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1. Introduction

Mobile robot, especially wheeled mobile robot, with its simple mechanical structure and in-
herent agility, has attracted significant attentions for dynamic environment applications in the
last two decades (Pin et al. 1994 and Purwin 2006).
A general mobile robot Guidance, Navigation and Control (GNC) system is illustrated in the
following figure. The main function of guidance system is to generate a feasible trajectory
command, usually in multiple dimension of freedom (DOF) to achieve a robot task. The ob-
jective of control system is to drive the mobile robot following the commanded trajectory with
acceptable tracking errors and stability margin. The function of robot navigation system is to
provide accurate position, velocity and/or orientation information for the control system and
guidance system. A stable and accurate navigation system is the bridge between the guidance
system and control system of mobile robots, which ultimately determines the robot perfor-
mance.

Mobile
Robot

Guidance
System

Control
System

Navigation
System

Fig. 1. Mobile Robot GNC System

2. Mobile Robot Navigation System

Mobile robot navigation system, also known as robot positioning system, is to measure the
robot’s position and/or orientation. On mobile robot, many different sensors and navigation
system structures are available (Borenstein et al. 1996).
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In mobile robot navigation systems, onboard navigation sensors based on dead-reckoning are
widely installed. This type of sensors include various odometry encoder, and inertial naviga-
tion system, such as accelerometer and gyroscope. These sensors measure the robot transla-
tional and rotational velocity or acceleration rates. By integrating sensor measurements, the
position and orientation of mobile robot are estimated, which is known as dead-reckoning.
Onboard navigation sensors are usually low-cost with high bandwidth and high sampling
rate. Dead-reckoning method is well known suitable for short-term navigation. The advan-
tages of these onboard sensors is that they are totally self-contained. The recent advance on
inertial navigation system makes most onboard sensors attractive and affordable. However,
the onboard sensors usually have inevitable accumulated errors due to the nature of dead-
reckoning process. Onboard sensors require an external reference for continuous calibration.
Many mobile robots are also installed with external absolute position sensors. These sensors
include cameras, global positioning system (GPS), infrared radar, active Beacons and artificial
landmark recognition. They sense the absolute position and orientation of the robot without
drifting. The external sensors are usually working at low bandwidth and sampling rate. The
built-in signal processing of these sensors may introduce delay and outlier measurements. If
using merely external positioning sensor, the delay and failures of signal processing may lead
to a deteriorated performance of robot control system. In mobile robot, vision system is a
typical external positioning sensor. By using image processing algorithm, a vision system is
able to detect the position or velocity of a mobile robot.
Sensor fusion is a useful technique to combines both types of positioning sensors to provide
fast measurement without drifting (Goel et al. 1999).
The main technical challenge of sensor fusion on mobile robot is that robot kinematics is a
nonlinear process; therefore the traditional Kalman filter based technique has to be adapted
to address the nonlinearity in the system. The sensor fusion system also has to eliminate
potential outlier measurement from external sensor and compensate for the different sampling
rate between external sensors and onboard sensors.
When using a sensor fusion technique in mobile robot navigation, it should be noted that
the fusion process and control system dynamics interact. Additional theoretical analysis and
practical consideration should be taken to ensure the stability of the overall navigation and
control system.

3. Sensor Fusion for Robot Navigation and Control

3.1 Robot Kinematics and Navigation Equation

Mobile robot dynamics are usually described in two coordinate frames: the body frame {B}
and the world frame {W}. The body frame is fixed on the moving robot, usually with the
origin at the center of mass. The world frame is fixed on the field. Figure 2 illustrate the the
relationship of the two frames.
The kinematics of the robot is given by a coordinate transformation from the body frame {B}to
the world frame {W}




ẋ

ẏ

Ψ̇


 =




cos Ψ (t) − sin Ψ (t) 0
sin Ψ (t) cos Ψ (t) 0

0 0 1






u

v

r


 (1)

where x and y denote the robot location in {W}, Ψ denotes the robot orientation in {W}, u and
v are the robot translational velocity in {B}, and r is the robot rotation angular velocity in {B}.
Velocity u, v and r are also called body rate.
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In order to formulate the robot navigation system with sensor fusion, the robot kinematics (1)
are first approximated by using forward Euler method




xk

yk

Ψk


 =




xk−1

yk−1

Ψk−1


+




cos Ψk−1 · T − sin Ψk−1 · T 0
sin Ψk−1 · T cosΨk−1 · T 0

0 0 T






uk−1

vk−1

rk−1


 (2)

(a) World frame{W} (b) Body frame{B}

Fig. 2. Mobile Robot Coordinate Frames

where T is the sampling time and k denotes the sampling tick. Equation (2) is a first order
approximation of robot kinematics. In this Chapter, it is called navigation equation. The
navigation system analysis and design are based on Equation (2). It should be noted that
higher order approximation is also available and the sensor fusion method described in this
chapter can be applied with minor changes.
In this chapter, without loss of generality, it is assuming that the body rate measurement is
from onboard sensors; and the robot position and orientation is from an external absolute po-

sitioning sensor, such as a vision system. By defining
[

ûk v̂k r̂k

]T
as the body rate mea-

surement,
[
w1k w2k w3k

]T
as the body rate measurement noise,the body rate measurement

model is described as
[
ûk v̂k r̂k

]T
=

[
uk vk rk

]T
+ [w1,k, w2,k, w3,k]

T (3)

By defining
[
z1,k z2,k z3,k

]T
as position and orientation measurements by external abso-

lute position sensor, and
[
d1,k d2,k d3,k

]T
as vision system measurement noise, the vision

system measurement model is described as




z1,k

z2,k

z3,k


=




xk

yk

Ψk


+




d1,k

d2,k

d3,k


 (4)

Both
[
w1,k w2,k w3,k

]T
and

[
d1,k d2,k d3,k

]T
are assumed to be zero-mean white noise
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with normal distribution, such that

p
(

[

w1,k w2,k w3,k

]T
)

∼ N (0, Qk)

p
(

[

d1,k d2,k d3,k

]T
)

∼ N (0, Rk)

where Qk ∈ R3×3 is the body rate measurement noise covariance, and Rk ∈ R
3×3 is the vision

system observation noise covariance.

3.2 Kalman Filter and Its Variations

Kalman filter is an optimal filter design for a class of discrete-time linear stochastic system
(Kalman 1960 and Welch et al. 2001). Kalman filter and its various adapted formulas are
widely employed in sensor fusion (Hall et al. 2004). The standard Kalman filter is for linear
dynamic system with Gaussian noise distribution. In this subsection, the Kalman filter algo-
rithm is briefly reviewed to facilitate deriving the mobile robot sensor fusion filter algorithm.
A general discrete-time linear stochastic system is described as

Xk = AXk−1 + BUk−1 + wk−1 (5)

where X ∈ R
n is the system state and w ∈ R

n is the process noise. The goal of Kalman filter
is to estimate the best Xk by a noisy measurement Z ∈ R

m, where

Zk = HXk + dk (6)

dk represents the measurement noise. The process noise and measurement are usually as-
sumed independent, white with normal distribution

p (w) ∼ N (0, Q)

p (d) ∼ N (0, R)

The Kalman filter consists of two steps: prediction and correction
(1) Prediction

X̂−

k = AX̂k−1 + BUk−1

P−

k = APk−1 AT + Q

(7)

(2) Correction

Kk = P−

k HT
(

HP−

k HT + R
)

−1

X̂k = X̂−

k + Kk

(

zk − HX̂−

k

)

Pk = (I − Kk H) P−

k

(8)

In the above formula, X̂−

k is referred as a priori estimate of the true state Xk and X̂k is referred
as a posteriori estimate.
For nonlinear systems, the process matrices A, B and H are not constant. In practice, they are
usually derived by linearizing the nonlinear model along some nominal trajectories, which re-
sults in time-varying matrices. Techniques such as linearized Kalman filter, extended Kalman
filter, unscented Kalman filter and Particle filter have been developed and applied successfully
in many practical applications(Brown et al. 1996). Both linearized Kalman filter and extended
Kalman filter (EKF) extend standard Kalman filter by linearizing the original nonlinear system
(Brown et al. 1996). In a linearzed Kalman filter, linearization is along a predefined trajectory.
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The disadvantage of linearized Kalman filter is that the dynamic system state may diverge
from the predefined trajectory over time. Linearized Kalman filter is usually used in short-
time mission. In EKF, the linearization is about the state estimation. Thus there is a danger
that error propagation and filter divergence may occur. To overcome such a disadvantage,
unscented Kalman filter (UKF) and particle filters (PFs) are developed. In UKF, the state dis-
tribution is approximated by Gaussian Random Variable (GRV) and is represented using a
set of carefully chosen sample points (Richard et al. 1983). Particle filters (PFs) are a group
of optimal and suboptimal Bayesian estimation algorithms for nonlinear and non Gaussian
system (Arulampalam et al. 2001). PFs employ sequential Monte Carlo methods based on
particle representations of state probability densities. UKF and PFs require much larger com-
putational power to implement, compared to linearized Kalman filter and EKF.

3.3 Nonlinear Kalman Filter for Mobile Robot Navigation and Control System

In this subsection, the sensor fusion for mobile robot is illustrated using the framework of
nonlinear Kalman filter.
First, the navigation equation of mobile robot is rewritten in the canonical formular for
Kalman Filter.




xk

yk

Ψk


 =




cos(Ψk−1) · T −sin(Ψk−1) · T 0
sin(Ψk−1) · T cos(Ψk−1) · T 0

0 0 1 · T






uk−1

vk−1

rk−1


+




xk−1

yk−1

Ψk−1




+




cos(Ψk−1) · T −sin(Ψk−1) · T 0
sin(Ψk−1) · T cos(Ψk−1) · T 0

0 0 1 · T






w1,k−1

w2,k−1

w3,k−1




(9)

The external sensor observation is represented by




z1,k

z2,k

z3,k


=Hk ·




xk

yk

Ψk


+




d1,k

d2,k

d3,k


 , where Hk=




1 0 0
0 1 0
0 0 1


 (10)

The sensor fusion for mobile robot navigation is to calculate an optimal estimate of[
xk yk Ψk

]T
,from the onboard measurement

[
ûk v̂k r̂k

]T
and external sensor reading

[
z1,k z2,k z3,k

]T
. It should be noted that equation (9) is a linear process if either the robot is

stationary or does not rotate. In either cases, standard linear Kalman filter can be applied. For
multiple DOF motion, equation (9) is a nonlinear process.

Define
[
x̂k ŷk Ψ̂k

]T
as estimated robot location, then the projected robot location using

onboard sensor measurement is




x−k
y−k
Ψ
−
k


 =




cos(Ψ̂k−1) · T −sin(Ψ̂k−1) · T 0
sin(Ψ̂k−1) · T cos(Ψ̂k−1) · T 0

0 0 1 · T






ûk−1

v̂k−1

r̂k−1


+




x̂k−1

ŷk−1

Ψ̂k−1


 (11)

where
[
x−k y−k Ψ

−
k

]
is the location a priori prediction from on-board sensor.

Then the predicted external sensor observation is
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z−1,k

z−2,k

z−3,k






=Hk ·





x−k
y−k
Ψ
−
k



 =





x−k
y−k
Ψ
−
k



 (12)

Define prediction error and observation error as





exk

eyk

eΨk



 =





x−k
y−k
Ψ
−
k



−





xk

yk

Ψk



 (13)





ez1,k

ez2,k

ez3,k



 =







z−1,k

z−2,k

z−3,k






−





z1,k

z2,k

z3,k



 (14)

By linearizing equation (11) and along
[

xk yk Ψk

]T
, the prediction error dynamics are





exk

eyk

eΨk



 =





1 0 − sin(Ψk−1) · uk−1 · T − cos(Ψk−1) · vk−1 · T
0 1 cos(Ψk−1) · uk−1 · T − sin(Ψk−1) · vk−1 · T
0 0 1



 ·









x̂k−1

ŷk−1

Ψ̂k−1



−





xk-1

yk-1

Ψk-1









+





cos(Ψk−1) · T −sin(Ψk−1) · T 0
sin(Ψk−1) · T cos(Ψk−1) · T 0

0 0 1 · T



 ·





w1,k−1

w2,k−1

w3,k−1





(15)
The observation error is





ez1,k

ez2,k

ez3,k



 = Hk ·





exk

eyk

eΨk



+





d1,k

d2,k

d3,k



 (16)

Equation (15) and (16) are linear. However, in Equation (15), the real position
[xk−1 yk−1 Ψk−1]

T are unknown. One option is to employ extended Kalman filter, in which

the [xk−1 yk−1Ψk−1]
T in Equation (15) is replaced by the filter estimate

[

x̂k ŷk Ψ̂k

]T
. Note

that the filter output
[

x̂k ŷk Ψ̂k

]T
is fed back to the process, which renders the filter process

into a nonlinear process. It is well known that such a structure may introduce instability. The
convergence of extended Kalman filter has been recently proven for a class of nonlinear sys-
tems given a small initial estimation error (Krener, 2003). In (Chenavier, 1992), experimental
result were demonstrated for mobile robot location sensor fusion based on EKF.
In mobile robot GNC system, the navigation system is coupled with control system. Therefore,
additional concerns have to be taken to guarantee the stability of the coupled system. Kalman
filter in Navigation system, in certain degree, can be considered as an observer for the control
system. Therefore, observer design theory can be used to analyze the interaction and stability
of both systems. In general, the navigation system is required to converge faster than the
control system.
Another option is to integrate the navigation system and control system together (Liu, et al.
2007). The structure of integrated approach is similar to linearized Kalman filter, as shown in
Figure 3.
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In this structure, the nominal system trajectory generated by the control system is used to
linearize Equation (15). The nominal trajectory is essentially the filtered position and orienta-
tion commands. The filter dynamics are a time-varying linear system instead of a nonlinear
system. The integrated control and navigation structure is motivated by TLC observer de-
sign (Huang et al. 2003). The stability of the coupled control system and navigation system
can be analyzed within the framework of trajectory linearization observer design using lin-
ear time-varying system theory. In this structure, the controller drives the robot to follow the
nominal trajectory (command). Thus the divergence problem in the linearized Kalman filter
is alleviated. The stability of the filter and controller are guaranteed locally around the com-
manded trajectory. The system stability is guaranteed given a small initial tracking error and
a small initial filter observation error. One advantage of such a structure is the computational
efficiency.

  

















 




































































 




 




Fig. 3. Integrated navigation and control system for mobile robot

The overall navigation and control system algorithm is illustrated below
Step 1:

Read robot command trajectory
[
xcom,k ycom,k Ψcom,k

]T
and calculate the nominal trajec-

tory
[
xk yk Ψk

]T

Read onboard sensor measurement and estimate robot position and orientation



x−k
y−k
Ψ
−
k


 =




x̂k−1

ŷk−1

Ψ̂k−1


+




cos(Ψ̂k−1) · T − sin(Ψ̂k−1) · T 0
sin(Ψ̂k−1) · T cos(Ψ̂k−1) · T 0

0 0 1 · T






ûk−1

v̂k−1

r̂k−1


 (17)

Calculate the time-varying matrices

Ak =




1 0 − sin(Ψk−1) · uk−1 · T − cos(Ψk−1) · vk−1 · T
0 1 cos(Ψk−1) · uk−1 · T − sin(Ψk−1) · vk−1 · T
0 0 1




Wk =




cos(Ψ̂k−1) · T − sin(Ψ̂k−1) · T 0
sin(Ψ̂k−1) · T cos(Ψ̂k−1) · T 0

0 0 1 · T
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Step 2: Calculate the prediction covariance matrix and predicted external sensor observation

P−
k = Ak · Pk−1 · AT

k + Wk · Qk−1 · WT
k






z−1,k

z−2,k

z−3,k






=





x−k
y−k
Ψ
−
k



 (18)

Step 3: Correction with valid external sensor data.

Read sensor measurement
[

z1,k z2,k z3,k

]T

Calculate correction matrix and update prediction error covariance matrix

Kk = P−
k

(

P−
k + R

)−1

Pk = (I − Kk) P−
k

(19)

where Rk is the external measurement noise covariance. Then a posteriori position estimate is




x̂k

ŷk

Ψ̂k



 =





x−k
y−k
Ψ
−
k



+ Kk










z1,k

z2,k

z3,k



−







z−1,k

z−2,k

z−3,k












(20)

Goto Step 1.

3.4 Implementation for Mobile Robot Navigation System

(a) Eliminate outlier measurement
The actual external sensor, such as a vision system, may encounter errors in signal processing
or communication error. These inevitable errors usually result in measurement with signifi-
cant large error. These errors are difficult to predict. If these outlier measurements are input
into the sensor fusion filter, the filter response has large estimate error, which may cause in-
stability of navigation and control systems. In order to improve the stability of navigation
system, gating, is employed to eliminate the outlier vision measurement.
Gating is used in sensor fusion to remove most unlikely observation-to-track pairings (Brown
et al. 1996). In mobile robot navigation system, rectangular gate has good performance and is
simple to implement. Rectangular gate removes the most unlikely observation.
Rectangular Gating is defined as the following

|ez1,k
| ≤ 3

√

σ
2
R(i)

+ σ
2
P(i)

, i = 1, 2, 3 (21)

where σ
2
R(i)

is the diagonal element of the external sensor noise covariance R, and σ
2
Pk(i)

is the

appropriate diagonal element of the prediction covariance P−
k . If all innovation residues sat-

isfy the above gating inequality, the external sensor data is considered as valid, and will be
used in filter correction. Otherwise, the external sensor data is determined as invalid.
(b) Synchronization between external and onboard sensor
In the mobile robot navigation system, the onboard sensor usually has higher bandwidth
and faster sampling time than the external positioning sensor. The sensor fusion algorithm
described above is executed at the onboard sensor sampling rate. When the external sensor
data is not available due to the slow update rate or the sensor data is considered as an outlier,
the sensor fusion filter is executed without correction. Step 3 in the filter is reduced as
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[
x̂k ŷk Ψ̂k

]T
=

[
x−k y−k Ψ

−
k

]T
(22)

Pk = P
−
k

(23)

4. An Example of Mobile Robot Navigation and Control

4.1 Introduction of Omni-directional Mobile Robot and Navigation System

(a) Introduction of Omni-directional mobile robot.
An omni-directional mobile robot is a type of holonomic robot. It has inherent agility which
makes it suitable for dynamic environment applications (Purwin 2006). One interesting appli-
cation is Robocup competition in which mobile robots compete in soccer-like games. In this
section, an example of navigation system of omni-directional robot is illustrated. The robot
mechanical configuration is shown in Figure 4.
The three omni-directional wheels are driven by electrical motors individually. An Optical
encoder are installed on each motor shaft.
(b) Introduction of Navigation System
In the sample system, a roof camera senses the position and the orientation of robots by image
processing. The vision system communicates with the robot control system via a serial port.
The vision system identified position and orientation are in the camera frame. A second-order
polynomials is used to map the camera frame to world frame.

Fig. 4. Omni-directional mobile robot

In the illustrated sample system, the robot control system is a dual-loop trajectory linearization
control (TLC) system (Liu et al. 2008). The illustrated sample system has the most important
features for a general mobile robot navigation and control system. The objective of mobile
robot control system is to track a feasible trajectory, which requires an accurate and fast po-
sition/orientation measurement. The robot and orientation can be estimated by odometry,
which has accumulated error. The overhead camera has accurate but slow measurements.
The overhead camera can only capture as high as 60 fps and the period to process each frame
varies randomly. The vision system may also lose frames or misidentify objects on the field.
The asynchronous serial communication has randomly mismatched data frame, which results
in incorrect vision data.
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4.2 Omni-directional Mobile Robot Navigation Performance

Omni-directional mobile robot navigation system following sensor fusion is developed using
the approach in section 3. In this subsection, several test results are demonstrated. It can
be seen that the sensor fusion improves the navigation system accuracy and overall robot
tracking peformance.
(a) Square Trajectory with Fixed Orientation
In this test, the robot command trajectory is a square curve with a fixed orientation. The actual
robot trajectory was plotted on the field of play by an attached pen. The robot trajectory is also
plotted by recorded experiment data. Two experiments were performed and compared. One
used only the onboard encoder data, the other used navigation system with sensor fusion.
Controller tracking performances using both methods are shown in Figure 5 (a) and (b). In
both cases, the tracking error is very small relative to the given measurement. The actual robot
tracking performance is determined by the navigation system. Figure 6 (a) and (b) are photos
of actual robot trajectories drawn by the attached pen. From these two photos, it can be seen
that by using sensor fusion, the robot drew a correct square curve with good repeatability in
two rounds; while using encoder alone, the robot was totally disoriented with an accumulated
error. Figure 7 and 8 show the Kalman filter performance and gating decision. Figure 7 shows
that vision system generated many outlier measurements, while the sensor fusion with gating
is able reject the wrong vision data and provide stable and accurate reading. In Figure 8, 1
means acceptance of the vision data, 0 means rejection of the vision data. Experiment using
vision system alone was also conducted. The disturbance induced by vision system failure
destabilized the robot very soon.
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0 10 20 30 40 50 60
-1

0

1

2

time (s)

0 10 20 30 40 50 60
-1

0

1

2

time (s)

0 10 20 30 40 50 60
0

2

4

time (s)

Kalman
Vision
Encoder

Fig. 7. Square Trajectory Sensor Fusion Kalman Filter Performance

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Gating Decision

time (s)

Fig. 8. Square Trajectory Sensor Fusion Gating Decision

www.intechopen.com



Robot Vision140

(b) Circular trajectory with rotation
In this test, the robot was commanded to accelerate from the initial position, and draw a circle
of 0.25 m radius at an angular rate of 1 rad/s. The robot orientation is commanded to change
between ±1 rad. In this test, the robot nonlinear dynamics are stimulated. In Figure 9, the
robot controller showed accurate tracking performance. Figure 10 illustrates the navigation
system performance. It should be noted that the navigation system performance is similar to
test (a) though the robot’s motion is nonlinear due to the rotation.
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(c) Rose Curve
In this test, the robot is commanded to draw a rose curve generated by a function: r =
a sin(nθ), where r and θ are the radius and the rotation angle in polar coordinate, and n is
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an integer determining the number of petals. The robot orientation was fixed. Figure 11 is the
result for n = 4. Figure 11 (a) and (b) are pictures of robot trajectory using sensor fusion and
onboard encoder alone respectively. The robot trajectory shifted significantly when using the
onboard sensor alone. As the result, the trajectory plotted when using encoder only is much
lighter than the one using sensor fusion. Figure 12 is the recorded data for test with sensor
fusion navigation. From this figure, it is clear without vision system correction, the onboard
encoder reading slowly drifts away.

(a) Using Sensor Fusion (b) Using Onboard Sensor

Fig. 11. Actual Robot Trajectory for Rose Curve
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Fig. 12. Robot Tracking Performance Using Sensor Fusion
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