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1. Introduction    

Raman scattering is an inelastic light scattering non-destructive technique which allows the 

access mainly to the phonon modes at the Г point of materials and in some cases to the 

dispersion (Goni A.R. et al., 2001; Zunke et al., 1995; Weinstein et al., 1975). Since its 

discovery, Raman has been used both for the characterization of materials and for the 

understanding of basic interactions such as plasmonic excitations (Raman et al., 1928; 

Szymanski H.A. et al., 1967; Otto et al., 1992; Schuller et al., 1996; Steinbach et al., 1996; 

Ulrichs  et al., 1997, Sood et al 1985, Abstreiter et al. 1979, Roca et al. 1994, Pinczuk et al 1977, 

Pinczuk et al., 1979). Raman spectroscopy can be experimentally performed at the nanoscale 

by using a confocal microscope or even a tip enhanced scanning microscope. It is possible to 

obtain lateral submicron resolutions of the properties of a material (Hartschuh et al., 2003). 

Nowadays Raman spectroscopy is a versatile and relative standard tool for the 

characterization of materials giving detailed information on crystal structure, phonon 

dispersion, electronic states, composition, strain and so-on bulk materials, thin film and 

nanostructures (Cardona, 1982; Anastassakis, 1997; Reithmaier  et al., 1990; Spitzer et al., 

1994; Pinczuk  et al., 1977; Pinczuk et al., 1979; Baumgartner  et al., 1984; Schuller et al., 1996; 

Pauzauskie  et al., 2005; Long, 1979).   

In the last decade Raman spectroscopy has been increasingly used to study nanowires and 
quantum dots (Abstreiter et al., 1996; Roca et al., 1994). Several new phenomena have been 
reported to date with respect to one-dimensional structures. For example, the high surface-
to-volume ratio has enabled the measurement of surface phonon modes (Gupta et al., 2003a; 
Krahne et al 2006; Adu et al., 2006; Spirkoska et al., 2008). Some authors report a increase in 
the scattered intensity for nanoscale structures with respect to their bulk counterpart, effect 
denominated as ‘Raman antenna effect’ (Xiong  et al., 2004; Xiong  et al., 2006; Cao et al., 
2007). Additionally, polarization dependent experiments on single carbon nanotubes and/or 
nanowires have shown that the physics behind Raman scattering of such one-dimensional 
nanostructures can differ significantly from the bulk (Frechette et al., 2006; Livneh et al., 
2006; Cao et al., 2006). Indeed, the highly anisotropic shape of the nanowires can lead to 
angular dependencies of the modes which otherwise would not be expected from selection 
rules (Frechette  et al., 2006; Livneh et al., 2006; Cao et al 2006).  
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Overall, Raman spectroscopy of nanostructures represents an extremely active and exciting 
field for the benefit of science and technology at the nanoscale. The arising new phenomena 
and technical possibilities open new avenues for the characterization of materials but also 
for the understanding of fundamental process in nanoscale matter. In this chapter, we 
provide a review of Raman spectroscopy on nanowires, in which an overview of the 
selection rules, appearance of new modes and size effects will be given. 

2. Selection rules in Raman scattering of nanowires 

2.1 Raman selection rules, application to the geometry of nanowires 
Raman scattering is a manifestation of the interaction between the electromagnetic radiation 
and vibrational and/or rotational motions in a material. It provides information about the 
symmetry and composition of the system, the lattice dynamics, structural transitions, strain 
and electronic states. The scattering process involves two energy quanta simultaneously.  It 
is usually schematized in two steps: 

i. A photon with energy ohν  and wave vector q
G

is absorbed, exciting the system from a 

initial state 1 to a state n; 

ii. The system emits a photon with energy 'hν  and wave vector 'q
G

 and relaxes from the 

state n to a final state 2. 

In the case where the final state is identical to the initial one the incident and scattered light 

have the same frequency ( ' oν ν= ). This process is called elastic or Rayleigh scattering. When 

the final state is different from the initial one, the scattering process is inelastic. In this case, 

the creation or the annihilation of an excited state of the system occurs, and the emitted 

photon has lost or gained energy. These processes are called respectively Stokes scattering 

and anti-Stokes Raman scattering. For the conservation of energy, the frequency of the 

scattered radiation is given by: 

 1 2' o o v

E E

h
ν ν ν ν−

= ± = ±   (1) 

with oν the frequency of the incoming photon, 'ν the frequency of the emitted photon,E1  

and E2 the energies of the initial and final state of the system. These scattering processes are 

schematically illustrated in Fig. 1. 

 
Fig. 1. Schematic drawing of transitions between generic vibrational energy states due to, 
from left to right, infrared absorbance, Rayleigh Scattering Stokes Raman Scattering and 
anti-Stokes Raman Scattering. 
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The difference between the Raman scattering frequency 'ν  and the excitation frequency oν  

is independent from the last one and it’s equal to nν± . The probability of the Stokes 

scattering and the anti-Stokes scattering is different, because of the different population of 

the two energy levels at a temperature T. The intensity of the Raman lines is proportional to 

the transition probability. For this reason the Stokes lines are more intense than the anti-

Stokes. In the following, a short description of the Raman effect is given within the classical 

picture (Turrel & Corset, 1996). In this frame, spatial and temporal fluctuations of the 

electronic contributions of the polarizability are at the origin of the Raman scattering. The 

electric field originated by a plane monochromatic wave with wave vector oK
G

in a point r
G

 

in space in a transparent crystal is given by: 

 {exp 2 ( )}o o oE E i K r tπ ν= − ⋅ −
G G G

  (2) 

with oν the frequency of the light and t the time. The electric field causes an induced dipole 
moment given by: 

 Eμ α=
GG

  (3) 

where α is the polarizability. Both μG  and E
G

are vectors, while α is a 3x3 tensor with real 

elements, unless magnetic phenomena are involved. The coordinate system and the 

symmetry of the crystal determine the tensor form. Due to the time dependency of μG  and 

E
G

, the induced dipole moment will oscillates in time, with consequent radiation emission. 

The polarizability can be expanded in as a Taylor series in the normal coordinates 
20 exp K Ki K r t

K KQ Q
π ν⎡ ⎤− ⋅ −⎣ ⎦=

G G
, with KK

G
 the wave vector of lattice wave K . Equation (3) becomes: 

 
( ) ( )0 022 ( )

0 exp exp
K Ko o

i K K r ti K r t

o o K K

K

E E Q
π ν νπ νμ α α

⎡ ⎤− ± ⋅ − ±− ⋅ − ⎣ ⎦′= + ∑
G G GG GG

 (4) 

with 
0

K

KQ

αα
⎛ ⎞∂′ = ⎜ ⎟
∂⎝ ⎠

. 

The first term of equation (4) describes the Rayleigh scattering, the oscillation of the induced 
dipole at the same frequency of the incident light. The second term represents the dipole 
oscillating at a frequency shifted by the frequency of the normal modes. Therefore, o Kν ν±  is 
the frequency of the scattered light, which propagates in the direction 0 KK K±

G G
. 

The Raman scattering is governed by the conservation of energy and by conservation of 

momentum, which implies that 0 S KK K K= ±
G G G

, being SK
G

 the wave vector of the scattered 

light. Namely, the orientation of the crystallographic axes with respect to the direction and 

polarization of the scattered light affects the Raman spectrum. In this respect, it is evident 

that Raman spectroscopy on single crystals gives information about the crystal symmetry. 

The intensity of the scattered light Is, which is the scattered energy per unit time, into a solid 

angle dΩ   is given by: 

 
2

ˆ ˆ
S i i sI I k e R e d= ⋅ ⋅ ⋅ ⋅ Ω

I
  (5) 

with Ii the irradiance  - energy per unit area per unit time - of the excitation incident on the 

sample, 2 2 44 sk aπ ν −= , 1 137a≈ , sν  the wavenumber of the scattered light, ˆ
ie ( ˆ

se ) the 
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polarization unitary vectors of the incident (scattered) light and R
I

 the scattering tensors. It 

is worth to note that the symmetry properties of the polarizability and the scattering tensors 

are the same. In the case where Raman scattering is realized at the submicron scale, a 

microscope objective has to be used. For simplicity, a backscattering configuration is 

preferred. In this configuration the scattered light is collected along the same direction of the 

excitation, as shown schematically in Fig. 2. 

 

Fig. 2. Schematic drawing of the backscattering geometry. The incoming light is directed 
along the x direction, with the polarization directed along the y direction. The scattered light 
is collected along the x direction and its polarization has components along the y and z 
directions. 

As an example, we consider the backscattering geometry with the set of axes as depicted in 

Fig. 2 and ˆ ||ie y , the Raman intensity is calculated as follows: 

 ( )

2

2

0

010 1

1

xx xy xz

s yx yy yz yy yz

zx zy zz

R R R

I R R R R R

R R R

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟∝ = +⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (6) 

The use of a determined incident and analyzed polarization in the Raman scattering 

experiments results in the selection of certain elements of R
I

. In this way, polarized Raman 
spectroscopy enables the determination of the Raman selection rules and the tensor 
symmetry. In the measurements on a single bulk crystal, it is much more convenient to use 
the crystallographic axis as a basis and express the polarizability tensor in this basis.  
As an example, we consider zinc-blende GaAs. The phonon dispersion is composed of 6 
different branches: two transverse and one longitudinal acoustical modes (TA and LA) as 
well as two transverse and one longitudinal optical modes (TO and LO). The optical photon 
modes are usually indicated E1(TO) and A1(LO). The notation E1 and A1 denote respectively 
to modes vibrating perpendicular and along the z axis. The Raman tensors for zinc blende 

GaAs are usually given in the base (100)x = , (010)y =  and (001)z = , resulting in: 

 

0 0 0

( ) 0 0 1

0 1 0

R x

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

, 

0 0 1

( ) 0 0 0

1 0 0

R y

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 and 

0 1 0

( ) 1 0 0

0 0 0

R z

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

  (7) 
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In this set of axes and in backscattering geometry with the direction of excitation and 
collection perpendicular to a {001} plane, the TO is forbidden while the LO mode is allowed. 
The intensity of the scattered light polarized along the x or y direction as a function of the 

angle between the polarization of the excitation and the (100)x =  can be calculated using 

equation (6). The theoretical azymutal dependence of the intensities is plotted in Fig. 3.  

 

Fig. 3. Theoretical azimuthal dependence of the LO mode of a bulk GaAs (001). Continuous 
and dashed lines represent the components along the [100] and [010] of the Raman signal, 
respectively. 

The selection rules and the dependency of the intensity on the polarization direction can be 

calculated even from the other surfaces in the same way. In backscattering geometry both 

the A1(LO) or E1(TO)  are observed from the (111) surfaces, while only E1(TO) is observed 

from the (110) planes. 

If we now consider the geometry of the nanowires, the important crystallographic axis 

correspond to the directions (0 11)x = − , (211)y = and ( 111)z = − , which should be used as 

a basis. A schematic drawing of the relevant axes on a reference bulk sample is shown in 

Fig. 4a: the x axis corresponds the direction of the incident and scattered light in the [0-11] 

direction, while y and z are the in plane axes respectively parallel to [211] and [-111]. The 

selection rules are obtained by transforming the Raman tensor and by expressing the 

polarization vectors into the new basis and, using eq. (6). The values of the Raman tensor for 

the transversal modes in that configuration for incident light along the x axis are:  

 

1 1
3 6

1 2 1
33 3 2

1 1 2
36 3 2

0

'( )R y

−

−

−

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟−⎝ ⎠

, 

1 1
3 6

1 2 1
33 3 2

1 1 2
36 3 2

0

'( )R z

−

−

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟−⎝ ⎠

  (3) 

The intensity of the scattered light polarized parallel or perpendicular to the [-111] direction, 

Is(E) and Is(┴), as a function of the angle α between the polarization of the excitation with the 

[-111] axis is: 
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2

20 0
4 2 cos

( ) (0 sin cos ) '( ) 1 '( ) 1 sin
3 3 2

0 0
sI R y R z

αα α α
⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟⊥ = + = +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

  (4) 

 

2

20 0
2 4

( ) (0 sin cos ) '( ) 0 '( ) 0 sin cos
33 2

1 1
sI R y R zα α α α

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟= + = +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

E  (5) 

Fig. 4b and c show the theoretical and experimental dependency of the two components of 
the scattered light, respectively. 
 

 

Fig. 4. (a) Crystal facets of the reference used for the measurement of the selection rules in 
GaAs. The axis correspond to the crystallographic directions: x=(0-11), y=(211) and z=(-111). 
(b) Theoretical azimuthal dependence of the TO mode of a bulk GaAs (0-11), as in (a). 
Continuous and dashed lines represent the components along the [-111]  and [211]  of the 
Raman signal, respectively. (c) Measured azimuthal dependence of the TO mode of a bulk 
GaAs (0-11). Diamonds and open circles represent the components along the [-111] and [211] 
of the Raman signal, respectively. The continuous line is a squared sine fit to the data, which 
describes polar behaviour. 

As mentioned above, this set of axis is the one that should be used for the investigation of 
single GaAs nanowires with [111] growth axis. For further clarity, a schematic drawing of 
the nanowire with the corresponding set of axis, as used in Raman backscattering 
experiment, is presented in Fig. 5a. We studied nanowires presenting a mixture of zinc 
blende and wurtzite structure. In this case, a further optical mode can be observed at k=0, 
namely the E2H (see section 4). Fig. 5b shows representative Raman spectra realized under 
the main four polarization configurations. The azymuthal dependence of E1(TO) and E2H is 
presented in Fig. 5c and d. The scattered light has been analyzed selecting the components 
with polarization parallel - Is(E) - and perpendicular - Is(┴) - to the z axis. The E1(TO) mode is 
polarized along the axis of the nanowire. Interestingly, also Is(┴) seems to have a slighty 
higher intensity when the incident light is polarized along the nanowire axis. The scattered 
light with polarization perpendicular to the z axis, exhibits a drop in the intensity, compared 
to the measurements on GaAs bulk (Fig. 4c). Indeed, the ratio of intensity between Is(E) and 
Is(┴) is about 5. Interestingly, the azymuthal dependence of the E2H mode associated with the 
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wurtzite phase exhibits a quite different behavior. In this case the maximum intensity of the 
scattered light is observed when the incident light is perpendicular to the nanowire axis, 
both for Is(E) and Is(┴) –though for the latter the dependence is less clear due to the low 
intensity-.  

 

Fig. 5. (a) Sketch of the configurations used for the measurement of GaAs nanowires in 
backscattering geometry. The crystal facets of the nanowire and the corresponding set of axis 
used as indicated: x=(0-11), y=(211) and z=(-111). (b) Representative Raman spectra realized 
under the main four configurations. For better illustration, the spectra have been normalized 
and shifted vertically. All spectra have been collected in the same position of the nanowire. 
Azimuthal dependence of the E1(TO) mode (c) and of the E2H mode (d), related to the wurtzite 
structure. Diamonds and open circles represent the parallel and perpendicular components of 
the Raman signal collected, respectively. The continuous lines are squared sine fit. 

å Effect of the dielectric mismatch 
In the case of nanowires, it is worth noticing that there is an enhanced response of the 
Raman scattering for polarizations along the nanowire axis. As it will be shown in the 
following, this is partly due to the one-dimensionality and to the small diameter of the 
nanowires, as it has been reported in literature (Cao et al., 2007; Livneh et al., 2007; 
Papadimitriou & Nassiopoulou, 1998; Pauzauskie et al., 2005; Duesberg et al., 2006; 
Fréchette & Carraro, 2006; Cao et al., 2006; Xiong et al., 2006). Xiong et al. found that 

nanowires with a diameter d<<λ/4, with λ the wavelength of the excitation, show a dipolar 

behavior. Namely, the Raman scattering intensity is ~ 2
0 cosI α , with 0I  the incident laser 

intensity and α  the angle between the electric field of the laser and the nanowire axis. For 

larger diameters, d>>λ/4, the nanowires present a multipolar character.  The authors address 
the origin of this effect to the scattering of the electromagnetic field from a dielectric cylinder of 
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nanoscale dimensions. The calculations show that the electric field inside the nanowires with 
bigger diameter is increased when the electric field of the excitation is either parallel or 
perpendicular to the nanowire axis. Instead, for smaller diameters, the electric field inside the 
nanowire is strongly suppressed when the electric field of the excitation is perpendicular to the 
nanowire axis. Experiments on silicon nanocones showed that the enhancement in the Raman 
scattering, due to the enhanced internal field, decreases with increasing the nanowires 
diameter and increases with the wavelength of the excitation, features which suggest a 
resonant nature (Cao et al., 2006). This enhancement in the Raman scattering is in analogy with 
absorption, photoluminescence and photocurrent measurements (Cao L., 2009; Wang J. 2009; 
Thunich S., 2009).  

2.2 Appearance of new modes: surface and breathing modes. 
Studies comparing Raman scattering experiments of bulk and nanostructured materials 
have been reported in literature for several different kind of systems. It is usually observed 
that the transversal optical (TO) and the longitudinal optical (LO) modes have a position in 
energy close to that observed in bulk. When scaling down the size and the dimensionality of 
the structures, the position can change (see section 3.1). Additionally, new Raman modes 
can be found. Effects related to the shape of the system can become significant. The existence 
of boundary conditions at the nanoscale gives rise to electric and polarization forces. The 
surfaces represent a new mechanical boundary, since the surface atoms are “less bound” 
and “feel” a different local field from the bulk. This has consequences even in the 
propagation of an optical phonon, where the oscillating dipoles - created by the out of phase 
oscillation of ions and cations – interact by a dipole-dipole interaction. Mahan et al. 
developed and presented a model which describes the variation of the long range dipolar 
interactions due to the nanowires geometry, leading to the split of the TO and LO modes in 
polar semiconductor nanowires (Mahan et al., 2003). Indeed, the highly anisotropic shape of 
the nanowires determines different contribution in the dipolar sums for the components in 
the cross sectional plane – x and y – which are truncated by the finite size, from the one 
along the nanowire growth axis – z -. Accordingly, the local electric field is modified too. 

The dispersion relation of the optical phonon can be related to the local spring constant ( 2
oω ) 

and to the local electric field ( Eμ ):  

 
*

2 2
o

e
q q E

M
μ μ μω ω= −   (6) 

where  e* is the Szigeti charge and M is the reduced mass of the ion pair. The local field can 
be expressed as: 

 *E T e q Eμ μν ν να⎡ ⎤= − +⎣ ⎦   (7) 

with Tμν the components of the dipole-dipole interaction, α the polarizability of the unit cell 

and αEν  the induced dipole in the same cell from core polarization. The anisotropy in the 

dipole sums (
4

6
xx yy

o

T T
π
ν

= =  and 
4

3
zz

o

T
π
ν
−

= ) for a thin wire with L R>>  , with L length and 

2R  diameter of the wire, results into the anisotropy of the dielectric function, whose tensor 
has now two different components, xx yyε ε=  and zzε , expressed by: 
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2 2

2 2
( ) ( ) , ,

Lj

jj jj

Tj

j x z
ω ω

ε ω ε
ω ω

−
= ∞ =

−
 (8) 

If we consider the optical phonons in a nanowire, equations (6) and (7) can be solved 
considering the uniaxial geometry, thereby obtaining: 

 
( )2 2 2 2 2 ( ) 2

9 ( )
z

Lz LO O p

z

ε
ω ω ω ω

ε
∞ +

= = +
∞

  (9) 

 
( )2 2 2 2 ( ) 2

9
z

Tz TO O p

ε
ω ω ω ω

∞ +
= = −   (10) 

with 
4

1
1 4 3

o

o

V

V

πα
ε

πα
= +

−
high frequency dielectric constant and

*2
2 4
p

o

e

MV

πω =   ion plasma 

frequency, for the z direction, and  

 
( )2 2 2 ( ) 2

9( ( ) 1)
x

Lx O p

x

ε
ω ω ω

ε
∞ +

= +
∞ +

  (11) 

 
( )2 2 2 7 ( ) 2

9( ( ) 1)
x

Tx O p

x

ε
ω ω ω

ε
∞ +

= +
∞ −

  (12) 

with 
3 ( ) 1

( )
( ) 1
z

x

z

εε
ε

∞ −
∞ =

∞ +
 for the other directions. The predicted positions of the triplet arising 

from the split of the optical phonon due to the nanowire geometry are very close and 
therefore not always easily distinguishable. For example, in the case of GaAs or GaP 

nanowires, the Lxω and Txω  modes are about 2 cm-1 shifted from the Lzω mode (Cao et al., 

2007). Nevertheless, an indication of the split can be given by the different position of the 
LO band in the nanowire spectra respect to the bulk. It has been shown that this shape 
dependence can explain even the occurrence of an angular dependencies of the phonon 
modes which otherwise would not be expected from the selection rules (Livneh et al., 2006; 
Fréchette & Carraro, 2006; Cao et al., 2006). 
The reduction in the dimensionality and the presence of edge/boundaries in the crystal can 
also lead to the appearance/activation in the Raman spectra of inactive Raman modes (silent 

modes) at the Γ point of the Brillouin zone. This is due to the fact that the symmetry is 
changed by the existence of the edges, which leads to a rearrangement of the lattice 
structure. This has been especially observed in nanocrystals (Li et al., 2002; Kawashima & 
Katagiri, 1999). 
Furthermore, there are other size-related phonons appearing when dealing generally with 
nanostructures, such as the surface optical phonons (SO) and breathing modes. Several 
works have reported the presence of a further peak in the Raman spectra of semiconductor 
nanowires or nanoparticles which have been assigned to SO phonons (Gupta et al., 2003a; 
Shan et al., 2006; Lin et al., 2003; Zeng et al., 2006; Spirkoska et al., 2008). The surface optical 
phonons are generated at the interface between different materials with different dielectric 
functions and propagate along the interface. The atoms involved in their propagation are 
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those close to the surface, so that the amplitude of the oscillations decays exponentially with 
the distance from the surface. This mode is activated by a breaking of the translational 
symmetry of the surface potential, which in the case of the nanowire can be addressed to the 
presence of roughness, sawtooth faceting on the nanowire sidewall or to a diameter 
oscillation along the nanowire length. 
There are two characteristics which are distinctive of the SO modes and can therefore allow 
a reliable assignment of the mode: the dependence of the position (1) on the dielectric 
constant of the medium surrounding the wires and (2) on the diameter (or on the period of 
the diameter oscillation) of the wires. Indeed, it has already been shown that the SO mode 
position down shift increasing the dielectric constant of the surrounding optical medium 
and decreasing the nanowire diameter (Shan et al., 2006; Adu et al., 2006a; Spirkoska et al., 
2008). Furthermore, the frequency of the SO modes at the center of the Brillouin zone is 
located between those of the TO and the LO.  
The SO modes dispersion at the interface between a semiconductor and a dielectric material 
can be calculated imposing the condition: 

 ( ) 0mε ω ε+ =   (13) 

with ( )ε ω  the dielectric function of the semiconductor and mε  the dielectric constant of the 

medium. In the case of an infinitely long cylinder equation (13) becomes: 

 ( ) ( ) 0m f qrε ω ε+ =   (14) 

where ( )f qr  is given by  

 ( ) ( ) ( )
( ) ( )

1

1

o

o

I qr K qr
f qr

I qr K qr
=   (15) 

With q the phonon wavevector, r the nanowire radius and ( )iI qr and ( )jK qr  the modified 

Bessel functions. Indeed, the dispersion relation for a SO mode for an infinitely long 

cylinder can be expressed by: 

 ( ) ( )

2

2 2 p

SO TO

m

q
f qr

ω
ω ω

ε ε∞

= +
+

�
  (16) 

with TOω the TO mode frequency, pω� the screened ion plasma frequency given by 

( )2 2 2
p LO TOω ε ω ω∞= −� , ε∞ the high frequency dielectric constant of the bulk material, mε  the 

dielectric constant of the surrounding medium. Equation (16) establishes, therefore, the 
dependency of the surface phonon energy on the external medium and on the size of the 
wire, since the position of the surface optical phonon can be related to the dielectric constant 
of the surrounding medium as well as to the nanowire radius. Furthermore, values of q  for 
the activation of the SO mode can be determined experimentally (Gupta et al., 2003a). 
Instead, the line width of the surface mode has not been yet well understood.  
The effect of the position of the SO modes can be clearly observed by comparing 
semiconductor nanowires with various diameters. As an example, we show the Raman 
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spectra of GaAs nanowires of diameters 160 and 69 nm in Fig. 6a. For the nanowire with the 
largest diameter, the SO mode is barely observed as the position is very close to the LO 
phonon. As expected, the SO mode shifts to lower wavenumbers for smaller diameters, as it 
can be seen in the spectra obtained for nanowires with an average diameter of 69 nm. The 
entire trend of the position as a function of the diameter is shown in Fig. 6b. There, the line 
indicates what would be expected for nanowires with a circular section–GaAs nanowires 
exhibit a hexagonal section, which explains the discrepancy with the experimental data-. 
More details on the experiments can be found elsewhere (Spirkoska et al., 2008). 
 

 

Fig. 6. a) Raman spectra of GaAs nanowire bundles with respectively an average diameter of 
160 and 60 nm. The SO mode can be observed on the left of the LO mode b) Evolution of the 
SO phonon position as a function of the diameter of the nanowires. The line corresponds to 
the theoretical values expected for cylindrical GaAs nanowires. 

Indeed, it has been proved that the cross section of the nanowires influences the surface 
mode dispersion (Adu et al., 2006a; Xiong et al., 2006). In these works, a model for nanowire 
with rectangular cross section has been developed. By setting z as growth direction and 

defining ( , )iL i x y=  the edges of the rectangular cross section, the SO dispersion can be 

found solving the equations: 

 ( ) tanh 0
2
i i

nw m

qL
ε ω ε⎛ ⎞ + =⎜ ⎟

⎝ ⎠
 (17a) 

 ( )coth 0
2
i i

nw m

qL
ε ω ε⎛ ⎞ + =⎜ ⎟

⎝ ⎠
 (17b) 

where ( , )iq i x y=  is the phonon wavevector of the modes propagating along x or y, which 

are the directions affected by the size effects, assuming the wire infinitively long along the z 
direction. Equation (17a) gives the symmetric mode, while equation (17b) the asymmetric 
one. Two more conditions have to be fulfilled: 

 2 2 2
x yq q q+ =  (18a) 

 x x x yq L q L=   (18b) 

www.intechopen.com



 Nanowires 

 

238 

the latter one imposing the same parity to the optical phonon potential in the x and y 
directions. The symmetric and asymmetric SO phonon dispersion can then be expressed by: 

 2 2

tanh
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( )
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i i
o m

SO S TO

i i
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q
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ε ε
ω ω

ε ε∞
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The comparison between equations 16 and 19 for the circular and rectangular sections leads 

to the conclusion that both the shape and size of the cross section have an important 

influence on the positon of the SO phonon.   

Beside the surface modes, it is worth shortly mentioning another mode found in nanowires 

which cannot be observed in bulk materials: the Radial Breathing Mode (RBM). This mode 

was first observed in carbon nanotubes, corresponding to the atomic vibration of the carbon 

atoms in the radial direction. Its frequency was found to be highly dependent on the 

nanotubes diameter (Alvarez et al., 2000; Jorio et al., 2003; Maultzsch et al., 2005).  The same 

mode has been observed even in semiconductor nanowires (Thonhauser & Mahan, 2005; 

Lange et al., 2008), and in both cases the inverse dependence on the nanowire diameter has 

been found. Assuming the nanowire as an infinitely long isotropic cylinder, the linear 

elasticity theory furnishes an expression of the RBM: 

 
( )

( )( )
12

1 1 2
n

E

d

ντω
ρ ν ν

−
=

+ −
 (17) 

with ǎ the Poisson’s ratio, ρ the nanowire specimen density, E the Young’s modulus of the 

nanowire material and nτ given by ( ) ( )
( ) ( )1

1 2

1
n n

oJ J
ν

τ τ τ
ν

−
=

−
where iJ  are the Bessel 

functions.  Equation (14) establishes the 1 d  dependence of the radial mode frequency, 

being all the other terms dependent only on the material properties. 

3. Confinement, heating effects and Fano resonance scattering 

3.1 Phonon quantum confinement in nanowires  
Some of the novel fundamental properties found in nanostructures are related to carrier and 

phonon confinement (Fischer et al., 2006; De Franceschi et al., 2003; Wanwees et al., 1988; 

Samuelson et al., 2004; Hu et al., 2007; Shorubalko et al., 2008; Rao et al., 1997; Bawendi et al. 

1990; Lehmann et al., 1991). Confinement is usually correlated with tailoring novel physical 

properties, often giving rise to novel applications (Faist et al., 1994; Somers et al., 2008; 

Steckel et al., 2003). Raman spectroscopy is an ideal and relatively straightforward technique 

to test quantum confinement. Moreover, it can be realized under many extreme and non-
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extreme conditions, leading to an ideal technique for the investigation of processes in matter 

at low/high temperatures and/or high pressures (Iwasa et al., 2004; Kim et al., 1996; Wright 

et al., 1997; Weinstein et al., 1975; Congeduti et al., 2001). Indeed, phonon scattering in 

crystals of small dimension leads to a redshift and broadening of the first order Raman line. 

This is due to the relaxation of the q=0 selection rule when the volume objects becomes of 

the order of few phonon wavelengths. For nanoscale object such as nanocrystals or 

nanowires, the exact shape of the Raman peak becomes a convolution of the dispersion 

relation of phonons in the material (Richter et al., 1981; Campbell et al., 1986). Such effect 

was initially observed in nanocrystals and more recently in nanowires (Fauchet et al., 1988; 

Adu et al., 2006a; Jalilian et al., 2006; Fukata et al., 2006). In the particular case of nanowires, 

the confinement occurs in the diameter direction. It has been predicted and experimentally 

confirmed that the Raman scattering intensity ( , )SI dω for a diameter d at a photon 

frequency ω relative to the laser frequency is given by (Campbell et al., 1986): 

 

21

2
20
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( , ) 2

( )
( ( , ))

4

S O

O

C q
I d I q dq

T
q T

ω π
ω ω

⊥
⊥ ⊥

⊥

= ⋅ ⋅ ⋅
Γ− +

∫  (18) 

Where 
2

( ) exp( 2 )OC q a q dα⊥ ⊥− ⋅≺ is the confinement function, a0 the lattice constant of the 

material, α a material dependent constant, q⊥ is the phonon wave vector in perpendicular to 

the nanowire axis, 1 Γ the phonon lifetime. In the case where Raman spectroscopy is 

realized on nanowire pads ensembles, it is essential to take into account of the nanowire 
diameter distribution for the exact modeling of the experimental curves (Adu et al., 2005). 
These observations extend to most of materials systems from silicon, germanium, zinc oxide, 
gallium phosphide, zinc sulfide... Equation (18) suggests that reducing the diameter of a 
cylindrical nanowire results in a redshift (towards lower frequencies) and a broadening of 
the Raman line. The exact shape of the spectrum is given by the equation and it would vary 
for other types of geometry, such as spherical or cubical nanoparticles or cylindrical or 
prismatic nanowires. In the case of silicon, a maximum shift of 8 cm-1 is observed for 4 nm 
nanowires (Adu et al., 2005).  
In the following, we present an example of spatially resolved Raman spectroscopy 

measurements, indicating regions of the nanowire where the functional material achieves 

nanometer dimensions. Thereby, it helps to predict if it will be possible to obtain functional 

electronic devices with the nanowires. The samples consisted of germanium nanowires 

grown by chemical vapor deposition by using indium as a catalyst, the details reported 

elsewhere (Xiang et al., 2009). Structural analysis of the nanowires evidenced that they 

consisted in a crystalline core, surrounded by an amorphous shell, as shown in Fig.7a. 

Interestingly, it was shown that the crystalline core was not continuous along the nanowire 

and that it could shrink down to ~10 nm in diameter –see Fig. 7b-. The shrinking of the core 

poses many problems if these nanowires are to be used for electronic devices, as they will 

inevitably be short-circuited. A non-destructive diagnosis such as Raman can provide the 

information on what regions of the nanowire can be used for the devices. For that, it is 

necessary to realize scanning Raman spectroscopy measurements along the whole length of 

the nanowire. An example is shown in Fig. 7c. There, 100 nm spaced Raman spectra along 
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an 86 nm wide germanium nanowire are shown –the diameter was obtained by measuring 

the height in an Atomic Force Microscope scan-. In the measurements, only the peak 

corresponding to the TO/LO phonon mode of crystalline germanium is observed. In the 

small diameter nanowires we do not observe the contribution of the amorphous band. This 

could be due to various effects: 1) due to the small diameter, the fraction of amorphous 

germanium is significantly smaller than for a nanowire with larger diameter 2) the density 

of the amorphous shell is smaller than that of the crystalline core. For reference, we have 

plotted the position of the unstrained germanium. Along the 2 Ǎm of the scan, a recurrent 

shift towards lower frequencies is observed. The shift can be attributed to the phonon 

confinement in the core of the nanowire. The data fit well with the model in which the 

nanowire is assumed to have a spherical nancrystal shaper shape. According to this, the 

observed downshift of 6 cm-1 corresponds to a diameter smaller than 30 nm. The spatially 

resolved Raman scattering measurements indicate a variation of the core diameter along the 

nanowire, which are in agreement with the transmission electron micrographs realized. 

 

Fig. 7. a) Scanning TEM annular dark field micrograph obtained in one part of a 10 micron 
long germanium nanowire, showing a 40 nm multi-crystalline core, capped with a  21 nm 
thick amorphous layer b) Bright field TEM micrograph of a part of a germanium nanowire 
where the crystalline core is 5 nm. The amorphous shell is 40 nm thick,  
c) Waterfall plot of Raman spectra taken every 100 nm of a thin nanowire. As a guide to the 
eye, the light grey line indicates the position of the TO/LO unstrainedGe mode, and the 
thick dashed line indicates the position of the Raman mode in the nanowire. 

Relatively recent studies have shown that one should be very precautious in the analysis of 
quantum confinement measurements (Campbell et al., 1986; Fauchet et al., 1988). Indeed, 

note that in the eq. (18) the phonon frequency ( )O qω ⊥ and the phonon lifetime 1 Γ are a 

function of temperature. One should also note that the radiation power density incident on 
the nanowire increases dramatically for small diameter nanowires. Indeed, for equal 

diameter spot the volume of sample illuminated is proportional to 2d . As a consequence, 

the power density received by the sample is proportional to 1/d2. This immediately points 
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out the possibility of inevitable heating in the case of extremely small diameter nanowires 
(the ones expected to exhibit quantum confinement). Additionally, high excitation power 
densities create a high density of free carriers. This is especially true for indirect bandgap 
semiconductors such as silicon which exhibit long recombination times. The carriers can also 
interfere with the phonons giving rise to Fano phenomenon and create an asymmetric line 
shape (Compaan et al., 1985). In the next sections we discuss these effects on the shape of the 
Raman spectra. 

3.2 Heating effects during Raman spectroscopy measurements 
A typical effect of laser irradiation on nanoscale samples is heating. This effect is amplified 
due to the relative increase in the power density, consequence of the sample geometry. It is 
also a consequence of the lower thermal conductivity of nanowires and of thermal 
insulation between the nanoscale object –e.g. nanowire- and the substrate (Li et al., 2003). 
The usual way to increase the temperature of samples during Raman spectroscopy 
measurements is to increase the incident irradiation power. An example of the effect on 
heating on the Raman spectrum is shown in Fig. 8. There, Raman spectroscopy 
measurements of a single GaAs nanowire as a function of the incident power density are 
shown. Clearly, both the TO and the LO modes become increasingly asymmetric as the 
incident power density is increased. A shift of the peak position towards lower 
wavenumbers is also clear. Between the two effects, the asymmetric broadening is the first 
one that arises. This tendency can be clearly seen in the graph of Fig. 8b, where the evolution 
of the peak positon and FWHM is shown for each excitation power.  
 

 

Fig. 8. Raman spectra of zinc-blende GaAs nanowire bundles collected increasing the power 
density from 19.3 till 212.2 kW/cm2. b) Position and FWHM of the TO mode of the spectra 
shown in a), as a function of the power density. The dashed lines are linear fit to the data. 

The temperature of the nanowire T upon laser heating is usually estimated by calculating 
the ratio of the integrated intensity between the Stokes and Anti-Stokes peaks –IS and IAS- at 
the phonon frequency ωo, which is (Balkanski et al., 1983): 

 expS o

AS

I

I KT

ω⎛ ⎞= ⎜ ⎟
⎝ ⎠

=
  (19) 

In the case of homogeneous heating of a material, the effect of temperature on the Raman 
line shape is due to: 1) the decrease in the phonon frequencies ωo because of thermal 
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expansion and 2) to the increase in the inverse optical phonon lifetime 1 Γ  for q=0 

(Balkanski et al., 1983). For a uniform heating, the effect of temperature increase should 
homogeneously broaden and shift the Raman line. However, experimentally an asymmetric 
broadening is always observed (Jalilian et al., 2006; Piscanec et al., 2003). This observation 
can only be explained by the existence of temperature gradients along the nanowire. Indeed, 

one should consider the laser intensity distribution 
( )

( )
z

a
oI z I e

−
= – Gaussian- and the 

induced temperature response T(z) due to the thermal conductivity and capacity of the 
nanowire. Then, equation 18 is transformed in the following expression for the description 
of the line shape function (Adu et al. 2006b): 
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It has been demonstrated that the use of this equation for the fitting of the Raman spectra is 
essential to decouple the effect of thermal heating and confinement (Adu et al., 2006a, Adu 
et al., 2006b).  
An additional consequence of the heating may be structural phase transformation. Indeed, 
other crystalline structures may be rendered stables at higher temperatures. This 
phenomenon may be accentuated by the geometry of nanoscale objects, which exhibit a 
much larger surface-to-volume ratio (Wickham et al., 2000). As an example, we have 
investigated the evolution of Raman spectra of silicon nanowires with hexagonal structure 
after heating them with the excitation laser –the measurements were realized at room 
temperature-. The hexagonal or lonsdaleite structure is a metastable phase of silicon under 
normal conditions, also denominated as Si-IV. It has been reported by several authors in the 
form of nanowires (Fontcuberta i Morral et al., 2007; Lopez et al., 2009; Arbiol et al.; 2008). 
Being Si-IV a metastable phase, it is expected that it may transform into diamond structure 
(Si-I) upon heating. In Fig. 9, the spectra of an ensemble of silicon nanowires exhibiting the 
Si-IV phase is shown. The Raman spectra after three annealing treatments of 200s at 60, 100 
and 140 kW/cm2 are also shown. The Raman spectra at the end of the irradiation are fitted 
to obtain the temperature, which corresponds to 200, 440 and 600oC. After the first  
 

 

Fig. 9. Raman spectra of Si-IV nanowire bundles as grown and after heating them by 
illumination with the Raman objective at temperatures of 1) 200oC 2) 440oC and 3) 600oC.  
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treatment, the Raman peak related to the Si-IV phase disappears completely, and a new 
unique peak at 515cm-1 appears. By successive annealing, the peak shifts to 517 and 519 cm-1. 
This indicates that the sample structure continues to consist in diamond silicon. 
Additionally, the correlation length of the phonons increases, in agreement with the TEM 
results showing an improvement in the crystalline structure –increase in grain size- (Prades 
et al., 2007). 

3.3 Fano resonant scattering  
Finally, we address another effect resulting from the use of high excitation power densities 
in Raman scattering experiment. High excitation power densities create a high density of 
free carriers, which can interfere with the phonon scattering. Fano interference in Raman 
scattering has been extensively studied in highly doped bulk silicon samples (Belitsky et al., 
1997; Arya et al., 1979). It results in an asymmetric line shape of the first order phonon 
Raman peak, following the equation (Madidson et al., 2002): 

 
( )2

2
( )

1
o

q
I C

ε
ω σ

ε
+

= +
+

  oω ωε −
=

Γ
 (21, 22)  

Where ω is the scattered photon energy, ωo and Г are respectively the resonance frequency 
and width, and σo and C are constants. The influence of Fano scattering on the Raman 
spectra is determined by q, the asymmetry parameter. In fact, it has been generally found in 

bulk silicon that 1 q  is proportional to the free carrier concentration. The curve becomes 

Lorenzian for q→∞ and the asymmetry increases as the value gets smaller. In Fig. 10, we 

have plotted the shape of the Raman peak of germanium for different values of q. There, it is 
clear that values of q of 10 start to be enough to create an asymmetry in the Raman 
spectrum. Experimentally, values of q between 35 and 4 have been measured for highly 
doped p-type bulk silicon samples (Madidson et al., 2002). In the case of undoped silicon 
nanowires, values of 8 and 17 have been reported (Gupta et al., 2003b). These studies have 
demonstrated that taking into account the effect of Fano interference, when fitting the 
measured Raman spectra. Indeed, Raman scattering of small diameter nanowires is not a 
straightforward measurement. Effects like quantum confinement, diameter distribution, 
inhomogeneous heating and Fano interference have to be taken into account correctly for 
the accurate interpretation.   
 

 

Fig. 10. Illustration of the effect of decreasing q in the asymmetry of one phonon Raman 
spectra of germanium –calculations following eq. 21).  
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4. Existence of different crystallographic phases in a nanowire: Study of 
GaAs nanowires with wurtzite/zinc-blende structures  

Most of the binary octet semiconductors such as GaN and SiC present either zinc-blende or 
wurtzite structure, which correspond to the cubic and hexagonal structure with two atoms 
per basis. From the crystallographic point, the two structures differ only in the stacking 
periodicity of the atomic layers along the c-axis of the hexagonal structure. The stacking 
sequence is ‘abcabc’ for the cubic structure and ‘abab’ for the hexagonal one, as shown in 
Fig. 11 (Park et al., 1994).  

 

Fig. 11. Schematic drawing of the atomic arrangement in zinc-blende (a) and wurtzite (b) 
structures. The arrows indicate the [1-11] and the [0001] nanowire growth axes, respectively. 

The spectroscopic, electronic and thermal conductivity properties of these two structures 
and of their polytypisms can be very different (Yeh et al., 1992). Especially interesting are 
structures formed by the two crystallographic phases, a sort of homo-heterostructure, which 
exhibit novel optical and electronic properties (Spirkoska et al., 2009). Controlled 
reproduction of polytypisms in materials give new degrees of freedom in the realization of 
electronic devices and in the structural bandgap engineering (Raffy et al., 2002; Algra et al., 
2008; Mishra et al., 2007; Arbiol et al. 2009).  
The different stacking order of the planes implies different symmetry groups. This, together 
with the slightly different lattice parameter should lead to different vibrational properties. 
Nevertheless - as it has been shown in the case of GaN, SiC and Si - the phonon dispersion of 
hexagonal structure can be deduced with good accuracy  from the phonon dispersion of the 
cubic one by just considering the different stacking of the ‘abc’ and ‘ab’ layers (Harima, 2002; 
Loudon, 2001; Kobliska & Solin, 1973). The phonon dispersion of the cubic structure along the 
[111] direction corresponds to the ГåL direction in the Brillouin zone. For clarity, we remind 
that the c axis of the hexagonal structure can be indexed in the 4 index Miller notation as 
[0001], and it is equivalent to the [111] axis of the cubic structure. The unit cell length along the 
[0001] axis of the hexagonal structure is double than that of the cubic structure along the [111] 
direction, since they correspond to the width of two and one bilayer, respectively. 
Consequently, the phonon dispersion of the hexagonal structure along the [0001] axis can be 
approximated by folding the one of the cubic structure along the [111] axis, as shown in Fig. 12 
for the cases of GaN, GaAs and Si (Harima, 2002; Zardo, 2009b; Giannozzi, 1991).  
As a consequence of the folding, the phonon modes at the L point are taken back at the Г 
point of the Brillouin zone, giving rise to four new modes. As an example, in the case of 
GaAs we have the appearance of the E2 and B1 modes in the optical branches. In 
backscattering geometry Raman spectroscopy only the E2 mode can be observed and it 
should be located at lower frequencies than the E1(TO) mode. For silicon, a new optical 
branch appears down from the degenerate TO/LO one. One expects to observe a novel 
vibrational mode around ~500 cm-1, 20cm-1 below the q = 0 TO/LO mode. 
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Fig. 12. Schematic representation of the phonon dispersion in GaN (a), GaAs (b) and Si (c). 
Phonon branches along [111] in the zinc-blende structure are folded to approximate those of 
wurtzite structure along [0001]. 

In this context, even the incidence of stacking faults and twins in nanowires gains attention 

and it is currently under deep investigation (Bandet et al., 2002; Lopez et al., 2009; Algra et 

al., 2008; Caroff et a., 2009; Zardo et al., 2009a; Conesa-Boj et al., 2009; Arbiol et al., 2009; 

Spirkoska et al., 2009). Indeed, the atomic stacking can be altered locally from a rotationally 

twin plane, so that when it occurs in a cubic nanowire gives rise to the occurrence of a 

monolayer of the hexagonal phase (Arbiol et al., 2009). Furthermore, twins can also cross or 

exist in high density, resulting into the formation of different structures, localized 

superstructures or heterostructure phase domains. For example, twinning superlattices are 

formed whenever twins occur with a certain periodicity. Additionally, the intersection of 

transversal and lateral twins (twins respectively along or with an angle with the growth 

axis) can lead to the formation of nanoscale domains with diamond hexagonal phase in the 

typical silicon cubic structure (Conesa-Boj et al., 2009). As already mentioned above, one 

should keep in mind that even their polytypisms can have very different physical properties 

from the pure crystalline phases (Lopez et al., 2009). As it will be shown in the following, 

Raman spectroscopy is a versatile technique that helps identify materials and areas in the 

materials with different crystal structures and/or polytypisms. The correlation with 

Transmission Electron Microscopy measurements can sustain and complement the 

information.  

As an example, we show the case of GaAs nanowires with crystalline structures not stable in 

the bulk. The stable crystal structure for bulk GaAs is the zinc-blende. However, it has been 

shown GaAs nanowires can crystallize in the wurtzite structure, as shown in Fig. 13.  

Fig. 14 contains an intensity map of the polarization dependent Raman spectra measured 

with a spacing of 100 nm along the nanowire. The incident and analyzed polarization are 

parallel respect to each other, and both perpendicular (Fig.14a) or parallel (Fig. 14b) to the 

nanowire growth axis z. 
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Fig. 13. HRTEM micrographs and power spectra analyses corresponding to GaAs NWs from 
a sample showing high content of Wurtzite and ZB regions with few monolayers. 
 

 

Fig. 14. Color plots showing polarized Raman scans from a nanowire consisting of  30% of 
wurtzite structure, obtained using different polarization direction of the incident light: a) 
Perpendicularly polarized Raman scan from perpendicularly polarized incident light:  

( ),x y y x   b) parallel polarized Raman scan from parallel polarized incident light: ( ),x z z x . 

The E1H (TO) mode is observable for both polarization configurations at 266.7 cm-1, as 
expected for GaAs nanowire. When the polarization of the incident light is perpendicular to 
the nanowire axis, a further peak appears. This peak is positioned at about 256cm-1, which 
corresponds to the E2H (TO) mode from the wurtzite GaAs phase, as a result of the folding of 
the E1 (TO) branch of the phonon dispersion in the zinc blende structure, as illustrated 
above. The E2H (TO) mode intensity is higher at one end of the nanowire and decreases 
towards the middle, in good agreement with the percentage of wurtzite phase in the 
nanowire. Furthermore, in confirmation of the assignment of this peak to the E2H (TO) mode 
of the wurtzite structure, its dependence on the polarization of the excitation follows the 
Raman selection rules (see Fig. 5).  
Another interesting feature of the measurements presented in Fig. 14 is the presence of the 
A1(LO) mode. Even though the A1 (LO) mode is not allowed for the backscattering 
configuration on {110} family surfaces, to which the nanowires side facets belong, it is 
weakly present at 290.9 cm-1 at one end of the nanowire. Its presence is related to the 
occurrence of highly dense twins in the zinc blende crystal structure, which cause that the 
facets of the nanowire are not of the family {110} anymore, but {111}. The A1 (LO) mode is 
allowed for backscattering from {111}. The small {111} faceting at the end of the nanowire 
can explain the increased intensity of the A1 (LO) phonon mode.  
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As a further example, we present Raman spectroscopy measurements on nanowires with a 
relatively high density of twins. Indeed, Raman spectroscopy is extremely sensitive even to 
structural defects such as the presence of dense stacking faults or twins (Lopez, 2009). Fig. 
15 shows Raman spectra from silicon nanowires grown using Indium as catalyst. The 
nanowires present the [112] growth direction with very high density of twin defects along 
the {111} planes and consequent formation of hexagonal domain. In addition to the peak 
related to the TO/LO phonon, the presence of an additional peak at about 495 cm-1 can be 
observed (Prades et al. 2007). The existence of this peak has been explained by the presence 
of the highly twinned domains and hexagonal phase in nanowires (Kikkawa et al., 2005; 
Fontcuberta i Morral et al., 2007; Prades et al., 2007; Algra et al., 2008). The position of the 
band at 495 cm-1 coincides with the energy with the zone boundary of the phonon 
dispersion of silicon in the L point. 

 

Fig. 15. Raman spectra of indium catalyzed silicon nanowires presenting high density of 
twins defects. Beside the TO/LO degenerate peak at 520 cm-1, another peak at about  
495 cm-1 appears. 

5. Conclusions  

We have presented the fundamentals for understanding Raman scattering on 
semiconductor nanowires. The basic physical principles of the specific phenomena related to 
the nanowire nature were presented. We have developed the theory and presented some 
experimental data on novel phenomena such as inhomogeneous heating, quantum 
confinement, Fano effect, the existence of surface and breathing modes and the existence of 
novel crystalline phases.   
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providing a series of self-contained monographs focusing on various nanowire-related topics. Each

monograph serves as a short review of previous results in the literature and description of methods used in the

field, as well as a summary of the authors recent achievements on the subject. Each report provides a brief

sketch of the historical background behind, the physical and/or chemical principles underlying a specific

nanowire fabrication/characterization technique, or the experimental/theoretical methods used to study a given

nanowire property or device. Despite the diverse topics covered, the volume does appear as a unit. The

writing is generally clear and precise, and the numerous illustrations provide an easier understanding of the

phenomena described. The volume contains 20 Chapters covering altogether many (although not all)

semiconductors of technological interest, starting with the IV-IV group compounds (SiC and SiGe), carrying on

with the binary and ternary compounds of the III-V (GaAs, AlGaAs, GaSb, InAs, GaP, InP, and GaN) and II-VI

(HgTe, HgCdTe) families, the metal oxides (CuO, ZnO, ZnCoO, tungsten oxide, and PbTiO3), and finishing

with Bi (a semimetal).
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