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1. Introduction 
 

Looking at the number of living creatures using vision as their main sensor one should 
expect that vision also would be the first choice for mobile robots considering nice features 
as low price, low power, non contact and high potential information contents. Unfortunately 
it has proven much more difficult to extract the information from vision than expected and 
still no commercial robot relies on vision as its main sensor. 
In spite of this several successful methods have been developed. This chapter presents a 
number of visual methods that has been experimentally verified: artificial visual landmarks, 
corridor following using vanishing point, and road following using terrain classification 
based on data fusion of laser scanner and vision. 

 
2. Artificial visual landmarks 
 

In well structured environments (both indoor and outdoor) a mobile robot is able to 
navigate a reasonable distance based on odometry and inertial measurements. However to 
keep the navigation error bounded absolute position measurements are needed. These can 
be provided by visual landmarks. Landmark navigation is based on the assumption that the 
robot from recognizing a landmark can get a localization reference. 
The landmark could be artificial and placed to be recognized by the robot, i.e. for indoor 
applications a method is to place unique landmarks on the ceiling and let a robot camera 
look for these landmarks, and further place the landmarks at so short intervals that the robot 
could navigate from one landmark to the next with sufficient accuracy to be able to find the 
next landmark. 
The landmark itself could be at a known position, or just act as a unique reference position 
so that any ambiguity or accumulating errors could be resolved or reduced when 
recognizing the landmark. The initial position of the robot could be resolved by recognition 
of a unique artificial landmark. This landmark could refer to an entry in the robot database 
with knowledge of that specific area. One or more landmarks could be placed close to a 
recharging station that requires specifically accurate navigation. 
Artificial visual landmarks have been studied by several researchers. Kabuka and Arenas 
(1987) study a standard pattern and present a thorough error analysis using simulation. Lin 
and Tummala (1997) describe a system based of simple geometrical patterns using a 
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Modified Elliptical Hough Transform for detecting the landmark and its properties.  Bais 
and Sablating (2006) present a landmark based system used for soccer robots. 

 
2.1 Design of an artificial landmark 
The landmark must be easy to recognize and distinguish from other items normally 
occurring in the environment of the mobile robot. It should be detectable at different 
distances and at different angles. One of the easy and stable detectable shapes are 
checkerboard corners, they are scale invariant, and to some extent viewing angle invariant. 
The landmark should be simple to reproduce, and thus printable on a sheet of paper would 
be preferable. The final design was selected with a double checkerboard frame and a central 
area for a unique code as shown in Fig. 1. 
 

                       
            (a)     (b)      (c) 

Fig. 1. The landmark in (a) consists of a checkerboard frame and a central code. The camera 
view of the lower left part is shown in (b) and (c). The corner filter uses four 3 x 3 pixel areas 
to detect a corner at the centre position. 

The centre code holds 9 square areas; each can be filled with a 4 bit code. Two of the top left 
squares are used as orientation marks to make it possible to decide the orientation of the 
landmark. This leaves 7 squares for codes. A few code combinations can be confused with 
the orientation mark and must thus be avoided, leaving some 24 usable bits except for 216 
unusable code combinations, or in total 16711680 code possibilities. 
A smaller frame with just 4 squares in the centre would be sufficient in most cases, with one 
corner as orientation mark, and at maximum 3 bits used in the remaining a total of 9 bits or 
512 codes would be available. 
The landmark in Fig. 1(a) has two black bits set in each of the two least significant squares -- 
bottom right inside the frame -- corresponding to the value 9Chex or 156 decimal. 

 
2.2 Detection of a landmark 
The landmark is detected in four steps: corner detection, frame detection, code detection and 
frame localization, each of these steps are described in the following. 
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2.2.1 Detection of corners 
The corner detection is done by performing a comparison of four areas in the image 
expected to match two black areas and two white areas. The full image is first filtered using 
a 3 x 3pixel Gaussian kernel with  =0.95. This yields the central pixel a weight G(r,c) of 
about as much as the sum of weights of the remaining 8 pixels. A set of corner pixels C1 is 
found using equation (1) 
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An intensity difference is required from all bright pixels to all black pixels. This difference 
must be greater than a threshold  kc which proportional with the intensity difference from 
the brightest to the darkest pixel and includes a fixed minimum threshold kmin= 7 out of 256 
intensity levels. This ensures that a landmark in both bright areas and darker areas is 
detectable. 
This filter will detect a corner that is bright in the upper-left and lower-right part. The set of 
intensity-reversed corners C2 is found in the same way by exchanging the calculation of the 
for pixel differences. 
The landmark may however be observed at different orientations depending on the 
positioning of the landmark and the camera. By adding a guard band of one pixel between 
the 4 corner areas, the filter will be relatively insensitive to viewing angle rotation of the 
landmark relative to the camera, the corner detection sensitivity will be reduced as the angle 
increases, and at 45 degrees the sensitivity will be zero. To be able to detect landmarks at 
any rotation angle a second set of filter masks (rotated 45 degrees) is added as shown in Fig. 
1 (c), using the same filter function as above giving two more sets of corner pixels C3 and C4 
The corner pixels in {C1, C2 , C3 and C4 }are then enumerated individually using 8-
connectivity into the total set of corner groups Hn. The centre of each corner group hn(Hn) is 
found as shown in equation (2) 
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where the accuracy improvement by using the intensity weight wi from equation 1 is neither 
quantified nor optimized. In Fig. 1 (b) and (c) the detected corner pixels are shown as bright 
colored squares, where  dark green marks the pixel closest to found corner position. 

 
2.2.2 Detection of frames 
The corner positions have to match with the frame of the landmark, i.e. from a frame corner 
there should be two sets of 6 corners each describing a straight line following a frame edge, 
and further the corners should have almost the same separation. 
Fig. 2 shows an example with three landmarks -- rotated at different angles. The original 
image is shown faintly in the background. The corner pixels are color coded, each color 
corresponds to one of the four filters.  
 

 
Fig. 2. The corner pixels from three landmarks are shown. The different colors correspond to 
the four used corner filters. 

From all corner positions the up to eight closest neighbors are found within a maximum 
distance – of 5

1  image height -- allowing a landmark to fill the whole image. 
A frame edge corner set fj is therefore described as six corners on an approximately straight 
line fulfilling the requirements in equation (3) 
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where klim = 0.37 and kg = 0.5. 
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A frame corner should be the end point of at least two frame edges. In this way a full frame 
F is a set of four frame edges as described in (4) with the corners in each edge ordered as 
described in frame conditions  
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where the frame is described counter-clockwise, so that f1 is the topmost edge and f2 is the 
leftmost edge. The edges of a frame should in pairs be approximately parallel and of equal 
lengths, i.e.  f1   parallel to f3 and f2 parallel to   f4 with the limits kp = 0.5. 
The six corners h1 to h6 are fitted to a straight line, and the crossing of this line with the line 
from one of the adjacent edges is used as the true frame corner. The frame can then 
alternatively be described by these four frame corners, describing the frame counter-
clockwise with h’1 as the topmost corner 
 

     1 2 3 4F h ,h ,h ,h                       (5) 

 
2.2.3 Detection of code 
The code in the landmark requires detection of black and white areas in the centre of the 
frame, and each of the code bits cover an area of only a quarter of the blocks in the frame. 
The intensity level that separates a black bit from a white bit must further be determined. 
The size of the code bits are selected so that the probability of detection for the frame and 
the code vanishes at about the same distance. At the distance where the frame is detected 
with a 95% probability, the code is correctly detected with a probability of about 95% (of the 
instances where the frame is detected).A frame grid is constructed by dividing the distance 
between two adjacent corners on every frame edge in two. The corners are projected to the 
fitted line edge, but the distance between the corners are not equalized. 
The correct distance between the corners may change over the frame if the landmark is seen 
in perspective, but this effect is mostly significant if part of the landmark is very close to the 
camera, and being close to the camera the code detection is usually easy, as a high number 
of pixels are available for each code bit. 
At longer distances all cells in the grid will be very close to the same size, and here the grid 
accuracy is more important for code recognition. A minor improvement in code detection 
may therefore be obtainable if the grid spacing along the edges was made equal. 
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Fig. 3. shows an example of some detected landmarks. The code grid is painted in green and 
includes the inner part of the frame blocks as well as the code area itself. 
All pixels inside the green area are evaluated as belonging to one of the cells, and the 
average intensity of the pixels inside the cell is used to estimate its value. 
 

 
Fig. 3. Three landmarks visible in the same scene to demonstrate the limitations. All 
landmarks have a frame width of 17.5cm. The near is at 0.46m and the far at 3.2m, the one 
on the floor is tilted 790. The image resolution is 640 x 480 pixels. 
 
Half of the cells covering the frame blocks are always white, the other half black. The 
average intensity for these cells is used as a threshold value when classifying bits as black or 
white in the code area. 
The histograms in the bottom left corner of Fig. 3 show the distribution of intensity values 
for each of the three detected landmarks. Left is black, right is white on the histogram line. 
The histogram color should match the grid color painted on top of the landmark. 
The two all black code areas for the orientation mark are located, and the code values in the 
remaining code area are ordered accordingly. The two FFhex squares mark the top left corner 
of the code area, and in this orientation the four bits in each block are coded as follows: 
 

1 2 
3 4 

 
The ordering of the code blocks from the most significant to the least significant is located as 
follows: 

* * 1 
2 3 4 
5 6 7 

 
The code in the large landmark in Fig. 3 is therefore 75BCD15hex, or in decimal 123456789. 
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2.2.4 Position estimation 
The landmark position relative to the camera can be estimated when the size of the 
landmark is known and the camera geometry is assumed to be available. The landmark 
corner positions are known with a relatively high accuracy, as these are averaged from the 
line fitting of the frame edge. The perspective described by the positioning of the landmark 
corners should therefore allow a reasonably accurate estimate of the orientation too. The 
landmark position and orientation is estimated using a least square parameter estimation 
method. From the frame extraction algorithm above the position in the image of the frame 
corners are known h’i = (hr,hc). The position of the corners on the landmark surface is known 
from the landmark design as four coordinate pairs. The coordinates on the landmark are 
selected as being seen in the same way as a robot, that is x being forward (in front of the 
landmark), z being up, and when looking in the direction of x (from behind the landmark) y 
is to the left. When looking at the landmark on a wall, then z is up and y is right. 
The centre of the landmark is taken as the reference position, i.e. the top right frame corner 
has the frame coordinate B = [0,by,bz]T with positive values for both by  and bz. 
A landmark may be at any position gt= [x,y,z]T relative to the robot and rotated following 
the normal convention: first turned  around the vertical z-axis with positive being counter-
clockwise, then tilted around the y-axis with positive being a down tilt and finally roll   
around the x-axis with positive being a roll to the right. 
When a point on the landmark surface B = (0,by,bz) is being seen at the 3D position A = [ax, 
ay , az , 1]T in robot coordinates, then A and B are related with the landmarks orientation and 
position (x,y,z,) (also in robot coordinates) as in (6) 
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where RRR ,,  are rotation matrices in homogeneous coordinates and T is a translation 

matrix as shown below: 
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The conversion between image coordinates and the 3D position A of the point on the 
landmark are -- except for lens distortion -- as defined in (11) 
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where I= [hr w, hc w, w]T holds the row hr and column hc of the corresponding pixel position 
of A = [ax, ay, az, 1]T in the image. 
The b-matrix offsets the position to get positive row and column values by adding the 
(optical) image centre (hx, hy )and changing the direction of the row axis to get down as 
positive. P-matrix adds the perspective by scaling the row and column values by 1/c into w 
proportional to the distance from the camera ax. The ay direction corresponds to columns in 
the image with changed sign, and the height az corresponds to image rows. 
 
When the camera is positioned at the centre of the robot coordinates, then the two equations 
(11) and (6) can be combined as shown in (12) 
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The right side of this equation can be evaluated to three functions of the unknown 
v=[x,y,z,] T and the known position (by, bz) as  
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The last w equation can be inserted into the first two as in (14) where the six unknowns are 
replaced by the vector v 
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To solve for the six unknowns at least six equations are needed, so the four corners of the 
landmark frame yield eight equations by substituting by, bz , hr and hc in (14) with the values 
from the remaining three corners. The problem may then be solvable. The eight functions on 
the left side of (14) should now all evaluate to zero with the correct value of the six 
unknowns 

0F      (15) 
As the functions are nonlinear the six unknown parameters are estimated using Newton's 
iteration method. With an initial guess of the ^v the equations will (probably) not be zero, 
but assuming that the errors are small and the equations are approximately linear at the 
guessed position, the error can be compensated for by a linear adjustment  v  as shown in 
(16) 

   0)ˆ()ˆ(  vvJvF     (16) 
where )ˆ(vF  is the value of the eight equations evaluated with the guessed set of 
parameters v̂  and )ˆ(vJ  is the Jacobian F with respect to the unknowns in v taken at v̂ , 
finally v is the adjustment to the guess needed to get the required zero result. 
A better guess of v would therefore be 2v̂  as shown in (17) 

        vvv  ˆ2ˆ      (17) 

The estimated adjustment v  is found by solving (16) as: 

FTJJTJv 1)(      (18) 

Equations (16), (17) and (18) are then repeated, setting 2ˆˆ vv   for the next iteration, until the 
estimated parameters have converged sufficiently. The pixel position in the image is 
adjusted for radial lens error prior to insertion into the functions in F 
The iteration is terminated when the parameter change nv  in iteration n is significantly 
small according to the stop criteria in       (19) 
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When looking at a landmark that is tilted slightly forward or backward it may be difficult to 
see the difference, this could indicate local optimum that could trap the parameter 
estimation. 
Fig. 4 shows the pixel error as a function of a combination of turn ( and tilt (). This shows 
the correct value for these parameters (=50) and (=220) but also a local minimum at about 
(=-130) and (=250)   
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Fig. 4. Parameter estimation for the position and orientation of a landmark has (often) local 
minimum. The pixel error is shown as a function of turn of turn ( and tilt () of the 
landmark (limited to a maximum error of seven pixels).  
 
The rotation () of the landmark will have four equally accurate solutions, as there is no 
discrimination of the four frame corners. But the position of the code index is known and is 
used to get the correct  -value. The position has a local minimum at the same distance 
behind the camera, but this is easily avoided by selecting an initial guess in front of the 
camera (a positive x-value). To avoid the () local minimum, four initial positions in the 
four quadrants in the coordinate system are tested, and after a few iterations the 
parameter set with the least pixel error is continued to get a final estimate. The iteration 
error progress is shown in Fig. 4 as four black lines, of which two ends in the local minimum 
at  with a minimum pixel error of 2.5 pixels, compared to 0.12 pixels at the global minimum 
in =5.00 and =-22.80. 

 
2.3 Experimental results with artificial visual landmarks 
Three experiments have been carried out to evaluate the performance of the landmark 
system in navigation of mobile robots. The first test investigates the repeatability of the 
position estimates by taking several readings from the same position with different viewing 
angle. The second test deals with the robustness of the landmark code reading function  
performing hundreds of code readings from different positions and the third experiment 
uses the landmarks to navigate a mobile robot between different positions showing that the 
drift of odometry may be compensated by landmark position readings. In all three 
experiments the used camera is a Philips USB-web camera with a focal length of 1050 pixels. 
The used image resolution is 640 X 320 pixels.   
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2.3.1 Relative estimation accuracy 
In this experiment the repeatability of the position measurement is tested.  The camera is 
placed 2.2 m from the landmark and the landmark is placed with four different viewing 
angles. At each viewing angle 100 measurements are taken. As seen in Table 1 the 
estimation accuracy of a landmark position is dependent on the viewing angle of the 
landmark. 
 

Viewing 
angle   

Position 

yx,  
Orientation 

 (roll) 
Orientation 

 (tilt) 
Orientation 

 (turn) 
Block 
pixels 

   N 
samples 

  00 1.7 mm 0.040 1.550 0.610 11.9 100 
100 1.3 mm 0.060 0.720 0.270 11.7 100 
300 2.2 mm 0.120 0.210 0.120 10.3 100 
600 2.5 mm 0.100 0.110 0.060 5.9 24 

Table 1. Relative estimation accuracy of 100 position requests of a landmark at 2.2 m at 
different turn angles of the landmark. 

The position estimation error in (x, y) is about 0.2 cm and is partially correlated with an 
estimation error in the landmark orientation; typically a small tilt combined with a slight 
turn makes the landmark seem slightly smaller and thus further away. 
When the turn angle is zero (landmark is facing the camera) the relative estimation error in 
roll   is uncorrelated with the other errors and thus small, at larger turn angles the roll 
error increases and the error value is now correlated with the other estimated parameters. 
The obtainable absolute position accuracy is dependent on the mounting accuracy of the 
camera, the focal length of the lens and the accuracy of the estimated lens (radial) errors. 
With the used USB camera an absolute position accuracy of less than 5 cm and an angle 
accuracy of less than 50 is obtained within the camera coverage area. 
When a landmark is viewed with a rotation of 22.50 -- just in between the two sets of corner 
filters (C1, 2 and C3, 4) -- the sensitivity is slightly reduced. This reduces the distance at which 
the landmark can be detected. 
The number of pixels needed for each of the squares in the frame to be able to detect the 
landmark is shown in Table 2  as 'block pixels'. 
 

Orientation  
    of grid 

 pd= 0.5 
Pixels meter 

pd= 0.95 
Pixels meter 

0.000  3.8      3.4  3.9        3.3 
22.50  4.6      2.8  4.8       2.7 
45.00  4.2      3.1   4.3       3.0 

Table 2. Number of pixels needed for each frame block to detect landmarks at different 
rotation angles relative to camera. The distance in meters corresponds to a focal length of 
525 pixels (image size of 320 x 240 pixels) 

When the probability of detection (pd) is about 0.95 the landmark code is evaluated 
correctly with a probability of about 0.95 too (for the detected landmarks). Stable landmark 
detection requires that each of the blocks in the landmark frame should be covered by at 

www.intechopen.com



Robot Vision154

 

least five pixels. When the landmark is not at the distance with the optimal focus the 
detection distance will decrease further. 

 
2.3.2 Landmark code reader test 
To test the landmark code reader performance an experiment with a small mobile robot (see 
Fig. 5) has been done. 
 

 
Fig. 5. Mobile robot used for experiments. 

Two landmarks have been put on the wall beside two office doors. The distance between the 
two landmarks is approximately 8 meters. A black tape stripe is put in the middle of the 
corridor and the mobile robot is programmed to run between the two landmarks following 
the black tape stripe. At each landmark the robot turns 90 degrees and faces towards the 
landmark at a distance of approximately 1.5 meters. The code of the landmark is read by the 
robot and compared to the expected code. In one experiment the mobile robot goes back and 
fro 100 times which is about the maximum allowed by the battery capacity. In each 
experiment the number of reading errors is registered. The experiment has been carried out 
more than ten times indicating a robust system as more than 2000 errorless readings are 
made.  

 
2.3.3 Landmark navigation test 
In this experiment the same mobile robot (Fig. 5) is program to drive between two points 
using odometry. One point is placed 1 meter in front of a landmark the other is placed at a 
distance of 3 m from the landmark. When the robot is at the one-meter point facing the 
landmark the odometry is corrected using the measured position of the landmark. This 
means that the landmark measurement is used to compensate for the drift of odometry 
coordinates. Each time the robot is at the one-meter point its position is measured. In the 
experiment the robot drives between the two points 100 times. The measurements show that 
the one-meter position of the robot stays within a circle with radius of 10 cm which means 
that the use of landmark position measurements is able to compensate for drift in odometry 
coordinates if the distance between landmarks is sufficiently small. The exact maximum 
distance depends on the odometry accuracy of the given robot. 
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3. Corridor following 
 

Office buildings and hospitals are often dominated by long corridors so being able to drive 
along a corridor solves a great part of the navigation problem in these buildings. A method 
that uses a Hough transform with a novel discretization method to extract lines along the 
corridor and find the vanishing point from these is presented (Bayramoğlu. et al.,2009) 
Fusion of odometry data and vanishing point estimates using extended Kalman filter 
methods have lead to a robust visual navigation method for corridors. Experiments have 
shown that the robot is able to go along the corridor with lateral errors less than 3-4 cm and 
orientation errors less than 1-2 degrees. 
 
3.1 Visual Pose Estimation 
The low-level processing of the images consists of the detection of edge pixels and the 
extraction of lines from those edge pixels. The resulting lines are then classified to find a 
parallel set that constitutes the lines along the corners. The corresponding vanishing point, 
i.e., the point where the corner lines meet, is used for the classification. The classified lines 
are finally matched to the known width and height of the corridor to estimate the 
orientation and the lateral position. 
 
3.1.1 Low-level Processing 
Two feature detectors are used in consequence to prepare the data for higher level 
processing. First, a Canny edge detector (Canny, 1986) is used. Canny edge detector is a 
non-linear filter that marks pixels with a high intensity change, combined with other 
criteria, as edge pixels. The result is an edge image with the detected edge pixels colored 
white on a black background.   
 
Lines are then extracted from the edge image using a segmented Hough transform method. 
The procedure starts by segmenting the image into 10x10 sub-images to increase the speed 
of the following steps. Line segments are extracted from these sub-images using a modified 
version of the Hough transform (Duda and Hart, 1972). The idea of the Hough transform is 
to evaluate every possible line through the image by the number of edge pixels along the 
line.  The lines with highest support are admitted. These line segments are then traced 
through the image to be combined with other collinear line segments. Fig. 6. illustrates these 
steps. 
 

         
 (a) (b) (c) 
Fig. 6. Steps of the low level image processing. (a) The original image taken with the robot’s 
camera. (b) Edge image obtained from the Canny edge detector (c) Extracted lines 
superimposed on the original image. 
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3.1.2 Vanishing Point Extraction 
Lines, that are parallel in 3D space, converge to a point (possibly at infinity) when their 
perspective projection is taken on an image. This point is called the vanishing point of that 
set of lines, and equivalently of their direction.  
 
The vanishing point is useful in two ways; first, it can be used to eliminate lines that are not 
along its corresponding direction, since such lines are unlikely to pass through it on the 
image. Second, its image coordinates only depend on the camera orientation with respect to 
its corresponding direction; therefore, it gives a simple expression for the orientation. 
 
The vanishing point of the corridor direction is expected to be found near the intersection of 
many lines. In order to find it, an intersection point for every combination of two image 
lines is calculated as a candidate. If there are N corridor lines among M lines in the image, 
there will be a cluster of N(N+1)/2 candidates around the vanishing point as opposed to 
M(M+1)/2 total candidates. This cluster is isolated from the vast number of faulty candidates 
by iteratively removing the furthest one from the overall center of gravity. This procedure 
makes use of the density of the desired cluster to discard the numerous but scattered faulty 
candidates. After removing most of the lines, the center of gravity of the remaining few 
candidates gives a good estimate of the vanishing point. Refer to Fig. 7 for the illustration of 
these steps. 
 

 
Fig. 7. The illustration of the vanishing point extraction. The extracted lines are shown in 
red, the vanishing point candidates are shown in blue and the green cross at the center is the 
detected vanishing point. 

 
3.1.3 Estimation of the Orientation 
The image coordinates of the vanishing point is a function of, first, its corresponding 
direction in the scene, and second, the camera orientation. If the direction is given in the real 
corridor frame by the vectorv , then we can call its representation in the image frame 

),,( iv  and it is a function of the orientation parameters  ,, . The image 
coordinates of the vanishing point are then given by; 
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In order to derive an expression for the orientation parameters, they are defined as follows; 
 is the orientation of the mobile robot, it is the angular deviation of the front of the mobile 
robot from the direction of the corridor measured counter-clockwise. In the assumed setup 
the camera is able to rotate up or down. is the angle of deviation of the camera from the 
horizon and it increases as the camera looks down.  is included for completeness and it is 
the camera orientation in the camera z axis, and is always equal to 0 . With these 
definitions for the parameters the following expressions are obtained for  , : 
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Here, xc  and yc  are the image coordinates of the image center, usually half the image 

resolution in each direction.  f  is the camera focal length in pixels.  

 
3.1.4 Line Matching 
Those image lines that are found to pass very close to the vanishing point are labeled to be 
along the direction of the corridor. The labelled lines need to be assigned to either of the 
corners, (or the line at the center of the floor for the particular corridor used in the 
experiments). The location of a classified line with respect to the vanishing point restricts 
which corner it could belong to. If the line in the image is to the upper left of the vanishing 
point, for instance, it can only correspond to the upper left corner if it is a correct line. The 
center line on the floor creates a confusion for the lower lines, each lower line is matched 
also to the center line to resolve this. At this point, pairs of matched image lines and real 
lines are obtained. 

 
3.1.5 Estimation of the Lateral Position 
Assume that the image lines are expressed in the image coordinates with the Cartesian line 
equation given in Eq. (22). ba, and c are the parameters defining the line and they are 
calculated during line extraction. Each image line – real line pair gives a constraint for the 
camera lateral position as given in Eq. (23). 
 
 cbyax =   (22) 
 
   dxdx zcycfa  sinsincoscos  
    dydy zcfycfb  sincossincossinsin   dd zyc  sinsincos=   (23) 
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Here,  camerad liney = y - y is the lateral distance between the real line and the camera and 

 camerad linez = z - z is the height difference between the camera and the real line. y and 

z directions are defined as the axes of a right-handed coordinate frame when x points 
along the corridor and z points up. 
 
The only unknown in Eq. ((23)) is the camera lateral position, therefore each matched line 
pair returns an estimate for it. A minority of these estimates are incorrect as the line 
matching step occasionally matches wrong pairs. As in the vanishing point estimation, a 
dense cluster of estimates are expected around the correct value. The same method of 
iterative furthest point removal is followed to find the correct value. To increase the 
robustness further, while calculating the center, the estimates are weighted according to 
their likelihoods based on the prior estimate. 

 
3.2 Fusion with Dead Reckoning 
The pure visual pose estimation method described so far returns a value for the orientation 
and the lateral position in an absolute frame. However, a single instance of such a 
measurement contains a considerable amount of error, especially in position (10-15 cm). The 
sampling rate is also low (5 fps) due to the required processing time. These problems are 
alleviated by fusing the visual measurements with dead reckoning, which has a high 
sampling rate and very high accuracy for short distances. 
 
Probabilistic error models for both dead reckoning and visual pose estimation are required, 
in order to apply Bayesian fusion. The error model chosen for the dead reckoning is 
described by Kleeman, 2003. It is a distance driven error model where the sources of error 
are the uncertainty on the effective wheel separation and distances traveled by each wheel. 
The amount of uncertainty is assumed to be proportional to the distance traveled for a 
particular sample. A simple uncorrelated Gaussian white noise is assumed for the visual 
measurements. 
 
An extended Kalman filter(EKF) is used to perform the fusion. The time update step of the 
EKF is the familiar dead reckoning pose update with the mentioned distance driven error 
model. The update is performed for every wheel encoder sample until a visual 
measurement arrives. The measurement update step of the EKF is applied when it arrives. 
The assumed measurement model is given as follows: 
 

 )(
)(
)(
)(

100
001

=
)(
)(

kv
ky
kx
k

ky
k

v

v 





































 (24) 

 
Where )(kv is an uncorrelated Gaussian white noise with a covariance matrix calculated 
empirically. 
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3.3 Observed Performance 
The performance of the method is evaluated by comparing its measurements with the actual 
robot pose. The visual pose estimation is calculated to be accurate within 1-2 degrees of 
error in the orientation. Since it is hard to measure the robot orientation to this accuracy, the 
performance is evaluated based on the error in the lateral position. 
 
Single frame visual estimation is evaluated for performance first. Fig. 8 contains four 
interesting cases. In  Fig. 8 (a), part of the corridor is obscured by a person and a door, but the 
estimation is not effected at all with an error of 2.5cm. Fig. 8 (b) displays a case where only the 
left wall is visible, but the method still succeeds with an error of 0.2cm. Fig. 8 (c) shows an 
extreme case. Even though the end of the corridor is not visible, the algorithm performs well 
with an error of 0.9cm. Fig. 8 (d) shows a weakness of the method. The image has no particular 
difficulty, but the measurement has 11.8cm error. The final case occurs rarely but it suggests 
the use of a higher standard deviation for the assumed measured error. 
 
The second step is the evaluation of the performance after fusion with dead reckoning. The 
navigation task is moving backwards and forwards at the center of the corridor. Fig. 9 
contains three sets of data plotted together. The red curve is the overall pose estimation after 
sensor fusion. The green dots are the visual estimations alone. Finally, the blue curve is a 
collection of absolute measurements taken with a ruler. The error is observed to remain 
below 3cm in this experiment. 
 

                
     (a) Only two corners are detected    (b) The view is partially blocked 
 

                
     (c) Moving towards the wall     (d) This case has high error 
Fig. 8. Images with special properties illustrating the strengths and the weaknesses of the 
pure visual estimation. (a), (b) and (c) illustrate difficult cases successfully measured while 
(d) show a case with a convenient image with a high measurement error. 
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Fig. 9. Position data from various sources for system performance illustration. 

 
4. Laser and vision based road following 
 

Many semi structured environments with gravel paths and asphalt roads exist e.g. public 
parks. A method for navigating in such environments is presented. A slightly tilted laser 
scanner is used for classification of the area in front of the vehicle into traversable and non-
traversable segments and to detect relevant obstacles within the coverage area. The laser is 
supplemented with a vision sensor capable of finding the outline of the traversable road 
beyond the laser scanner range (Fig. 10). The detected features – traversable segments, 
obstacles and road outline- are then fused into a feature map directly used for path 
decisions.  The method has been experimentally verified by several 3 km runs in a nature 
park having both gravel roads and asphalt roads. 
 

 
Fig. 10. The robot with laser scanner measurements and camera coverage 
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4.1 Related work  
Current work in the area tends to focus on using 3D laser scanners or a combination of 3D 
laser scanners and vision. Using 3D laser scanner solutions has been proposed by Vandapel 
et al. (2004) by transforming point clouds into linear features, surfaces, and scatter. These 
were classified by using a Bayesian filter based on a manually classified training set. 
Identification of navigable terrain using a 3D laser scanner by checking if all height 
measurements in the vicinity of a range reading had less than a few centimeters deviation is 
described in Montemerlo & Thrun (2004) 
An algorithm that distinguished compressible grass (which is traversable) from obstacles 
such as rocks using spatial coherence techniques with an omni-directional single line laser is 
described in (Macedo et. al.,2000). 
A method for detection and tracking the vertical edges of the curbstones bordering the road, 
using a 2D laser scanner, described in Wijesoma et. Al. (2004) is a way of indirect road 
detection. 
Detection of borders or obstacles using laser scanners is often used both indoors and in 
populated outdoor environments, and is the favored method when the purpose includes 
map building, as in Guivant et al. (2001) and Klöör et al. (1993). 
Detection of nontraversasble terrain shapes like steps using laser scanner for planetary 
exploration is described in Henriksen & Krotkov (1997) 
 
The DARPA Grand Challenge 2004 race demonstrated the difficulties in employing road 
following and obstacle avoidance for autonomous vehicles (Urmson et. al, 2004). 
This situation seems to be improved in the 2005 version of the race, where five autonomous 
vehicles completed the 212~km planned route. The winning team from Stanford perceived 
the environment through four laser range finders, a radar system, and a monocular vision 
system. Other teams, like the gray team Trepagnier et al. (2005) also use laser scanners as the 
main sensor for traversability sensing supplemented by (stereo) vision. 
The solution of the winning team in 2005 is described in (Thrun et al., 2006); a 2D laser 
scanner detects traversable road based on the vertical distance between measurements, this 
solution is combined with vision and radar for longer range detections. 

 
4.2 Terrain classification from laser scanner  
A slightly tilted laser obtains scans in front of the robot (Fig. 10). The assumption is that the 
terrain seen by the laser scanner can be divided into three different  classes  

)}(),(),({ datainvalidCetraversablnotnCetraversabltCC   and that this can be done by 

mapping function  CFMCF : . Here F  is a set of features extracted from single laserscans: 
},,,,,{ widthFslopeFcurvatureFstepsizeFroughnessFheightrawHF wtczh   

The roughness of data in a 2D laser scan is defined as the square root of the local vatiance of 
the distance to reflections along the scan. A roughness value is calculated as deviation from 
a fitted line for measurements converging approx. a wheel base distance (0.45 m), to 
emphasize terrain variation with a spatial period shorter than this distance.  The roughness 
feature function F divides the measurements into groups based on this roughness value, 
these groups are then combined and filtered based on the remaining feature functions. Each 
of these functions increases the probability that the measurements are correctly classified. 
The method is described in detail in (Andersen et al.,2006b) 
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An example of the obtained classification is shown in Fig. 11 where a narrow gravelled road 
is crossed by a horse track. The road and the horse track are first divided into a number of 
roughness groups as shown in Fig. 2b, these are then filtered down to three traversable 
segments, one for the road (in the middle) and one each side from the horse track. 
 

           
 (a) (b) 

Fig. 11. Data from a graveled road crossed by a horse track 

The laser scanner measurements are shown in (a) as circles (traversable) and crosses (not 
traversable), the rough grass on the road edges before the horse track is just visible left and 
right of the robot. The road is the area with the high profile (about 15 cm higher at the 
center). On both side are relative flat areas from the horse track. The segmentation into 
roughness groups and traversable segments are shown in (b). 

 
4.3 Road outline from vision 
As seen on Fig. 10 the laserscan overlaps the camera image.The method (Andersen et 
al.,2006a) estimates the outline of the road by analyzing the image, based on a seed area in 
the image classified as traversable by the laserscanner. The main features describing the 
road are its homogeneity. But there may be variation in the visual expression due to e.g. 
shadows, sunlight, specular reflections, surface granularity, flaws, partially wet or dry 
surface and minor obstacles like leaves.  
The road detection is therefore based on two features: the chromaticity C  and the intensity 
gradient I . The chromaticity is colour stripped from intensity as shown in Eq. (25) based 
on a RGB image. 
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Each pixel jiH ,  is classified into class =R {road, not road} based on these features. The roadR  
classification is defined as 
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where )(cP Eq. (27) is a probability function the based on the Mahalanobi distance of the 
chromaticity relative to the seed area. )(eP Eq. (28) is based on the intensity gradient, 
calculated using a Sobel operator. The Sobel kernel size is selected as appropriate for the 
position in the image, i.e. the lower in the image the larger the kernel (3x3 at the top and 5x5 
pixels at the bottom for the used 320 X 240 image resolution). 
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Q  is the chromaticity covariance for the seed area. The )(iwc  and ew  are weight factors. 
An example of the capabilities of the filter functions is shown in Fig. 12. Only the  pixels at 
the road contour are evaluated, i.e. from the seed area pixels are tested towards the image 
edge or road border, the road border is then followed back to the seed area. 
 

 
                   (a) 

 
                                            ( c ) 

 
                   (b) 

Fig. 12. Road outline extraction based on chromaticity (a), on gradient detection (b) and 
combined (c). In the top left corner there is a stone fence, this is not distinguished from the 
gravel road surface using the chromaticity filter in (a). The gradient filter (b) makes a border 
to the pit (bottom left). The combined filter (c) outlines the traversable area as desired. The 
seed area classified by the laser scanner is shown as a (thin) rectangle. The part of the image 
below the seed area is not analyzed. 
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4.4 Fusion of laser and vision data 
A feature map representation is adapted for sensor fusion and navigation planning. The 
detected features are the traversable segments from the laser scanner covering ranges up to 
about 2.5 m in front of the robot, the vision based road outline from about 2 m and forward, 
and the obstacles detected from the laser scanner data. 
Each traversable segment k

jS  extracted by the laserscanner in the most recent scan k  is 

correlated with traversable segments from previous scans ikS  , forming a set of traversable 
corridors B  as shown in Eq. (29) correlation exists if the segments overlap with more than a 
robot width. 
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where ik

aS
  is the a th traversable segment found in scan ik  . 

This corridor of traversable segments gets extended beyond the range of the laserscanner 
using the road outline from the vision sensor. Intersection lines vkS   (perpendicular to the 
current robot heading) at increasing intervals are used to extend the laser scanner corridors, 
as shown in Eq. (30) 
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where vn

bS  is the b th intersection segment of intersection line n  inside the estimated road 
utline. See example in Fig. 15 
A number of such corridors may exist, e.g. left and right of obstacles, left and right in road 
forks or as a result of erroneous classification from the laser scanner or form the vision. A 
navigation route is planned along each of these corrodors considering the obstacles, current 
navigation objectives and the robot dynamics. The best route is qualified using a number of 
parameters including corridor statistics. If the vision is unable to estimate a usable road 
outline then the laser scanner data is used only. 

 
4.5 Experimental results 
The method is tested primarily on several runs of a 3 km route in a national park. The 
navigation is guided by a script specifying how to follow the roads and for how long. At the 
junctions the script guides the robot in an approximate direction until the next road is 
found. GPS is used sparsely to determine when a road section is about to end. Fig. 13 shows 
the road width detection from two road sections, a homogene asphalt road (a) and a 4 m 
wide gravelled road (b). The weather conditions were overcast with mild showers. The road 
width is estimated based on the available data EQ.(30) at time of manoeuvre decision. The 
vision based road width estimate is in the plane of the robot base, and as the road is mostly 
convex curved, the road width in the projected plane is narrower than in reality. 
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                  (a)  distance [m]   (b)  distance [m] 

Fig. 13. Road width estimation based on laser scanner (upper (red) curve) and vision based 
(dotted blue). A section from a 4.9 m wide asphalt road (a), and a  4 m wide gravelled road 
(b). The vision based road width is estimated in the plane of the robot base, and as the road 
is (convex) curved, the estimated road width is narrower. The asphalt road (a) is easy for 
both the laser scanner and the vision sensor. The gravelled road (b) is detected with a higher 
uncertainty, especially by the laser scanner. 

The road width estimate and the road width stability can be taken as a performance 
measure of the vision and laser scanner sensors. The road width estimates are summarized 
in Table 3 for the laser scanner and vision sensor respectively. The laser scanner based 
estimate shows the correct road width in most cases, with a tendency to include the road 
shoulder at times, especially for the gravelled road where the roughness difference between 
the road and the road shoulder is limited 
 

 true laser based vision based Fig. 
Road 

segment 
width 

[m] 
mean   failed N mean   failed N ref 

Asphalt 
gray/wet 

4.9 4.8 0.19 0% 1000 3.9 0.11 0% 291 Fig. 
13a 

Graveled 
gray/wet 

4 4.7 0.62 0% 1000 3.1 0.30 1% 276 Fig. 
13b 

Asphalt 
gray/wet 

3--4 3.5 0.63 0% 890 2.8 0.36 2% 224  

Asphalt 
sun/shade 

3--4 3.3 0.46 0% 482 2.8 0.53 16% 79  

Table 3. Road width estimate summary from the data shown in Fig. 4. On the asphalt roads 
the laser scanner based estimate are with good precision, on the gravelled road the flat road 
shoulder widens the average road width estimate and makes the width estimate uncertain 
(higher  ). The last two rows are from the same road segment but in different weather 
conditions. N is the number of measurements.  

The vision part shows a narrower road width estimate, as expected. Additionally the vision 
tends to estimate a to narrow road in case of shadows. The last two rows in Table 3 are from 
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a road segment that is partially below large trees, and here the road outline estimates failed 
in 16% of the measurements on the day with sunshine, compared to just 2% in gray and wet 
weather condition. 
The vision based road outline detector does not cope well with focused shadow lines as 
shown in Fig. 14b and c, nor with painted road markings as in Fig. 14d. Unfocused shadows 
as in Fig. 14a are handled reasonably well.Wet and dry parts of the road are much less of a 
problem for the road outline detector as shown in Fig. 14d. 
 

    
 (a)   (b)   (c)   (d) 

Fig. 14. Shadows and road markings at the limits of the vision sensor capabilities. Unfocused 
shadows like in (a) are handled reasonably well, but if the shadows are more focused as in 
(b) the result is of little or no use. Hard shadows as in (c) and road markings as the white 
markings in a parking lot in (d) are handled as obstacles. 

When the road outline is limited by obstacles as in the situation shown in Fig. 15a, the route 
possibilities in the feature map (Fig. 15b) will be limited correspondingly, and the result is 
an obstacle avoidance route initiated at an early stage. The pedestrian can follow the robot 
intentions as soon as the obstacle avoidance route is initiated, and thus limit potential 
conflict situations. 
 

     
  (a)   (b)  
Fig. 15. The pedestrian (and his shadow) is reducing the road outline (a) and an obstacle 
avoidance route is planned (as shown in (b)) long before the obstacle is seen by the laser 
scanner. 
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5. Conclusion 
 

Three methods for support of visual navigation have been presented: Artificial visual 
landmarks, corridor following using vanishing point, and road following using terrain 
classification based on data fusion of laser scanner and vision. All the methods have been 
verified experimentally so that their usefulness in real systems is demonstrated. It has been 
shown that a combination of artificial landmarks and odometry will be able to limit the 
navigation error to a given level if the landmarks are placed with a sufficiently small 
distance.  Using both landmarks and corridor following the same navigation accuracy may 
be obtained with much fewer landmarks thus enhancing the usability of the system. 
The results for terrain classification show that fusing data from laser and vision gives a good 
foundation for path and road-following for outdoor robots. This may be used for service 
robots that are operating in e.g. public parks and gardens. 
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