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1. Introduction     
 

The ability to detect movement is an important aspect of visual perception. According to 
Gibson (Gibson, 1974), the perception of movement is vital to the whole system of 
perception. Biological systems take active advantage of this ability and move their eyes and 
bodies constantly to infer spatial and temporal relationships of the objects viewed, which at 
the same time leads to the awareness of their own motion and reveals their motion 
characteristics. As a consequence, position, orientation, distance and speed can be perceived 
and estimated. Such capabilities of perception and estimation are critical to the existence of 
biological systems, be it on behalf of navigation or interaction.  
 
During the process of navigation, the relative motion between the observer and the 
environment gives rise to the perception of optical flow. Optical flow is the distribution of 
apparent motion of brightness patterns in the visual field. In other words, the spatial 
relationships of the viewed scene hold despite temporal changes.  Through sensing the 
temporal variation of some spatial persistent elements of the scene, the relative location and 
movements of both the observer and objects in the scene can be extracted. This is the 
mechanism through which biological systems are capable of navigating and interacting with 
objects in the external world.  
 
Though it is well known that optical flow is the key to the recovery of spatial and temporal 
information, the exact process of the recovery is hardly known, albeit the study of the 
underlying process never stops. In vision community, there are steady interests in solving 
the basic problem of structure and motion (Aggarwal & Nandhakumar, 1988; Calway, 2005).  
In the robotics community, different navigation models have been proposed, which are 
more or less inspired by insights gained from the study of biological behaviours (Srinivasan 
et al., 1996; Egelhaaf & Kern, 2002). Particularly, vision based navigation strategies have 
been adopted in different kinds of autonomous systems ranging from UGV (Unmanned 
Ground Vehicles) to UUV (Unmanned Underwater Vehicles) and UAV (Unmanned Aerial 
Vehicles). In fact, optical flow based visual motion analysis has become the key to the 
successful navigation of mobile robots (Ruffier & Franceschini, 2005).    

4
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This chapter focuses on visual motion analysis for the safe navigation of mobile robots in 
dynamic environments. A general framework has been designed for the visual steering of 
UAV in unknown environments with both static and dynamic objects. A series of robot 
vision algorithms are designed, implemented and analyzed, particularly for solving the 
following problems: (1) Flow measurement. (2) Robust separation of camera egomotion and 
independent object motions. (3) 3D motion and structure recovery (4) Real-time decision 
making for obstacle avoidance. Experimental evaluation based on both computer simulation 
and a real UAV system has shown that it is possible to use the image sequence captured by 
a single perspective camera for real-time 3D navigation of UAV in dynamic environments 
with arbitrary configuration of obstacles. The proposed framework with integrated visual 
perception and active decision making can be used not only as a stand-alone system for 
autonomous robot navigation but also as a pilot assistance system for remote operation.    

 
2. Related Work 
 

A lot of research on optical flow concentrates on developing models and methodologies for 
the recovery of a 2D motion field. While most of the approaches apply the general spatial-
temporal constraint, they differ in the way how the two components of the 2D motion vector 
are solved using additional constraints. One classical solution provided by Horn & Schunck 
(Horn & Schunck, 1981) takes a global approach which uses a smoothness constraint based 
on second-order derivatives. The flow vectors are then solved using nonlinear optimization 
methods. The solution proposed by Lucas & Kanade (Lucas & Kanade, 1981) takes a local 
approach, which assumes equal flow velocity within a small neighbourhood. A closed-form 
solution to the flow vectors is then achieved which involves only first-order derivatives. 
Some variations as well as combination of the two approaches can be found in (Bruhn et al., 
2005). Generally speaking, the global approach is more sensitive to noise and brightness 
changes due to the use of second-order derivatives. Due to this consideration, a local 
approach has been taken. We will present an algorithm for optical flow measurement, which 
is evolved from the well-known Lucas-Kanade algorithm. 
 
In the past, substantial research has been carried out on motion/structure analysis and 
recovery from optical flow. Most of the work supposes that the 2D flow field has been 
determined already and assumes that the environment is static. Since it is the observer that 
is moving, the problem becomes the recovery of camera egomotion using known optical 
flow measurement. Some algorithms use image velocity as input and can be classified as 
instantaneous-time methods. A comparative study of six instantaneous algorithms can be 
found in (Tian et. al., 1996), where the motion parameters are calculated using known flow 
velocity derived from simulated camera motion. Some other algorithms use image 
displacements for egomotion calculation and belong to the category of discrete-time 
methods (Longuet-Higgins, 1981; Weng et al., 1989). The so-called n-point algorithms, e.g. 
the 8-point algorithm (Hartley, 1997), the 7-point algorithm (Hartley & Zisserman, 2000), or 
the 5-point algorithm (Nister, 2004; Li & Hartley, 2006), belong also to this category. 
However, if there are less than 8 point correspondences, the solution will not be unique.  
 
Like many problems in computer vision, recovering egomotion parameters from 2D image 
flow fields is an ill-posed problem. To achieve a solution, extra constraints have to be sought 
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after. In fact, both the instantaneous and the discrete-time method are built upon the 
principle of epipolar geometry and differ only in the representation of the epipolar 
constraint. For this reason, we use in the following the term image flow instead of optical 
flow to refer to both image velocity and image displacement. 
 
While an imaging sensor is moving in the environment, the observed image flows are the 
results of two different kinds of motion: one is the egomotion of the camera and the other is 
the independent motion of individually moving objects. In such cases it is essential to know 
whether there exists any independent motion and eventually to separate the two kinds of 
motion. In the literature, different approaches have been proposed toward solving the 
independent motion problem. Some approaches make explicit assumptions about or even 
restrictions on the motion of the camera or object in the environment. In the work of Clarke 
and Zisserman (Clarke & Zisserman, 1996), it is assumed that both the camera and the object 
are just translating. Sawhney and Ayer (Sawhney & Ayer, 1996) proposed a method which 
can apply to small camera rotation and scenes with small depth changes. In the work 
proposed in (Patwardhan et al., 2008), only moderate camera motion is allowed. 
 
A major difference among the existing approaches for independent motion detection lies in 
the parametric modelling of the underlying motion constraint. One possibility is to use 2D 
homography to establish a constraint between a pair of viewed images (Irani & Anadan, 
1998; Lourakis et al., 1998). Points, whose 2D displacements are inconsistent with the 
homography, are classified as belonging to independent motion. The success of such an 
approach depends on the existence of a dominant plane (e.g. the ground plane) in the 
viewed scene. Another possibility is to use geometric constraints between multiple views.  
The approach proposed by (Torr et al., 1995) uses the trilinear constraint over three views. 
Scene points are clustered into different groups, where each group agrees with a different 
trilinear constraint. A multibody trifocal tensor based on three views is applied in (Hartley 
& Vidal, 2004), where the EM (Expectation and Maximization) algorithm is used to refine 
the constraints as well as their support iteratively. Correspondences among the three views, 
however, are selected manually, with equal distribution between the static and dynamic 
scene points. An inherent problem shared by such approaches is their inability to deal with 
dynamic objects that are either small or moving at a distance. Under such circumstances it 
would be difficult to estimate the parametric model of independent motion, since not 
enough scene points may be detected from dynamic objects. A further possibility is to build 
a motion constraint directly based on the recovered 3D motion parameters (Lobo & Tsotsos, 
1996; Zhang et al., 1993).  However such a method is more sensitive to the density of the 
flow field as well as to noise and outliers.  
 
In this work, we use a simple 2D constraint for the detection of both independent motion 
and outliers. After the identification of dynamic scene points as well as the removal of 
outliers, the remaining static scene points are used for the recovery of camera motion. We 
will present an algorithm for motion and structure analysis using a spherical representation 
of the epipolar constraint, as suggested by (Kanatani, 1993). In addition to the recovery of 
the 3D motion parameters undergone by the camera, the relative depth of the perceived 
scene points can be estimated simultaneously. Once the position of the viewed scene points 
are localized in 3D, the configuration of obstacles in the environment can be easily retrieved.  
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Regarding the literature on obstacle avoidance for robot navigation, the frequently used 
sensors include laser range finder, inertial measurement unit, GPS, and various vision 
systems. However, for small-size UAVs, it is generally not possible to use many sensors due 
to weight limits of the vehicles. A generally applied visual steering approach is based on the 
mechanism of 2D balancing of optical flow (Santos-Victor, 1995). As lateral optical flow 
indicates the proximity of the left and right objects, robots can be kept to maintain equal 
distance to both sides of a corridor. The commonly used vision sensors for flow balancing 
are either stereo or omni-directional cameras (Hrabar & Sukhatme, 2004; Zufferey & 
Floreano, 2006). However in more complex environments other than corridors, the approach 
may fail to work properly. It has been found that it may drive the robot straight toward 
walls and into corners, if no extra strategies have been considered for frontal obstacle 
detection and avoidance. Also it does not account height control to avoid possible collision 
with ground or ceiling. Another issue is that the centring behaviour requires symmetric 
division of the visual field about the heading direction. Hence it is important to recover the 
heading direction to cancel the distortion of the image flow caused by rotary motion. 
 
For a flying robot to be able to navigate in complex 3D environment, it is necessary that 
obstacles are sensed in all directions surrounding the robot. Based on this concept we have 
developed a visual steering algorithm for the determination of the most favourable flying 
direction. One of our contributions to the state-of-the-art is that we use only a single 
perspective camera for UAV navigation. In addition, we recover the full set of egomotion 
parameters including both heading and rotation information. Furthermore, we localize both 
static and dynamic obstacles and analyse their spatial configuration. Based on our earlier 
work (Yuan et al., 2009), a novel visual steering approach has been developed for guiding 
the robot away from possible obstacles.  
 
The remaining part is organized as follows. In Section 3, we present a robust algorithm for 
detecting an optimal set of 2D flow vectors. In Section 4, we outline the steps taken for 
motion separation and outlier removal. Motion and structure parameter estimation is 
discussed in Section 5, followed by the visual steering algorithm in Section 6. Performance 
analysis using video frames captured in both simulated and real world is elaborated in 
Section 7. Finally, Section 8 summarizes with a conclusion and some future work. 

 
3. Measuring Image Flow 
 

Suppose the pixel value of an image point ),( yxp  is ),( yxf t  and let its 2D velocity be 

v =  Tvu, .  Assuming that image brightness doesn't change between frames, the image 
velocity of the point p  can be solved as 
 

                                                           bGv 1








v
u

,                                                                (1) 

with 
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Here xf  and yf are the spatial image gradients, tf  the temporal image derivative, and 

W a local neighbourhood around point p . 
 
The above solution, originally proposed in (Lucas & Kanade, 1981), requires that G  is 
invertible, which means that the image should have gradient information in both x and y 
direction within the neighbourhood W . For the reason of better performance, a point 
selection process has been carried out before v  is calculated. By diagonalizing G  using 
orthonormal transform as  

                                                       UUG 



 

2

1
0

01



,                                                           (4) 

 
the following criterion can be used to select point p : 

1. 1  and 2 should be big. 

2. The ratio of 21 / should not be too big. 
 
For the purpose of subpixel estimation of v , we use an iterative algorithm, updating 

tf sequentially as follows: 

                                                  ),(),(1 yxfvyuxff tt
t   .                                        (5) 

 
The initial value of v is set as TTvu ],[],[ 00v  . To handle large motion, a further 

strategy is to carry out the above iterative steps in a pyramidal fashion, beginning with the 
smallest scale image and refining the estimates in consecutive higher scales.  
 
Once a set of points }{ ip  has been selected from image tf  and a corresponding set of 

}{ iv  is calculated, we obtain automatically a set of points }{ iq  in image 1tf , with 

iii vpq  . In order to achieve higher accuracy in the estimated 2D displacement iv , we 

calculate a new set of backward displacement }ˆ{ iv  for }{ iq  from image 1tf to tf  . As a 

result we get a set of backward projected point }ˆ{ ip with iii vqp ˆˆ  . 
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For an accurately calculated displacement, the following equation should hold: 
 

                                                               0ˆ  ii ppie .                                                           (6) 

 
For this reason, only those points whose ie 0.1 pixel will be kept.  By this means, we have 

achieved an optimal data set )},{( ii qp with high accuracy of point correspondences 

established via }{ iv between the pair of image tf  and 1tf . 

 
4. Motion Separation 
 

While the observing camera of a robot is moving in the world, the perceived 2D flow  
vectors can be caused either entirely by the camera motion, or by the joined effect of both 
camera and object motion. This means, the vector iv  detected at point ip can come either 
from static or dynamic objects in the environment. While static objects keep their locations 
and configurations in the environment, dynamic objects change their locations with time.    
 
Without loss of generality, we can assume that camera motion is the dominant motion.  This 
assumption is reasonable since individually moving objects generally come from a distance 
and can come near to the moving camera only gradually. Compared to the area occupied by 
the whole static environment, the subpart occupied by the dynamic objects is less 
significant. Hence it is generally true that camera motion is the dominant motion. 
 
As a consequence, it is also true that most vectors  iv  come from static scene points. Under 
such circumstance, it is possible to find a dominant motion. The motion of static scene points 
will agree with the dominant motion. Those scene points whose motion doesn’t agree with 
the dominant motion constraint can hence be either dynamic points or outliers. Outliers are 
caused usually by environmental factors (e.g. changes of illumination conditions or 
movement of leaves on swinging trees due to wind) that so far haven't been considered 
during the 2D motion detection process. The goal of motion separation is to find how well 
each vector iv  agrees with the dominant motion constraint.   

 
4.1 Motion constraint 
Using the method proposed in Section 3, we have gained a corresponding set of points 

)},{( ii qp with i=1 to N. In order to explain the 2D motion of n static points between 
tf and 1tf , we use a similarity transform ),,( stRT as the motion constraint, where 

R is a 2D rotation matrix, t a 2D vector and s a scalar. Since ip  and iq  are the 2D 
perspective projections of a set of n static points in two images, the applied constraint is an 
approximation of the projected camera motion. The transform parameters can be found by 
minimizing the following distance measure: 
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                                                2tRpq ||)(||),,(
1




i

n

i
i sstR .                                      (7)     

 
We may solve the transform parameters using a linear yet robust minimization method 
designed by (Umeyama, 1991). Once the parameters of the transformT are calculated, it can 
be used to determine whether the scene points agree with the approximated camera motion. 

 
4.2 Motion classification 
Since a vector iv  corresponding to a static scene point is caused by the camera motion, 

while the iv  corresponding to a moving scene point is the result of independent motion, 

the separation of the two kinds of motion is equivalent to classify the set of mixed }{ iv  into 
different classes. Altogether there are three classes: static scene points, dynamic scene points 
and outliers. 
   
Based on the motion constraint ),,( stRT , a residual error can be calculated for each of 
the points as: 
                                                    2

iii tRpvp ||)()(||  sd i .                                         (8) 
 
We can expect that: 

1. id =0  iv  is correct (inlier), ip is a static point 

2. id  is small  iv  is correct (inlier), ip is a dynamic point 

3. id  is very big  iv  is incorrect, ip is an outlier 

The remaining problem consists of finding two thresholds 1k and 2k , so that: 

1. if 1kdi  , ip is a static point 

2. 21 kdk i  , ip is a dynamic point 

3. 2kdi  , ip is an outlier 
 
This belongs to a typical pattern classification problem, which can be solved by analyzing 
the probabilistic distribution of the set of distance errors }{ id . The most direct way is to 

quantize the distance measures }{ id  into L+1 levels, ranging from 0 to L pixels. Following 
that, a residual distance histogram h(j), j=0 to L, can be calculated. If h(j) is a multimodal 
histogram, two thresholds 1k and 2k can be found automatically for motion separation.  
 
An automatic threshold algorithm has been implemented earlier for the two-class problem 
(Yuan, 2004). Using this algorithm, we can find a threshold 1k  for separating the points into 
two classes: one class contains static points; the other is a mixed class of dynamic points and 
outliers.  In case that 1k doesn’t exist, this means there is only a single motion which is the 
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camera motion. If 1k does exist, then we will further cluster the remaining mixed set of both 

dynamic points and outliers by calculating another threshold 2k . 

 
5. Motion & Structure Estimation 
 

Now that we have a set of n points whose image flow vectors are caused solely by the 3D 
rigid motion of the camera, we can use them to recover the 3D motion parameters. Denoting 
the motion parameters by a rotation vector T

zyx rrr ),,( and a translation vector 

T
zyx ttt ),,(t , the following two equations hold for a perspective camera with a unit 

focal length (Horn, 1986): 
 

                                      ])1([ 2 yrxrxyr
Z
xttu zyx
zx 


 ,                                    (9) 

 

                                       ])1([ 2 xryrxyr
Z
ytt

v zxy
zy 


 ,                                   (10) 

 
where Z is the depth of the image point p . As can be seen, the translation part of the 
motion parameter depends on the point depth, while the rotation part doesn't. Without the 
knowledge of the exact scene depth, it is only possible to recover the direction of t . For this 
reason, the recovered motion parameters have a total of five degrees of freedom. 
 
As mentioned already in Section 2, we use a spherical representation of the epipolar 
geometry. Let u  be a unit vector whose ray passes through the image point and v  a unit 
flow vector whose direction is perpendicular to u , the motion of the camera with 
parameter ),( t  leads to the observation of vwhich is equal to 
 
                                                      ./)( ZT tuuIuv                                                (11) 

 
The goal of motion recovery is to find the motion parameter ),( t that minimizes the 

following term: ./)( ZT tuuIuv  Using a linear optimization method 

(Kanatani, 1993), it has been found that the solution for t  is equal to the least eigenvector of 
a matrix )( ijAA  , i, j=1 to 3 and that  

                                                   jmn
nmlk

iklijij MNMLA 1
klmn





3

1,,,

 ,                                      (12) 

with 
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                                                                   


djiij
**vvL ,                                                         (13) 

 

                                                                


dkjiijk vvvM * ,                                                   (14) 

 

                                                              


dlkjiijkl vvvvN ,                                                 (15) 

 
where  
                                                                         .vuv                                                               (16) 

 
Once t is recovered, the solution for can be computed as: 
 

                                                     KttKttK 23)(
2
1

 Ttr ,                                          (17) 

 
where ) (tr  is the trace of a matrix and 
 
                                                                         )( ijKK  ,                                                            (18) 

 

                                                            mmkl
nmlk

ijklij tMNK 

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3

1,,,

1 .                                             (19) 

 
Subsequently, the depth Z of a scene point p  can be estimated as                                   
 

                                                             .
)(

)(1 2

tvtu
tu

TT

T

Z






                                                   (20) 

 
If ),( t is a solution, then ),( t can also be a solution. The correct one can be chosen 
based on the cheirality constraint, by assuring positive scene depth (Z>0). 

 
6. Visual Steering 
 

6.1 Obstacle detection 
After the motion parameters as well as the relative scene depths of the static points are 
calculated, we now obtain the viewing direction of the camera together with the location of 
a set of 3D scene points relative to the camera. 
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Fig. 1. Configuration of detected 3D scene points relative to the camera. 
 
Shown in Fig. 1 is an illustration of the visual processing results so far achieved.  In the top 
row are two images taken by a camera mounted on a flying platform. The result of image 
flow detection is shown on the left side of the bottom row. Obviously the camera looking in 
the direction of the scene is flying upward, since the movement of the scene points are 
downward, as is shown by the red arrows with green tips. The image on the bottom right of 
Fig. 1 shows the configuration of detected 3D scene points (coloured in red) relative to the 
camera. Both the location and orientation of those 3D scene points and the orientation of the 
camera have been recovered by our motion analysis algorithm. The blue \/ shape in the 
image represents the field-of-view of the camera.  The obstacles are shown in solid shape 
filled with colour gray. They are the left and right walls as well as the frontal pillar. The goal 
of visual steering is to determine in the next step a safe flying direction for the platform.    
 
As shown by Fig. 1, each image point ip  in tf corresponds to a 3D point iP with a 

depth iZ . This distance value indicates the time-to-contact of a possible obstacle in the 
environment. Our visual steering approach exploits the fact that the set of depth values 
reveals the distribution of obstacles in different directions. Specifically, we use a concept 
built upon directional distance sensors to find the most favourable moving direction based 
on the distance of nearest obstacles in several viewing directions. This is done through a 
novel idea of cooperative decision making from visual directional sensors.  
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6.2 Directional distance sensor 
A single directional sensor is specified by a direction d and an opening angle that defines 
a viewing cone from the camera center. All the scene points lying within the cone defines 
one set of depth measurements. Based on the values of these depth measurements, the set 
can be further divided into a few depth clusters. The clustering criterion is that each cluster 
K is a subset with at least s scene points whose distances to the cluster center are below  . 
The parameter s and  are chosen depending on the size of the viewing cone and the 
density of depth measurements.     
 

     
Fig. 2. A directional distance sensor and scene points with corresponding depth clusters.   
 
Shown in Fig. 2 on the left is a directional distance sensor (located at camera center c) with 
the set of detected scene points lying within the viewing cone. The set is divided into three 
depth clusters, as is shown on the right of Fig. 2.  Note that it is possible that some points 
may not belong to any clusters, as is the case of the points lying left to the rightmost cluster.  
 
Once the clusters are found, it is possible to find the subset  whose distance to the viewing 
camera is shortest. In the above example, the nearest cluster is the leftmost one. With the 
nearest cluster  identified, its distance to the camera, represented as D , can be 
determined as the average distance of all scene points belonging to . In order to determine 
whether it is safe for the UAV to fly in this direction, we encode D in a fuzzy way as near, 

medium and far. Depending on the fuzzy encoding of D , preferences for possible motion 
behaviours can be defined as follows: 

1. Encoded value of D is far, flying in this direction is favourable 

2. Encoded value of D is medium, flying in this direction is still acceptable 

3. Encoded value of D is near, flying in this direction should be forbidden. 
 
If we scan the viewing zone of the camera using several directional distance sensors, we 
may obtain a set of nearest depth clusters i  together with a corresponding set of fuzzy-
encoded distance values. By assigning motion preferences in each direction according to 
these distance values, the direction with the highest preferences can be determined. Built 
exactly upon this concept, novel visual steering strategies have been designed. 
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6.3 Visual steering strategies 
Three control strategies are considered for the visual steering of the UAV: horizontal motion 
control, view control and height control.  
 
The purpose of view control is to ensure that the camera is always looking in the direction of 
flight. By doing so, the principle axis of the camera is aligned with the forward flight 
direction of the UAV so that a substantial part of the scene lying ahead of the UAV can 
always be observed. Because the camera is firmly mounted on the UAV, changing the 
viewing direction of the camera is done by changing the orientation of the UAV.  Here we 
would like to point out the relationship between the different coordinate systems. A global 
coordinate system is defined whose origin is located at the optical center of the camera. The 
optical axis of the camera is aligned with the z axis pointing forward in the frontal direction 
of the UAV. The image plane is perpendicular to the z axis, with the x axis pointing 
horizontally to the right side of the UAV and the y axis pointing vertically down. View 
control is achieved by rotating the UAV properly, which is done by setting the rotation 
speed of the UAV around the y axis of the global coordinate system. Obviously this is the 
yaw speed control for the UAV. 
 
The main part of visual steering is the horizontal motion control. We have defined five 
motion behaviours: left (), forward and left (), forward (), forward and right () and 
right ().  Once the flying direction is determined, motion of the UAV is achieved by setting 
the forward motion speed, left or right motion speed and turning speed (yaw speed). The 
yaw control is necessary because we want to ensure that the camera is aligned with the 
direction of flight for maximal performance of obstacle avoidance. Hence a left motion will 
also result in modifying the yaw angle by rotating the UAV to the left via the view control.  
 
In order to realize the horizontal motion control as well as the view control, it is necessary to 
select one safe flying direction from the five possibilities defined above. We define five 
virtual directional distance sensors which are located symmetrically around the estimated 
heading direction. This corresponds to a symmetric division of the visual field into far left, 
left, front, right and far right, as is shown in Fig. 3. 
 

 
Fig. 3. A symmetric arrangement of five directional distance sensors for visual steering. 
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As mentioned in Section 6.1, each of these five directional sensors perceives the nearest 
obstacles in a particular direction. Depending on the nearness of the obstacles detected, 
every directional sensor will output one preference value for each of the five possible 
motion behaviours. Three preference values have been defined. They are favourable (FA), 
acceptable (AC) and not acceptable (NA).  
 
Each directional sensor has its own rules regarding the setting of the preference values. An 
example of rule setting for the front sensor is given in Table 1.  Table 2 shows another 
example for the far left sensor. As can been seen, once a fuzzy encoded distance measure is 
determined, a directional sensor outputs a total of five preference values, with one for each 
possible moving direction.  
 

Distance       Behavioural preferences for each of the five motion directions
    

far        AC        AC        FA        AC        AC
medium        AC        FA        AC        FA        AC
near        FA        AC        NA        AC        FA  

Table 1. Preference setting rules for the front distance sensor. 
 

Distance       Behavioural preferences for each of the five motion directions
    

far        FA        AC        AC        AC        AC
medium        AC        FA        AC        AC        AC
near        NA        AC        FA        AC        AC  

Table 2. Preference setting rules for the far left distance sensor. 
 
From all the five directional sensors shown in Fig. 3, we have got altogether a set of 25 
preferences values, five for each moving direction. By adding the preference values 
together, the motion behaviour with the highest preference can be selected as the next flying 
direction. 
 
Suppose the fuzzy distance values of the five directional sensors (from left to right) are near, 
far, far, medium and near, the preference values for each motion behaviour can be 
determined individually, as shown in Table 3.  If we take all the sensors into account by 
adding all the preference values appearing in each column, the final preference value for 
each motion direction can be obtained, as is shown in the second last line of Table 3. 
Apparently, the highest preference value is achieved for the forward direction.  Hence the 
safest flying direction is moving forward.     
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Sensor Distance       Behavioural preferences for each of the five motion directions
    

far left near        NA        AC        FA        AC        AC
left far        AC        FA        AC        AC        AC
front far        AC        AC        FA        AC        AC
right medium        AC        AC        FA        AC        AC
far right near        AC        AC        FA        AC        NA
All
sensors

     1 NA
      4 ACs

     1 FA
      4 ACs

     4 FAs
      1 AC

     5 ACs       1 NA
      4 ACs

Decision          
Table 3. Decision making based on the fuzzy encoded distance values of all five sensors. 
 
As for the height control of the UAV, a single directional distance sensor looking 
downwards is used. It estimates the nearness of obstacles on the ground and regulates the 
height of the UAV accordingly.  In addition, we take into account the vertical component of 
the estimated motion parameter of the camera, which is yt . The direction of yt  can be up, 
zero or down. The goal is to let the UAV maintain approximately constant distance to the 
ground and avoid collision with both ground and ceiling. This is performed by 
increasing/decreasing/keeping the rising/sinking speed of the UAV so as to change the 
height of the UAV. Decision rules for the height control of the UAV can be found in Table 4. 
 

ty                            Estimated distance to ground
             near            medium               far

up no speed change decrease rising speed decrease rising speed
zero increase rising speed no speed change increase sinking speed
down increase rising speed increase rising speed no speed change  

Table 4. Using a vertical directional sensor and yt for height control. 

 
7. Experimental Evaluation 
 

The proposed approach has been implemented using C++ running on a Samsung M60 
laptop. For each pair of frames ( tf , 1tf ), we first detect 3000 features in frame tf  and try 

to find their correspondences in 1tf . Depending on the nature of the input frames, the 

found number of point correspondences N ranges from a few hundreds to a few thousands. 
Thanks to the linear methods used, a frame rate of 15 frames/s can be achieved for images 
with a resolution 640x480, including both motion analysis and visual steering steps.  
 
Both indoor and outdoor experiments have been carried out for evaluation purpose. We 
have captured videos using both hand-held camera and the camera mounted on a flying 
robot. Shown in Fig. 4 is the AR-100 UAV we have used, which is a kind of small-size 
(diameter < 1m) drone whose weight is below 1kg. The onboard camera inclusive the 
protecting case is ca. 200g. The images captured by the camera are transmitted via radio link 
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to the laptop on which our motion algorithm is running. The UAV has a remote control 
panel. In manual flight mode, controlling commands are triggered by human operation. In 
auto-flight mode, the controlling commands for avoiding detected obstacles are calculated 
by our visual steering algorithm and sent via radio transmission to the drone. Through a 
switch on the control panel, the mode can be changed by the human operator. 
 

 
Fig. 4. The AR-100 UAV with the camera mounted beneath the flight board. 
 
In the following we analyze the results achieved, concentrating on one particular aspect in a 
single subsection. 

 
7.1 Performance on motion separation 
For the evaluation of our motion separation algorithm, we have used several video 
sequences captured by mobile cameras navigating in the natural environment. The images 
in the first video sequence are taken on a sunny day in an outdoor environment, using the 
camera on the drone. The dynamic objects to be detected are people moving around the 
drone. Some example images with people moving are shown in Fig. 5. As can be seen clearly 
from the second image, the quality of the transmitted image is not perfect. Altogether there 
are 3082 frames in the video sequence. Among them, there are 1907 frames which consist 
only of static scenes. In each of the remaining 1175 frames, there are either one or two 
objects moving.  
 

    
Fig. 5.  Some images in video sequence 1.  
 
Shown in Fig. 6 on the left is one example image together with the detected 2D displacement 
vectors and the result of motion separation. There are a few outliers in the static background 
as well as on the moving person. This is due largely to illumination variations. Those long 
vectors (with colour yellow) are the outliers. The vectors shown in colour black come from 
the static background. The two moving persons have been identified correctly, as can be 
seen clearly from the vectors shown as red lines with green tips.  Another example is shown 
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in Fig. 6 on the right, where neither independent motion nor outliers occur. In both cases, it 
is obvious from the visualized flow vectors that the camera motion consists of both rotation 
and translation component. 
 

   
Fig. 6. Examples of detection result in sequence 1. 
 
Sequence 2 is captured with a hand-held camera. The moving object to be detected is the 
AR-100 flying drone. There are also some people moving in the background.  In Fig. 7 on the 
left we can see one input frame, where the moving drone is even difficult to perceive with 
human eyes. Shown on the right is the result of detection. Three moving objects have been 
identified. They are the flying drone as well as two persons moving behind the tree. The 
purpose of performance evaluation with sequence 2 is to find how our algorithm will 
behave in case the size of the object is very small compared to the visual field of the camera. 
All together there are 80 frames, with the drone moving all the time in the scene.  
 

   
Fig. 7. Examples of detection result in sequence 2. 
 
Shown in Fig. 8 are two examples of detection results achieved on the third video sequence 
(video available at http://robots.stanford.edu/). The moving object is a robot car running 
on the road. Altogether there are 303 frames. Each frame has a single moving object in it. 
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Fig. 8. Examples of detection result in sequence 3. 
 
On all three sequences, we have achieved an average separation accuracy of 83.3%. This 
means, among all those flow vectors detected, 83.3% of them have been correctly classified. 
Particularly, the flow vectors coming from static scene points have been identified with a 
precision of 90%, while those form dynamic scene points with an accuracy of slightly over 
70%. The false alarm rate of moving object detection is below 5%. Considering that the 
dynamic objects are either small or moving at far distances and that we use only the last and 
current frame for motion separation, the results are quite encouraging.  

 
7.2 Performance on motion estimation 
Once the flow vectors coming from static scene points have been identified, we use 
RANSAC together with the approach presented in Section 5 to refine the inliers for correct 
estimation of motion parameters.  
 
In order to estimate the accuracy of the estimated motion parameters, we need to have the 
ground truth values of them. This is nearly impossible when a camera is moving freely in 
space. For this reason we use a simulated environment where the ground truth is available. 
During the flight of an agent in a virtual world, real images are rendered continuously, with 
the motion between consecutive frames known. Using these images, we extract flow vectors 
and compute the motion parameters of the flying agent. They are then compared with the 
known ground truth to compute the precision of our algorithm. The images rendered from 
the virtual world have a horizontal field of view of 110 degrees, which is slightly larger than 
that of the camera on the real robot. To be compatible with real-world situations, we vary 
the illumination of the virtual world to simulate the lighting changes appeared usually in 
the real world.  
 
A corridor environment has been constructed and two tests have been performed. The first 
test consists of a simple rotation around the vertical axis. The agent rotates first 360 degrees 
clockwise and then 360 degrees anticlockwise. It has been found that the deviation of the 
estimated final heading direction lies within 1 degree.  In Fig. 9 a, the white line shows the 
heading direction of the agent relative to the corridor. 
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                          a                                                     b                                                     c 
Fig. 9. Results of motion estimation.  
 
The second test consists of a flight through the corridor, where the agent computes its 
translation and rotation parameters from image flow measurements. The average accuracy 
of the estimated heading direction is 2 degrees. In Fig. 9 b and c, one can observe the 
difference between the estimated and the ground truth motion of the agent. We project the 
estimated heading direction into the image and mark it with a red 'x'. The projected point of 
the ground truth direction of the heading is shown as a red '+'.      
  
Further performance analysis on motion estimation has been carried out through the 
reconstruction of real-world camera motion.  We first calculate the real camera motion from 
images captured by the flying robot in the outdoor environment.  The calculated motion 
parameters have been used to generate images simulating a virtual camera moving in a 
textured environment. By observing synchronously the real and virtual videos, the quality 
of the motion estimation can be visually observed. The fact that no difference has been 
perceived between the two videos indicates that our algorithm on motion estimation has 
achieved similar results using real-world images.   

 
7.3 Performance analysis on visual steering 
The first visual steering experiment is carried out in the above corridor. A top view of the 
whole corridor is shown with red colour in Fig. 10 on the left. After the motion and scene 
depth have been calculated from two initial images, the UAV is set to move in the direction 
determined by our visual steering algorithm.  Then the UAV captures the next frame, 
determine its next moving direction and moves accordingly. During the experiment, we 
have recorded the trajectory of the UAV.  Shown in Fig 10 on the left in colour green is the 
recorded trajectory of the UAV. As demonstrated by this green curve, the vehicle is able to 
navigate through the corridor without any collision.   
 

              
Fig. 10. Left: 3D flight in the corridor environment. Right: the maze-like environment. 
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Further experiments are carried out in a maze-like environment with irregular 
configurations of obstacles, as is shown in Fig. 10 on the right. In the beginning, the vehicle 
is placed randomly within the maze. The flying direction is set to the viewing direction of 
the camera, i.e., the forward direction.  Several experiments with different starting positions 
show that the vehicle is capable of navigating safely within the maze by finding its way 
automatically. Particularly, it is able to regulate both flying direction and height to avoid 
collision with walls, corners, buildings, the ground, the arch etc.  Some images showing the 
path of the drone during its navigation are shown in Figure 11. 
 
As shown in Fig. 11 a to b, one can observe that the vehicle has found free space for 
navigation and change its flying direction toward the arch to avoid collision with walls and 
corners. From there, the agent is flying through the arch, as can be read out from Fig 11 
image b, c and d.  Following that, the vehicle is able to prepare the turning around the 
corner shown in image e.  Having turned around the corner, the vehicle is guided by our 
visual steering algorithm to fly along the wall and adjust height due to the level of terrain 
and the obstacle floating in the air, as is shown by image f. 
 

     
                           a                                                      b                                                  c 

     
                         d                                                     e                                                   f 
Fig. 11. 3D Flight within the maze. 
 
Further experiments are carried out in an office experiment, which is a T-shaped corridor 
with isolated obstacles. As can be seen from Fig. 12, the environment is not entirely static, as 
the doors may be closed and opened. This is indeed an unknown dynamic environment 
with general configuration of obstacles. In this sense, performance in this environment 
indicates the effectiveness of our whole visual steering approach, including robust image 
flow calculation, motion separation, motion and depth estimation, and the determination of 
flying direction.  
 
In Fig.12 we show one example of the experiments made in this environment. Both the 
visual path of the flying platform and the decisions made by our algorithm can be viewed. 
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Based on the output of our visual steering algorithm, the vehicle is able to maintain constant 
distance to the ground. The decision for horizontal motion control has been shown with red 
arrows, indicating the next flying direction. The length of the arrows is set in inverse 
proportion to the distance of obstacles. A longer arrow indicates a shorter distance to the 
detected obstacle and hence a faster speed needed by the UAV for flying away from it. As 
can be seen, the platform has been kept safely in the middle of the free space.      
 

     
 

     
Fig. 12. 3D visual steering in the office environment. 
 
8. Conclusion 
 

This chapter concentrates on visual motion analysis for the safe navigation of mobile robots 
in dynamic environment.  The aim is to build one of the important navigation abilities for 
robot systems: the detection of obstacles for collision avoidance during the 3D autonomous 
flight of UAVs.  In dynamic environment, not only the robot itself but also some other 
objects are moving.  With the proposed approach, we have shown a robot vision system 
capable of understanding the natural environment, analyzing the different motions and 
making appropriate decisions.     
 
Most motion estimation algorithms work well with perfect image flow measurement but are 
very sensitive to noise and outliers. To overcome this problem, we have designed a 
complete computational procedure for robust 3D motion/structure recovery. A well-known 
image flow algorithm has been extended and improved for the robust detection of image 
flow vectors. In order to estimate the camera motion, we proposed a novel approach for the 
separation of independent motion and removal of outliers. The motion parameters of the 
camera and the 3D position and orientation of scene points are then recovered using a linear 
estimation approach. With the output of our visual motion analysis, we are able to facilitate 
a flying platform with obstacle detection and avoidance ability. As a result, safe and 
autonomous navigation of UAV systems can be achieved. 
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As mentioned already, the UAV has both manual and auto flight mode. However, our 
visual steering algorithm runs independent of the mode chosen. Even in manual mode, the 
human pilot can observe the visual processing results. Alerted by the decision made by our 
algorithm, the pilot can hence avoid possible errors and trigger correct operation. In this 
sense, the robot vision system developed can be used as a pilot assistance system as well. 
Currently we provide only a primitive visualization of the dynamic/static objects in the 
environment together with the decision made by our algorithm for the horizontal motion 
control. Visualization of the decision made for height control is omitted for the purpose of 
simplicity. We plan to improve the way of information presentation for better human robot 
interaction. 
 
In the vision system presented, we use always two frames, the current and the last one, for 
making a decision. While quite efficient, its drawback is that the valuable visual processing 
results achieved in the past are not considered in the current analysis step. Such results can 
be used for example for the detection of independent motion. If a moving object is detected 
in several past frames, it may be more advantageous to switch from detection to tracking 
method for localizing the object in the current frame. This will probably improve largely the 
performance regarding the detection of dynamic objects. By tracking dynamic objects 
continuously, it is also possible to estimate their 3D motion parameters constantly. With the 
heading direction of the dynamic objects known, a more advance and effective visual 
steering strategy can be designed. 
 
Another future research direction is to combine the visual steering approach with that of 
camera-based SLAM (simultaneous localization and mapping). We are updating our UAV 
system to have two cameras mounted on it. While the available camera looks ahead in the 
flying direction, another camera will point downwards to the ground. Through the second 
camera, more features on the ground can be observed. Together with the forward-looking 
camera, motion as well as location of the UAV can be estimated more accurately. A more 
elaborate 3D motion constraint can be derived for better motion separation and analysis. At 
the same time, both safer and efficient navigation of UAV can be achieved by combining the 
current way of reactive steering with that of goal-directed motion planning.    
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