement 
is to use massive amounts of training data, which means spending a lot of time on extracting 
and annotating the data and temporally aligning the training sequences. To circumvent 
these problems an alternative approach can be applied in which computer graphics models 
are used to generate training data. The advantages of this are very fast training plus the 
ability to easily generate training data from new viewpoints by changing the camera angle.  
In classifying gait types it is not necessary to record a person's exact pose, and silhouettes 
are therefore sufficient as inputs. Silhouette based methods have been used with success in 
the area of human identification by gait (Collins et al., 2002; Liu & Sarkar, 2006; Wang et al., 
2004). The goal in human identification is to extract features that describe the personal 
variation in gait patterns. The features used are often chosen so that they are invariant to the 
walking speed and in (Yam et al., 2002) the same set of features even describe the personal 
variation in gait patterns of people no matter whether they are walking or running. Inspired 
by the ability of the silhouette based approaches to describe details in gait, we propose a 
similar method. Our goal is however quite different from human identification since we want 
to allow personal variation and describe the different gait types through the duty-factor.  
A silhouette based approach does not need a completely realistic looking computer graphics 
model as long as the shape is correct and the 3D rendering software Poser1, which has a 
build-in Walk Designer, can be used to animate human gaits. 
To sum up, our approach offers the following three main contributions.  
 

1. The methods applied are chosen and developed to allow for classification in an 
unconstrained environment. This results in a system that is invariant to more factors 
than other approaches, i.e. invariant in regard to camera frame rate and calibration, 
viewpoint, moving speeds, scale change, and non-linear paths of motion. 

2. The use of the computer graphics model decouples the training set completely from 
the test set. Usually methods are tested on data similar to the training set, whereas 
we train on computer-generated images and test on video data from several different 
data sets. This is a more challenging task and it makes the system more independent 
of the type of input data and therefore increases the applicability of the system. 

3. The gait continuum is based on a well-established physical property of gait. The 
duty-factor allows us to describe the whole range of gait types with a single 
parameter and to extract information that is not dependant on the partially subjective 
notion of jogging and running. 

 
The remainder of this chapter will first give a thorough introduction of the duty-factor and 
show its descriptive power. Next, the gait classification frame work will be described in 
detail. The framework is shown in Fig. 1. The human silhouette is first extracted (section 3) 
and represented efficiently (section 4). We then compare the silhouette with computer 
graphics silhouettes (section 6) from a database (section 5). The results of the comparison are 
calculated for an entire sequence and the gait type and duty-factor of that sequence is 

                                                                 

1 Poser version 6.0.3.140 was used for this work. Currently distributed by Smith Micro Software, Inc. 
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extracted (section 7). Results are presented in section 8 and section 9 contains a discussion of 
these results. Sections 10 to 12 present solutions to some of the additional challenges that 
arise when the gait classification system is applied in an online system with multiple 
cameras, real-time demands, and maintenance of silhouette quality over long time. Section 
13 concludes the chapter. 
 

 
Fig. 1. An overview of the approach. The main contributions of the method presented here 
are the computer generated silhouette database, the gait analysis resulting in a gait 
continuum, and the ability to handle unconstrained environments achieved by the methods 
applied throughout the system. The gait analysis is further detailed in Fig. 7. 

 
2.  The Duty-Factor 
 

When a human wants to move fast he/she will run. Running is not simply walking done 
fast and the different types of gaits are in fact different actions. This is true for vertebrates in 
general. For example, birds and bats have two distinct flying actions and horses have three 
different types of gaits. Which action to apply to obtain a certain speed is determined by 
minimizing some physiological property. For example, turtles seem to optimize with respect 
to muscle power, horses and humans with respect to oxygen consumption and other 
animals by minimizing metabolic power. Furthermore, physiological research has shown 
that the optimal action changes discontinuously with changing speed. (Alexander, 1989) 
From a computer vision point of view the question is now if one (recognizable) descriptor 
exist, which can represent the continuum of gait. For bipedal locomotion in general, the 
duty-factor can do exactly this. The duty-factor is defined as "the fraction of the duration of a 
stride for which each foot remains on the ground" (Alexander, 2002). Fig. 2. illustrates the duty-
factor in a walk cycle and a run cycle. 
To illustrate the power of this descriptor we have manually estimated the duty-factor in 138 
video sequences containing humans walking, jogging, or running, see Fig. 3. These 
sequences come from 4 different sources and contain many different individuals entering 
and exiting at different angles. Some not even following a straight line (see example frames 
in Fig. 10). 
Fig. 3. shows a very clear separation between walking and jogging/running which is in 
accordance with the fact that those types of gait are in fact different ways of moving. 
Jogging and running however, cannot be separated as clearly and there is a gradual 
transition from one gait type to the other. In fact, the classification of jogging and running is 
dependent on the observer when considering movements in the transition phase and there 
exists no clear definition of what separates jogging from running.  
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Fig. 2. Illustration of the duty-factor. The duration of a gait cycle where each foot is on the 
ground is marked with the black areas. The duty-factor for the depicted run cycle (top) is 0.2 
and 0.65 for the depicted walk cycle (bottom). 
 
This problem is apparent in the classification of the sequences used in Fig.3. Each sequence 
is either classified by us or comes from a data set where it has been labeled by others. By 
having more people classify the same sequences it turns out that the classification of some 
sequences is ambiguous which illustrates the subjectivity in evaluation of jogging and 
running2. (Patron & Reid, 2007) reports classification results from 300 video sequences of 
people walking, jogging, and running. The sequences are classified by several people 
resulting in classification rates of 100% for walking, 98% for jogging, and only 81% for 
running, which illustrates the inherent difficulty in distinguishing the two gait types. 
With these results in mind we will not attempt to do a traditional classification of walking, 
jogging, and running which in reality has doubtful ground truth data. Rather, we will use 
the duty-factor to describe jogging and running as a continuum. This explicitly handles the 
ambiguity of jogging and running since a video sequence that some people will classify as 
jogging and other people will classify as running simply map to a point on the continuum 
described by the duty-factor. This point will not have a precise interpretation in terms of 
jogging and running but the duty-factor will be precise. 
As stated earlier walking and jogging/running are two different ways of moving. However, 
to get a unified description for all types of gait that are usually performed by people in open 
spaces we also apply the duty-factor to walking and get a single descriptor for the whole 
gait continuum. 

                                                                 

2 The problem of ambiguous classification will be clear when watching for example video sequences 
from the KTH data set (Schüldt et al., 2004), e.g. person 4 jogging in scenario 2 versus person 2 running 
in scenario 2. 
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Even though jogging and running are considered as one gait type in the context of the duty-
factor they still have a visual distinction to some extend. This visual distinction is used with 
some success in the current approaches which classify gait into walking, jogging, and 
running. We acknowledge the results obtained by this type of approaches and we also 
propose a new method to classify gait into walking, jogging, and running. In our approach 
however, this is only an intermediate step to optimize the estimation of the duty-factor 
which we believe to be the best way of describing gait. 
 

 
Fig. 3. The manually annotated duty-factor and gait type for 138 different sequences. Note 
that the sole purpose of the y-axis is to spread out the data. 

 
3. Silhouette extraction 
 

The first step in the gait analysis framework is to extract silhouettes from the incoming 
video sequences. For this purpose we do foreground segmentation using the Codebook 
background subtraction method as described in (Fihl et al., 2006) and (Kim et al., 2005). This 
method has been shown to be robust in handling both foreground camouflage and shadows. 
This is achieved by separating intensity and chromaticity in the background model. 
Moreover, the background model is multi modal and multi layered which allows it to model 
moving backgrounds such as tree branches and objects that become part of the background 
after staying stationary for a period of time. To maintain good background subtraction 
quality over time it is essential to update the background model and (Fihl et al., 2006) 
describes two different update mechanisms to handle rapid and gradual changes 
respectively. By using this robust background subtraction method we can use a diverse set 
of input sequences from both indoor and outdoor scenes. 
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4. Silhouette description 
 

When a person is moving around in an unconstrained scene his or her arms will not 
necessarily swing in a typical "gait" manner; the person may be making other gestures, such 
as waving, or he/she might be carrying an object. To circumvent the variability and 
complexity of such scenarios we choose to classify the gait solely on the silhouette of the 
legs. Furthermore, (Liu et al., 2004) shows that identification of people on the basis of gait, 
using the silhouette of legs alone, works just as well as identification based on the silhouette 
of the entire body. 
To extract the silhouette of the legs we find the height of the silhouette of the entire person 
and use the bottom 50% as the leg silhouette. Without loss of generality this approach 
avoids errors from the swinging hands below the hips, although it may not be strictly 
correct from an anatomic point of view. To reduce noise along the contour we apply 
morphological operations to the silhouette. Some leg configurations cause holes in the 
silhouette, for example running seen from a non-side view in Fig. 5. (c). Such holes are 
descriptive for the silhouette and we include the contour of these holes in the silhouette 
description. 
To allow recognition of gait types across different scales we use shape contexts and tangent 
orientations (Belongie et al., 2002) to describe the leg silhouettes. n points are sampled from 
the contour of the leg silhouette and for each point we determine the shape context and the 
tangent orientation at that point, see Fig. 4. With K bins in the log-polar histogram of the 
shape context we get an n x (K+1) matrix describing each silhouette. Scale invariance is 
achieved with shape contexts by normalizing the size of the histograms according to the 
mean distance between all point pairs on the contour. Specifically, the normalizing constant 
q used for the radial distances of the histograms is defined as follows: 
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where n is the number of points p sampled from the contour. 
 

 
Fig. 4. Illustration of the silhouette description. The crosses illustrate the points sampled 
from the silhouette. Shape contexts and tangent orientations are used to describe the 
silhouette. 

(1) 
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5. Silhouette database 
 

To represent our training data we create a database of human silhouettes performing one 
cycle of each of the main gait types: walking, jogging, and running. To make our method 
invariant to changes in viewpoint we generate database silhouettes from three different 
camera angles. With 3D-rendering software this is an easy and very rapid process that does 
not require us to capture new real life data for statistical analysis. The database contains 
silhouettes of the human model seen from a side view and from cameras rotated 30 degrees 
to both sides. The combination of the robust silhouette description and three camera angles 
enable the method to handle diverse moving directions and oblique viewing angles. 
Specifically, database silhouettes can be matched with silhouettes of people moving at 
angles of at least ±45 degrees with respect to the viewing direction. People moving around 
in open spaces will often change direction while in the camera's field of view (creating non-
linear paths of motion), thus we cannot make assumptions about the direction of movement. 
To handle this variability each new input silhouette is matched to database silhouettes taken 
from all camera angles. Fig. 10, row 1 shows a sequence with a non-linear motion path 
where the first frame will match database silhouettes from a viewpoint of -30 degrees and 
the last frame will match database silhouettes from a viewpoint of 30 degrees.  The 
silhouettes generated are represented as described in section  4. We generate T silhouettes of 
a gait cycle for each of the three gait types. This is repeated for the three viewpoints, i.e. T • 3 

• 3 silhouettes in total. Fig. 5 shows examples of the generated silhouettes.  
Each silhouette in the database is annotated with the number of feet in contact with the 
ground which is the basis of the duty-factor calculation. 
To analyze the content of the database with respect to the ability to describe gait we created 
an Isomap embedding (Tenenbaum et al., 2000) of the shape context description of the 
silhouettes. Based on the cyclic nature of gait and the great resemblance between gait types 
we expect that gait information can be described by some low dimensional manifold. Fig. 6. 
shows the 2-dimensional embedding of our database with silhouettes described by shape 
contexts and tangent orientations and using the costs resulting from the Hungarian method 
(described in section 6) as distances between silhouettes. 
 

 
Fig. 5. Example of database silhouettes generated by 3D-rendering software. Silhouettes are 
generated from three viewpoints. a) and c) illustrate renderings from cameras rotated 30 
degrees to each side. b) illustrates renderings from a direct side view. 
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According to figure 6 we can conclude that the first two intrinsic parameters of the database 
represent 1) the total distance between both feet and the ground and 2) the horizontal 
distance between the feet. This reasonable 2-dimensional representation of the database 
silhouettes shows that our description of the silhouettes and our silhouette comparison 
metric does capture the underlying manifold of gait silhouettes in a precise manner. Hence, 
gait type analysis based on our silhouette description and comparison seems promising 
 

 
Fig. 6. Illustration of the ISOMAP embedding and a representative subset of the database 
silhouettes. 

 
6. Silhouette comparison 
 

To find the best match between an input silhouette and database silhouettes we follow the 
method of (Belongie et al., 2002). We calculate the cost of matching a sampled point on the 
input silhouette with a sampled point on a database silhouette using the χ2 test statistics. The 
cost of matching the shape contexts of point pi on one silhouette and point pj on the other 
silhouette is denoted ci,j. The normalized shape contexts at points pi and pj are denoted hi(k) and 
hj(k) respectively with k as the bin number, k={1,2,...,K}. The χ2 test statistics is given as: 
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The normalized shape contexts gives ci,j [0;1]. 
The difference in tangent orientation φi,j between points pi and pj is normalized and added to 
ci,j (φi,j  [0;1]). This gives the final cost Ci,j of matching the two points: 
 

jijiji bcaC ,,,   

 

(2) 

(3) 
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where a and b are weights. Experiments have shown that φi,j effectively discriminates points 
that are quite dissimilar whereas ci,j expresses more detailed differences which should have 
a high impact on the final cost only when tangent orientations are alike. According to this 
observation we weight the difference in tangent orientation φi,j higher than shape context 
distances ci,j. Preliminary experiments show that the method is not too sensitive to the choice 
of these weights but a ratio of 1 to 3 yields good results, i.e. a=1 and b=3. 
The costs of matching all point pairs between the two silhouettes are calculated. The 
Hungarian method (Papadimitriou & Steiglitz, 1998) is used to solve the square assignment 
problem of identifying which one-to-one mapping between the two point sets that 
minimizes the total cost. All point pairs are included in the cost minimization, i.e. the 
ordering of the points is not considered. This is because points sampled from a silhouette 
with holes will have a very different ordering compared to points sampled from a silhouette 
without holes but with similar leg configuration, see row three of Fig. 5. (c) (second and 
third image) for an example. 
By finding the best one-to-one mapping between the input silhouette and each of the 
database silhouettes we can now identify the best match in the whole database as the 
database silhouette involving the lowest total cost. 

 
7. Gait analysis 
 

The gait analysis consists of two steps. First we do classification into one of the three gait 
types, i.e. walking, jogging, or running. Next we calculate the duty-factor D based on the 
silhouettes from the classified gait type. This is done to maximize the likelihood of a correct 
duty-factor estimation. Fig. 7. illustrates the steps involved in the gait type analysis. Note 
that the silhouette extraction, silhouette description, and silhouette comparison all process a 
single input frame at a time whereas the gait analysis is based on a sequence of input 
frames. 
To get a robust classification of the gait type in the first step we combine three different 
types of information. We calculate an action error E for each action and two associated 
weights: action likelihood α and temporal consistency β. The following subsections describe the 
gait analysis in detail starting with the action error and the two associated weights followed 
by the duty-factor calculation. 
 

 
Fig. 7. An overview of the gait analysis. The figure shows the details of the block "Gait 
analysis" in Fig. 1. The output of the silhouette comparison is a set of database silhouettes 
matched to the input sequence. In the gait type classification these database silhouettes are 
classified as a gait type which defines a part of the database to be used for the duty-factor 
calculation. 

www.intechopen.com



Recognizing Human Gait Types 193

 

7.1 Action Error 
The output of the silhouette comparison is a set of distances between the input silhouette 
and each of the database silhouettes. These distances express the difference or error between 
two silhouettes. Fig. 8. illustrates the output of the silhouette comparison. The database 
silhouettes are divided into three groups corresponding to walking, jogging, and running, 
respectively. We accumulate the errors of the best matches within each group of database 
silhouettes. These accumulated errors constitute the action error E and corresponds to the 
difference between the action being performed in the input video and each of the three 
actions in the database, see Fig. 9. 
 

 
Fig. 8. Illustration of the silhouette comparison output. The distances between each input 
silhouette and the database silhouettes of each gait type are found (shown for walking only). 
90 database silhouettes are used per gait type, i.e. T=30. 

 
7.2 Action Likelihood 
When silhouettes of people are extracted in difficult scenarios and at low resolutions the 
silhouettes can be noisy. This may result in large  errors between the input silhouette and a 
database silhouette, even though the actual pose of the person is very similar to that of the 
database silhouette. At the same time, small errors may be found between noisy input 
silhouettes and database silhouettes with quite different body configurations (somewhat 
random matches). To minimize the effect of the latter inaccuracies we weight the action 
error by the likelihood of that action. The action likelihood of action a is given as the 
percentage of input silhouettes that match action a better than the other actions. 
Since we use the minimum action error the actual weight applied is one minus the action 
likelihood: 

N
na

a 1  

where na is the number of input silhouettes in a sequence with the best overall match to a 
silhouette from action a, and N is the total number of input silhouettes in that video sequence. 

(4) 
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This weight will penalize actions that have only a few overall best matches, but with small errors, 
and will benefit actions that have many overall best matches, e.g. the running action in Fig. 9. 
 

 
Fig. 9. The output of the silhouette comparison of Fig. 8. is shown in 2D for all gait types 
(dark colors illustrate small errors and bright colors illustrate large errors). For each input 
silhouette the best match among silhouettes of the same action is marked with a white dot 
and the best overall match is marked with a white cross. The shown example should be 
interpreted as follows: the silhouette in the first input frame is closest to walking silhouette 
number 64, to jogging silhouette number 86, and to running silhouette number 70. These 
distances are used when calculating the action error. When all database silhouettes are 
considered together, the first input silhouette is closest to jogging silhouette number 86. This 
is used in the calculation of the two weights. 

 
7.3 Temporal Consistency 
When considering only the overall best matches we can find sub-sequences of the input 
video where all the best matches are of the same action and in the right order with respect to 
a gait cycle. This is illustrated in Fig. 9. where the running action has great temporal 
consistency (silhouette numbers 14-19). The database silhouettes are ordered in accordance 
with a gait cycle. Hence, the straight line between the overall best matches for input 
silhouettes 14 to 19 shows that each new input silhouette matches the database silhouette 
that corresponds to the next body configuration of the running gait cycle.  
Sub-sequences with correct temporal ordering of the overall best matches increase our 
confidence that the action identified is the true action. The temporal consistency describes 
the length of these sub-sequences. Again, since we use the minimum action error we apply 
one minus the temporal consistency as the weight βa: 
 

N
ma

a 1  

 

where ma is the number of input silhouettes in a sequence in which the best overall match 
has correct temporal ordering within action a, and N is the total number of input silhouettes 
in that video sequence. 

(5) 
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Our definition of temporal consistency is rather strict when you consider the great variation 
in input silhouettes caused by the unconstrained nature of the input. A strict definition of 
temporal consistency allows us to weight it more highly than action likelihood, i.e. we apply 
a scaling factor w to β to increase the importance of temporal consistency in relation to 
action likelihood: 

N
mw a

a  1  

7.4 Gait-type classification 
The final classifier for the gait type utilizes both the action likelihood and the temporal 
consistency as weights on the action error. This yields: 
 

)(minarg aaaa
EAction    

 

where Ea is the action error, αa is the action likelihood, βa is the weighted temporal 
consistency. 

 
7.5 Duty-Factor Calculation 
As stated earlier the duty-factor is defined as the fraction of the duration of a stride for 
which each foot remains on the ground. Following this definition we need to identify the 
duration of a stride and for how long each foot is in contact with the ground. 
A stride is defined as one complete gait cycle and consists of two steps. A stride can be 
identified as the motion from a left foot takeoff (the foot leaves the ground) and until the 
next left foot takeoff (see Fig. 2. for an illustration). Accordingly a step can be identified as 
the motion from a left foot takeoff to the next right foot takeoff. Given this definition of a 
step it is natural to identify steps in the video sequence by use of the silhouette width. From 
a side view the silhouette width of a walking person will oscillate in a periodic manner with 
peaks corresponding to silhouettes with the feet furthest apart. The interval between two 
peaks will (to a close approximation) define one step (Collins et al., 2002). This also holds for 
jogging and running and can furthermore be applied to situations with people moving 
diagonally with respect to the viewing direction. By extracting the silhouette width from 
each frame of a video sequence we can identify each step (peaks in silhouette width) and 
hence determine the mean duration of a stride ts in that sequence. 
For how long each foot remains on the ground can be estimated by looking at the database 
silhouettes that have been matched to a sequence. We do not attempt to estimate ground 
contact directly in the input videos which would require assumptions about the ground 
plane and camera calibrations. For a system intended to work in unconstrained open scenes 
such requirements will be a limitation to the system. In stead of estimating the feet's ground 
contact in the input sequence we infer the ground contact from the database silhouettes that 
are matched to that sequence. Since each database silhouette is annotated with the number 
of feet supported on the ground this is a simple lookup in the database. The ground support 
estimation is based solely on silhouettes from the gait type found in the gait-type 
classification which maximize the likelihood of a correct estimate of the ground support.  
The total ground support G of both feet for a video sequence is the sum of ground support 
of all the matched database silhouettes within the specific gait type.  

(6) 

(7) 
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To get the ground support for each foot we assume a normal moving pattern (not limping, 
dragging one leg, etc.) so the left and right foot have equal ground support and the mean 
ground support g for each foot during one stride is G/(2ns), where ns is the number of 
strides in the sequence. The duty-factor D is now given as D=g/ts. In summary we have 
 

ss tn
GDfactorDuty



2

 

 
where G is the total ground support, ns is the number of strides, and ts is the mean duration 
of a stride in the sequence. 
The manual labeled data of Fig. 3. allows us to further enhance the precision of the duty-
factor description. It can be seen from Fig. 3. that the duty-factor for running is in the 
interval [0.28;0.39] and jogging is in the interval [0.34;0.53]. This can not be guarantied to be 
true for all possible executions of running and jogging but the great diversity in the 
manually labeled data allows us to use these intervals in the duty-factor estimation. Since 
walking clearly separates from jogging and running and since no lower limit is needed for 
running we infer the following constraints on the duty factor of running and jogging: 
 

]53.0;34.0[

]39.0;0[




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running

D
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We apply these bounds as a post-processing step. If the duty-factor of a sequence lies 
outside one of the appropriate bounds then the duty-factor will be assigned the value of the 
exceeded bound. 

 
8. Results 
 

To emphasize the contributions of our two-step gait analysis we present results on both 
steps individually and on the gait continuum achieved by combining the two steps. 
A number of recent papers have reported good results on the classification of gait types 
(often in the context of human action classification). To compare our method to these results 
and to show that the gait type classification is a solid base for the duty-factor calculation we 
have tested this first step of the gait analysis on its own. After this comparison we test the 
duty-factor description with respect to the ground truth data shown in Fig. 3., both on its 
own and in combination with the gait type classification. 
The tests are conducted on a large and diverse data set. We have compiled 138 video 
sequences from 4 different data sets. The data sets cover indoor and outdoor video, different 
moving directions with respect to the camera (up to ±45 degrees from the viewing 
direction), non-linear paths, different camera elevations and tilt angles, different video 
resolutions, and varying silhouette heights (from 41 pixels to 454 pixels). Fig. 10. shows 
example frames from the input videos. Ground truth gait types were adopted from the data 
sets when available and manually assigned by us otherwise. 
For the silhouette description the number of sampled points n was 100 and the number of 
bins in the shape contexts K was 60. 30 silhouettes were used for each gait cycle, i.e., T=30. 
The temporal consistency was weighted by a factor of four determined through quantitative 
experiments, i.e. w=4. 

(8) 

(9) 
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8.1 Gait-type classification 
When testing only the first step of the gait analysis we achieve an overall recognition rate of 
87.1%. Table 1 shows the classification results in a confusion matrix. 

 
 Walk Jog Run 

Walk 96.2 3.8 0.0 
Jog 0.0 65.9 34.1 
Run 0.0 2.6 97.4 

 

Table 1. Confusion matrix for the gait type classification results. 
 
The matching percentages in Table 1 cannot directly be compared to the results of others 
since we have included samples from different data sets to obtain more diversity. However, 
87 of the sequences originate from the KTH data set (Schüldt et al., 2004) and a loose 
comparison is possible on this subset of our test sequences. In Table 2 we list the matching 
results of different methods working on the KTH data set.  
 

Methods Classification results in % 
Total Walk Jog Run 

Kim & Cipolla (2009)*  92.3 99 90 88 
Our method  92.0 100.0 80.6 96.3 
Li et al. (2008)* 89.0 88 89 90 
Laptev et al. (2008)* 89.3 99 89 80 
Patron & Reid (2007) 84.3 98 79 76 
Schüldt et al. (2004) 75.0 83.3 60.4 54.9 

 

Table 2. Best reported classification results on the KTH data set. The matching results of our 
method are based on the 87 KTH sequences included in our test set. * indicate that the 
method work on all actions of the KTH data set. 
 
The KTH data set remains one of the largest data sets of human actions in terms of number 
of test subjects, repetitions, and scenarios and many papers have been published with 
results on this data set, especially within the last two years. A number of different test 
setups have been used which makes a direct comparison impossible and we therefore 
merely list a few of the best results to show the general level of recognition rates. We 
acknowledge that the KTH data set contains three additional actions (boxing, hand waving, 
and hand clapping) and that some of the listed results include these. However, for the 
results reported in the literature the gait actions are in general not confused with the three 
hand actions. The results can therefore be taken as indicators of the ability of the methods to 
classify gait actions exclusively. 
Another part of our test set is taken from the Weizmann data set (Blank et al., 2005). They 
classify nine different human actions including walking and running but not jogging. They 
achieve a near perfect recognition rate for running and walking and others also report 100% 
correct recognitions on this data set, e.g. (Patron et al., 2008). To compare our results to this 
we remove the jogging silhouettes from the database and leave out the jogging sequences 
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from the test set. In this walking/running classification we achieve an overall recognition 
rate of 98.9% which is slightly lower. Note however that the data sets we are testing on 
include sequences with varying moving directions where the results in (Blank et al., 2005) 
and (Patron et al., 2008) are based on side view sequences. 
In summary, the recognition results of our gait-type classification provides a very good 
basis for the estimation of the duty-factor. 
 

 
Fig. 10. Samples from the 4 different data sets used in the test together with the extracted 
silhouettes of the legs used in the database comparison, and the best matching silhouette 
from the database. Top left: data from our own data set. Bottom left: data from the 
Weizmann data set (Blank et al., 2005). Top right: data from the CMU data set obtained from 
mocap.cs.cmu.edu. The CMU database was created with funding from NSF EIA-0196217. 
Bottom right: data from the KTH data set (Schüldt et al., 2004). 

 
8.2 Duty-factor 
To test our duty-factor description we estimate it automatically in the test sequences. To 
show the effect of our combined gait analysis we first present results for the duty-factor 
estimated without the preceding gait-type classification to allow for a direct comparison. 
Fig. 11. shows the resulting duty-factors when the gait type classification is not used to limit 
the database silhouettes to just one gait type. Fig. 12. shows the estimated duty-factors with 
our two-step gait analysis scheme. The estimate of the duty-factor is significantly improved 
by utilizing the classification results of the gait type classification. The mean error for the 
estimate is 0.050 with a standard deviation of 0.045. 
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Fig. 11. The automatically estimated duty-factor from the 138 test sequences without the use 
of the gait type classification. The y-axis solely spreads out the data. 
 

 
Fig. 12. The automatically estimated duty-factor from the 138 test sequences when the gait 
type classification has been used to limit the database to just one gait type. The y-axis solely 
spreads out the data. 
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9. Discussion 
 

When comparing the results of the estimated duty-factor (Fig. 12.) with the ground truth 
data (Fig. 3.) it is clear that the overall tendency of the duty-factor is reproduced with the 
automatic estimation. The estimated duty-factor has greater variability mainly due to small 
inaccuracies in the silhouette matching. A precise estimate of the duty-factor requires a 
precise detection of when the foot actually touches the ground. However, this detection is 
difficult because silhouettes of the human model are quite similar just before and after the 
foot touches the ground. Inaccuracies in the segmentation of the silhouettes in the input 
video can make for additional ambiguity in the matching. 
The difficulty in estimating the precise moment of ground contact leads to considerations on 
alternative measures of a gait continuum,  e.g. the Froude number (Alexander, 1989) that is 
based on walking speed and the length of the legs. However, such measures requires 
information about camera calibration and the ground plane which is not always accessible 
with video from unconstrained environments. The processing steps involved in our system 
and the silhouette database all contributes to the overall goal of creating a system that is 
invariant to usual challenges in video from unconstrained scenes and a system that can be 
applied in diverse setups without requiring additional calibrations. 
The misclassifications of the three-class classifier also affect the accuracy of the estimated 
duty-factor. The duty-factor of the four jogging sequences misclassified as walking disrupt 
the perfect separation of walking and jogging/running expected from the manually 
annotated data. All correctly classified sequences however maintain this perfect separation.  
To test wether the presented gait classification framework provides the kind of invariance 
that is required for unconstrained scenes we have analyzed the classification errors in Table 1. 
This analysis shows no significant correlation between the classification errors and the 
camera viewpoint (pan and tilt), the size and quality of the silhouettes extracted, the image 
resolution, the linearity of the path, and the amount of scale change. Furthermore, we also 
evaluated the effect of the number of frames (number of gait cycles) in the sequences and 
found that our method classifies gait types correctly even when there are only a few cycles 
in the sequence. This analysis is detailed in Table 3 which shows the result of looking at a 
subset of the test sequences containing a specific video characteristic. 
 

Video characteristic Percentage of Percentage of 
Non-side view   43 41 
Small silhouettes  (1) 58 59 
Low resolution images  (2) 63 65 
Non linear path  3 0 
Significant scale change  (3) 41 41 
Less than 2 strides  43 41 

 

Table 3. The table shows how different video characteristics effect the classification errors, 
e.g. 43% of the sequences have a non-side view and these sequences account for 41% of the 
errors. The results are based on 138 test sequences out of which 17 sequences were 
erroneously classified. Notes: (1): Mean silhouette height of less than 90 pixels. (2): Image 
resolution of 160x120 or smaller. (3): Scale change larger than 20% of the mean silhouette 
height during the sequence. 
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A number of the sequences in Table 3 have more than one of the listed characteristics (e.g. 
small silhouettes in low resolution images) so the error percentages are somewhat 
correlated. It should also be noted that the gait type classification results in only 17 errors 
which gives a relatively small number of sequences for this analysis. However, the number 
of errors in each subset corresponds directly to the number of sequences in that subset 
which is a strong indication that our method is indeed invariant to the main factors relevant 
for gait classification. 
The majority of the errors in Table 1 occur simply because the gait type of jogging resembles 
that of running which supports the need for a gait continuum. 

 
10. Multi Camera Setup 
 

The system has been designed to be invariant towards the major challenges in a realistic 
real-world setup. Regarding invariance to view point, we have achieved this for gait 
classification of people moving at an angle of up to ±45 degrees with respect to the view 
direction. The single-view system can however easily be extended to a multi-view system 
with synchronized cameras which can allow for gait classification of people moving at 
completely arbitrary directions. A multi-view system must analyze the gait based on each 
stride rather than a complete video sequence since people may change both moving 
direction and type of gait during a sequence.  
The direction of movement can be determined in each view by tracking the people and 
analyzing the tracking data. Tracking is done as described in (Fihl et al., 2006). If the 
direction of movement is outside the ±45 degree interval then that view can be excluded. 
The duration of a stride can be determined as described in section 2 from the view where the 
moving direction is closest to a direct side-view. The gait classification results of the 
remaining views can be combined into a multi-view classification system by extending 
equations 7 and 8 into the following and doing the calculations based on the last stride in 
stead of the whole sequence. 
 

)(minarg  
V

aaaa
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where V is the collection of views with acceptable moving directions, Ea is the action error, 
αa is the action likelihood, βa is the temporal consistency, D is the duty-factor, nV is the 
number of views, and Dv is the duty-factor from view v. 
Fig. 13.  illustrates a two-camera setup where the gait classification is based on either one of 
the cameras or a combination of both cameras. 

 
11. Real Time Performance 
 

The full potential of the gait analysis framework can only be achieved with real-time 
performance. Non-real-time processing can be applied for annotation of video data but for 
e.g. human-robot interaction, automated video surveillance, and intelligent vehicles real-
time performance is necessary.  

(10) 

(11) 
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Fig. 13. A two-camera setup. The figure shows three sets of synchronized frames from two 
cameras. The multi-camera gait classification enables the system to do classification based 
on either one view (top and bottom frames) or a combination of both views (middle frame). 
 
Real-time performance can be achieved with an optimized implementation and minor changes 
in the method. The extraction of the contour of the silhouettes is limited to the outermost 
contour. Disregarding the inner contours (see Fig. 14.) gave a decrease in processing time but 
also a small decrease in classification results due to the loss of details in some silhouettes. 
 

 
Fig. 14. Left: the input silhouette. Middle: the outermost contour extracted in the real time 
system. Right: the contour extracted in the original system. 
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The most time consuming task of the gait classification is the matching of the input 
silhouette to the database silhouettes both represented in terms of Shape Contexts. By 
decreasing the number of points sampled around the contour from 100 points to 20 points 
and by decreasing the number of bins in the Shape Contexts from 60 to 40 the processing 
time is significantly improved while still maintaining most of the descriptive power of the 
method. 
With these changes the gait classification system is running at 12-15 frames per second on a 
standard desktop computer with a 2GHz dual core processor and 2GB of RAM. This 
however also means a decrease in the classification power of the system. When looking at 
the gait type classification a recognition rate of 83.3% is achieved with the real-time setup 
compared to 87.1% with the original setup. The precision of the duty-factor estimation also 
decreases slightly. This decrease in recognition rate is considered to be acceptable compared 
to the increased applicability of a real-time system. 

 
12. Online parameter tuning of segmentation 
 

The silhouette extraction based on the Codebook background subtraction is a critical 
component in the system. Noise in the extracted silhouettes has a direct impact on the 
classification results. Illumination and weather conditions can change rapidly in 
unconstrained open spaces so to ensure the performance of the background subtraction in a 
system receiving live input directly from a camera we have developed a method for online 
tuning of the segmentation.  
The performance of the Codebook background subtraction method is essentially controlled 
by three parameters; two controlling the allowed variation in illumination and one 
controlling the allowed variation in chromaticity. The method is designed to handle 
shadows  so with a reasonable parameter setup the Codebook method will accept relatively 
large variations in illumination to account for shadows that are cast on the background. 
However, changes in lighting conditions in outdoor scenes also have an effect on the 
chromaticity level which is not directly modeled in the method. Because of this, the 
parameter that controls the allowed variation in chromaticity σ is the most important 
parameter to adjust online (i.e. fixed parameters for the illumination variation will handle 
changing lighting conditions well, whereas a fixed parameter for the chromaticity variation 
will not). 
To find the optimal setting for σ at runtime we define a quality measure to evaluate a 
specific value of σ and by testing a small set of relevant values for each input frame we 
adjust σ by optimizing this quality measure. 
The quality measure is based on the difference between the edges of the segmentation and 
the edges of the input image. An edge background model is acquired simultaneously with 
the Codebook background model which allows the system to classify detected edges in a 
new input frame as either foreground or background edges. The map of foreground edges 
has too much noise to be used for segmentation itself but works well when used to compare 
the quality of different foreground segmentations of the same frame. The quality score Q is 
defined as follows: 


 


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segfg

E
EE

Q  (12) 
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where Efg are the foreground edges and Eseg are the edges of the foreground mask from the 
background subtraction. So the quality score describes the fraction of edges from the 
foreground mask that corresponds to foreground edges from the input image. 
The background subtraction is repeated a number of times on each input frame with 
varying values of σ and the quality score is calculated after each repetition. The 
segmentation that results in the highest quality score is used as the final segmentation.  
Fig. 15. and Fig. 16. show example images of this process. 
 

 
Fig. 15. Left: the input image. Middle: the background edge model. Right: the foreground 
edges. 
 

 
Fig. 16. Three segmentation results with varying values of σ. Left: σ -value too low. Middle: 
optimal σ -value. Right: σ -value too high. 
 
The repetitive segmentation of each frame slows the silhouette extraction of the gait 
classification system down but by only testing a few values of σ for each frame real time 
performance can still be achieved. The first frames of a new input sequence will be tested 
with up to 30 values of σ covering a large interval (typically [1:30]) to initialize the 
segmentation whereas later frames will be tested with only four to six values of σ in the 
range ±2 of the σ -value from the previous frame. 

 
13. Conclusion 
 

The gait type of people that move around in open spaces is an important property to 
recognize in a number of applications, e.g. automated video surveillance and human-robot 
interaction. The classical description of gait as three distinct types is not always adequate 
and this chapter has presented a method for describing gait types with a gait continuum 
which effectively extends and unites the notion of running, jogging, and walking as the 
three gait types. The method is not based on statistical analysis of training data but rather on 
a general gait motion model synthesized using a computer graphics human model. This 
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makes training (from different views) very easy and separates the training and test data 
completely. The method is designed to handle challenges that arise in an unconstrained 
scene and the method has been evaluated on different data sets containing all the important 
factors which such a method should be able to handle.The method performs well (both in its 
own right and in comparison to related methods) and it is concluded that the method can be 
characterized as an invariant method for gait description.  
The method is further developed to allow video input from multiple cameras. The method 
can achieve real-time performance and a method for online adjustment of the background 
subtraction method ensures the quality of the silhouette extraction for scenes with rapid 
changing illumination conditions. 
The quality of the foreground segmentation is important for the precision of the gait 
classification and duty-factor estimation. The segmentation quality could be improved in the 
future by extending the color based segmentation of the Codebook method with edge 
information directly in the segmentation process and furthermore including region based 
information. This would especially be an advantage in scenes with poor illumination or with 
video from low quality cameras. 
The general motion model used to generate training data effectively represents the basic 
characteristics of the three gait types, i.e. the characteristics that are independent of person-
specific variations. Gait may very well be the type of actions that are most easily described 
by a single prototypical execution but an interesting area for future work could be the 
extension of this approach to other actions like waving, boxing, and kicking. 
The link between the duty-factor and the biomechanical properties of gait could also be an 
interesting area for future work. By applying the system in a more constrained setup it 
would possible to get camera calibrations and ground plane information that could increase 
the precision of the duty-factor estimation to a level were it may be used to analyze the 
performance of running athletes. 
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