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1. Introduction

The measurement analysis and diagnosis problem is gaining increasing consideration worldwide
in both theory and application. This is due to the growing demand for higher reliability in
control systems, and hence the importance of having a monitoring system that detects any
existing measurement errors, and indicates their location and significance in the control loop.
The observer-based approach is one of the most popular techniques used for fault diagno-
sis in general and for the measurement error diagnosis problem in particular. Many standard
observer-based techniques exist in the literature providing different solutions to both the theo-
retical and practical aspects of the problem for the Linear Time-Invariant (LTI) case (see (Frank,
1990; Willsky, 1976) for good surveys on this subject). The main idea behind the observer-
based approach is to estimate the outputs of the system from the measurements by using
either static gain observers in a deterministic framework (Zhong et al., 2003) or Kalman filters
in a stochastic framework (Chen et al., 2003). The output estimation error is then used as the
residual signal, which can be analyzed further to obtain an accurate estimation of the mea-
surement errors which affect the control system. Unlike the LTI case, however, the nonlinear
problem lacks a universal approach and is currently an active area of research (see (Adjallah
et al., 1994; Garcia & Frank, 1997; Hammouri et al., 1999; Kabore & Wang, 2001; Vemuri, 2001;
Wang et al., 1997; Yu & Shields, 1996) for important results in this direction). The main ob-
stacle in the solution of the observer-based nonlinear fault detection problem is the lack of a
universal approach for nonlinear observer synthesis. Robot manipulators, characterized by
largely nonlinear dynamics, are no exception to this dilemma and therefore need a unified
framework for measurement error detection and diagnosis.
The well known Euler-Lagrange model of a robot manipulator is as follows (Sciavicco &
Sicliano, 1989):

u = M(θ) θ̈ + V(θ, θ̇) (1)

7
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where θ, θ̇ and θ̈ ∈ n are vectors representing the position, velocity and acceleration of the
n-link robot respectively, and u ∈ n represents the actuator torques. By defining the state
variables as x1 = θ, x2 = θ̇, we get the state space model:

ẋ = f (x) + g(x)u (2)

where x =

[

x1

x2

]

, f (x) =

[

x2

−M−1(x1)V(x1, x2)

]

and g(x) =

[

0n

M−1(x1)

]

. This model

clearly shows the nonlinearities resulting from the inertia matrix M(θ), and from the vector
V(θ, θ̇) which combines all the centrifugal, coriolis, gravity and friction terms that are an inte-
gral part of the manipulator dynamical equations.
The problem of measurement error diagnosis for robot manipulators described by the Euler-
Lagrange model is an interesting one. Sensor faults could affect both the position and velocity
measurements, and would have a detrimental effect on the control performance. The dynamic
observer structure which was introduced in (Pertew et al., 2006; 2007) can serve as a general
framework for solving this problem. Necessary and sufficient design conditions for the prob-
lem of error detection can be derived from the nonlinear dissipativity properties inherent in
the robot structure. Another important advantage of this approach stems from combining
the objectives of estimating the error magnitudes, as well as detecting and isolating the error
sources. Using the extra degrees of freedom in the dynamic observer structure, the prob-
lem is solvable by minimizing the fault effects in a narrow frequency band on the observer’s
estimation error. This is an important advantage of the new framework over the classical con-
stant gain structure. The robot manipulator measurement error diagnosis problem could then
be generally modelled as a convex optimization problem and solved using a standard Lin-
ear Matrix Inequality (LMI) design procedure. Using standard weightings, different frequency
patterns for the measurement errors can also be considered.

2. Nonlinear Observers and Terminology

An important class of nonlinear systems is:

ẋ(t) = Ax(t) + Γ(u, t) + Φ(x, u, t) (3)

y(t) = Cx(t) + f (t), A ∈ n×n, C ∈ p×n (4)

where (A, C) detectable, f (t) represent measurement errors, and Φ(x, u, t) satisfies:

‖ Φ(x1, u, t)− Φ(x2, u, t) ‖ ≤ α ‖ x1 − x2 ‖ (5)

∀u ∈ m and t ∈ and ∀x1 and x2 ∈ D, where D is a closed and bounded region containing
the origin. These systems have been widely referred to as nonlinear Lipschitz systems, due
to the Lipschitz continuity condition in (5) that affect them. Due to their importance and the
variety of nonlinear systems that they cover, much effort has been done towards solving the
observer design problem for this class of nonlinear systems. One important advantage is that
robot manipulators fall in the class of nonlinear Lipschitz systems. The classical observer
structure for Lipschitz systems of the form (3)-(5), with no measurement errors is the well-
known Luenberger structure, represented by the following equations:

˙̂x = Ax̂ + Γ(u, t) + Φ(x̂, u, t) + L(y − ŷ), L ∈ n×p (6)

ŷ = Cx̂ (7)
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A more general framework introduced in (Pertew et al., 2006), makes use of dynamical ob-
servers of the form:

˙̂x = Ax̂ + Γ(u, t) + Φ(x̂, u, t) + η (8)

ξ̇ = ALξ + BL(y − ŷ), AL ∈ k×k, BL ∈ k×p (9)

η = CLξ + DL(y − ŷ), CL ∈ n×k, DL ∈ n×p (10)

ŷ = Cx̂ (11)

We will write K =

[

AL BL

CL DL

]

to represent the dynamic observer gain in (23)-(24). It can

be shown that K, sufficient to achieve observer convergence, can be represented by a set of
controllers. This design freedom can be used in the measurement error diagnosis problem
discussed in this chapter, by analyzing the residual signal:

r(t) = y(t)− ŷ(t) (12)

This will be discussed in details throughout this chapter. To this end, the following defini-
tions and notation are widely accepted and used by the Fault Detection and Diagnosis (FDD)
community:

Definition 1. Fault detection: The residual in equation (12) achieves fault detection (strong fault
detection) if the following condition is satisfied:

r(t) = 0 ; ∀t if (if and only if) f (t) = 0 ; ∀t

Definition 2. Fault isolation: The residual in (12) achieves fault isolation if:
(ri(t) = 0 ; ∀t ⇐⇒ fi(t) = 0 ; ∀t) ; for i = 1, · · · , p

Definition 3. Fault identification: Fault identification is satisfied by (12) if:
(ri(t) = fi(t) ; ∀t) ; for i = 1, · · · , p

The previous definitions are borrowed from (Chen & Patton, 1999). Note that, in these defini-
tions, the transient period of the residual signal is not considered, and that since the focus in
this chapter is on sensor faults the term “measurement error” will be used instead of “fault”
throughout the chapter.
The following definition and notation will also be used in this chapter:

Definition 4. L2 space: Space L2 consists of all Lebesgue measurable functions u : + → q, with

finite ‖u‖L2
, where ‖u‖L2

∆
=

√

∫

∞

0 ‖ u(t) ‖2 dt.

For a system H : L2 → L2, we will represent by γ(H) the L2 gain of H defined by

γ(H) = supu
‖Hu‖L2

‖u‖L2

. It is well known that, for a LTI system H : L2 → L2 (with a trans-

fer matrix Ĥ(s)), γ(H) ≡ ‖ Ĥ(s) ‖∞

∆
= sup

ω∈
σmax(Ĥ(jω)). The matrices In, 0n and

0nm will represent the identity matrix of order n, the zero square matrix of order n and
the zero n by m matrix respectively. Diagr(a) represents the diagonal square matrix of or-
der r with

[

a a · · · a
]

1×r
as its diagonal vector, while diag(a1, a2, · · · , ar) represents

the one with
[

a1 a2 · · · ar
]

as its diagonal vector. T̂yu represents the transfer matrix
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from input u to output y. RH∞ denotes the space of all proper real rational stable trans-

fer matrices. The partitioned matrix H =

[

A B

C D

]

(when used in y = Hu) represents

(ξ̇ = Aξ + Bu, y = Cξ + Du), and Ĥ(s)=C(sI − A)−1B + D. We will make use of (13) (Zhou
& Doyle, 1998), if s is not an eigenvalue of A:

rank

[

A − sI B
C D

]

= n + rank
(

Ĥ(s)
)

, n being the dimension of A (13)

The setup in Fig. 1 will also be used throughout the chapter along with:

G =





A B1 B2

C1 D11 D12

C2 D21 D22



 (14)

G

K ✛

✲

✲ ✲τ ζ

ν ϕ

Fig. 1. Standard setup.

We will also make use of the following result from (Gahinet & Apkarian, 1994):

Theorem 1. Assume stabilizability and detectability of (A, B2, C2) and that D22 = 0, and let N12 and
N21 denote orthonormal bases of the null spaces of

(

BT
2 , DT

12

)

and (C2, D21). There exists a controller

K such that ‖T̂ζτ‖∞ < γ if and only if there exist symmetric R, S ∈ n×n satisfying the following
system of LMIs:

[

N12 0

0 I

]T




AR + RAT RCT
1 B1

C1R −γI D11

BT
1 DT

11 −γI





[

N12 0

0 I

]

< 0 (15)

[

N21 0

0 I

]T




ATS + SA SB1 CT
1

BT
1 S −γI DT

11
C1 D11 −γI





[

N21 0

0 I

]

< 0 (16)

[

R I
I S

]

≥ 0 (17)

3. Robot Manipulator Measurement Error Detection

As mentioned earlier, robot manipulators fall in the category of nonlinear Lipschitz systems.
This is clear by rewriting the robot manipulator model in (2) as:

ẋ = Ax + Φ(x, u, t) (18)
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where A =

[

0n In

0n 0n

]

, Φ =

[

0n

M−1(x1)u − M−1(x1)V(x1, x2)

]

. It is important to note that

the nonlinear terms in Φ are mainly trigonometric terms which are locally Lipschitz, and an
upper bound on the Lipschitz constant can be found by computing ‖∂Φ(x, u, t)/∂x‖ over the
operating range (Marquez, 2003). Another representation of (2) around an operating point x∗

of interest is:

ẋ = Ax + Bu + Φ(x, u, t) (19)

where A =
(

∂ f
∂x

)

|x∗ , B =
(

∂g
∂x

)

|x∗ , Φ = ( f (x)− Ax + g(x)u − Bu).

It is also important to note that (18) and (19) are both exact models of (2). By neglecting
the terms in Φ in (19), one gets the well known approximate linearized model around the
operating point x∗, i.e:

ẋ = Ax + Bu (20)

where A =
(

∂ f
∂x

)

|x∗ , B =
(

∂g
∂x

)

|x∗ , which is an approximate model of (2). In the formulation

used in this chapter, however, no approximation is needed and the exact Lipschitz model in
(19) can be directly use for solving the measurement error diagnosis problem.
Starting by the measurement error detection problem represented by Definition 1, the robot
measurements are assumed to be any linear combination of the position and velocity sensors
which satisfies the detectability condition needed for observer design. Errors in measurements
affect the system, and the purpose is to design an observer which satisfies the measurement
error detectability condition as per Definition 1. By making use of dynamical observers of the
form:

˙̂x(t) = Ax̂(t) + Γ(u, t) + Φ(x̂, u, t) + η(t) (21)

ŷ(t) = Cx̂(t) (22)

where η(t) is obtained by applying a dynamical compensator K of order k (“k” being arbitrary)
on the output estimation error. In other words η(t) is given from

ξ̇ = ALξ + BL(y − ŷ), AL ∈ k×k, BL ∈ k×p (23)

η = CLξ + DL(y − ŷ), CL ∈ n×k, DL ∈ n×p (24)

We will also write

K =

[

AL BL

CL DL

]

(25)

to represent the compensator in (23)-(24). It is straightforward to see that this observer struc-

ture reduces to the usual observer in (6)-(7) when K =

[

0k 0kp

0nk L

]

. The additional dynamics

brings additional degrees of freedom in the design, something that could be used to add the
measurement error detection objective to the state estimation problem in the observer design.
The observer error dynamics is now given by

ė(t) = A e + Φ(x, u, t)− Φ(x̂, u, t)− η(t) (26)

r(t) = Ce(t) + f (t) (27)

www.intechopen.com



Robot Manipulators, Trends and Development144

which can also be represented by the setup in Fig. 1 where G has the state space representation
in (14) with appropriate matrices and with the following variables:

τ = φ̃ = Φ(x, u, t)− Φ(x̂, u, t), ζ = e = x − x̂, ν = η = K (y − ŷ), and ϕ = y − ŷ (28)

We denote by T̂ζτ the transfer function between τ and ζ for this setup. The following theorem
provides a general solution to the dynamic observer condition needed to achieve measure-
ment error detection:

Theorem 2. Given the nonlinear system in (3)-(5), the residual signal in (8)-(12) achieves measure-
ment error detection, ∀ Φ satisfying the Lipschitz condition in (5) with a Lipschitz constant α, if the
observer gain K is chosen such that: sup

ω∈
σmax[T̂ζτ(jω)] < 1

α .

Proof : The proof is built on proving that, when the mea-
surement error vector f = 0, the state x̂ of the observer
(8)-(11) asymptotically converges to the system state x for all Φ(x, u, t) satisfying (5)
with a Lipschitz constant α if the dynamic observer gain K is chosen s.t:

sup
ω∈

σmax[T̂ζτ(jω)] <
1

α
(29)

Using the variable definitions in (28) it can be seen that T̂ζτ can be represented as:

T̂ζτ = T̂eφ̃ =





A − DLC −CL

BLC AL

In

0kn

In 0nk 0n



 (30)

and is such that γ(T̂eφ̃) =‖ T̂eφ̃ ‖∞<
1
α according to (29). The proof for sufficiency follows

from noting that the estimation error e is given from the feedback interconnection of T̂eφ̃ and

∆ as shown in Fig. 2 where ∆ is the static nonlinear time-varying operator defined as follows:

∆(t) : e → φ̃ = Φ(x, u, t)− Φ(x̂, u, t)

= Φ(e + x̂(t), u(t), t)− Φ(x̂(t), u(t), t)

✲

φ̃
T̂eφ̃

e

✛
∆

Fig. 2. Feedback interconnection.

In this loop, γ(T̂eφ̃) <
1
α as mentioned earlier. Although an exact expression for ∆ is not

available, we have γ(∆) ≤ α as from the Lipschitz condition in (5) it follows that

γ(∆) ≤

√

∫

∞

0 α2 ‖ x − x̂ ‖2 dt
√

∫

∞

0 ‖ x − x̂ ‖2 dt
≤ α
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Using the bounds on the L2 gains of the operators T̂eφ̃ and ∆, nonlinear dissipativity of the

feedback interconnection is satisfied, by noting the following properties for the feedback loop
in Fig. 2:

(a) ∆ is a static nonlinearity (no internal states) and T̂eφ̃ is the dynamic LTI system in (30).

(b) The mappings T̂eφ̃ : φ̃ → e and ∆ : e → φ̃ have finite L2 gains γ(T̂eφ̃) and γ(∆), and

moreover they satisfy γ(T̂eφ̃)γ(∆) < 1.

(c) T̂eφ̃ and ∆ are dissipative with the supply rates ω1 = −eTe + γ(T̂eφ̃)
2φ̃T φ̃ and ω2 =

−φ̃T φ̃ + α2eTe respectively. We will denote by S1 and S2 the corresponding storage
functions.

It is a direct application of Corollary 1 in (Hill & Moylan, 1977) (see also (Marquez, 2003),
Chapter 9, for a comprehensive review of the subject) that S1 + aS2, a > 0, is a Lyapunov
function for this system, and that, since γ(T̂eφ̃)γ(∆) < 1, the system is asymptotically stable.

This implies that e → 0 as t → ∞.
It also follows that under the same conditions of Theorem 2, if condition (5) holds locally,
then local asymptotic convergence of the observer is guaranteed (and in this case the observer
(8)-(11) is a local one, i.e, it is local in “x” and in the estimation error “e”).
Since the feedback interconnection is asymptotically stable when the measurement error vec-
tor f (t) is equal to zero, the residual vector r(t) consequently will converge to zero, and this
completes the proof. △

The importance of this theorem is twofold: First, it presents a generalized condition which
guarantees observer stability, and hence measurement error detectability, for the new dynamic
observer framework. Second, it paves the way for an analytical solution for the design prob-
lem, and a design procedure which could easily be implemented using available software
packages as will be discussed next.

3.1 An analytical design procedure based on H∞ regularization

As mentioned earlier, the stability condition in (29) can be represented by the H∞ norm of
the setup in Fig. 1 where G has the state space representation in (14) with appropriate ma-
trices. However, this H∞ problem does not satisfy all the regularity assumptions in the H∞

framework (notice that DT
12D12 and D21DT

21 are both singular). Although the LMI approach in
(Iwasaki & Skelton, 1994), or the techniques in (Scherer, 1992); (Stoorvogel, 1996) can be used
to solve this singular problem, we here focus on the Riccati approach in (Doyle et al., 1989)
by showing that the problem is actually equivalent to the so-called “Simplified H∞ problem”
defined in (Doyle et al., 1989); (Zhou & Doyle, 1998). This helps to directly relate the stability
condition to two Riccati equations, instead of the one defined for the static observer frame-
work in (Raghavan & Hedrick, 1994), and lays the ground to a systematic design procedure
which is less restrictive than the existing design approaches. This also has the advantage of
classifying the set of all possible observer gains by using the standard parameterization of H∞

controllers in (Doyle et al., 1989); (Zhou & Doyle, 1998). Towards this objective, the follow-
ing standard regularization procedure is adopted: By replacing the measurement error vector
with a “weighted” disturbance term ǫ d(t) (ǫ > 0) in the output equation (4), and using the
same observer defined by (21)-(24), it can be seen that the standard H∞ problem has now the
form:

www.intechopen.com



Robot Manipulators, Trends and Development146

ż =
[

A
]

z +
[[

In 0np
]

−In
]





[

τ
d

]

ν



 (31)





[

ζ
βν

]

ϕ



 =





[

In

0n

]

C



 z +





[

0n 0np

0n 0np

] [

0n

βIn

]

[

0pn ǫIp
]

0pn









[

τ
d

]

ν



 (32)

which can still be represented by the setup in Fig. 1, by redefining the matrices in (14) and by

replacing τ by τ̄ defined as: τ̄
∆
=

[

τ d(t)
]T

and ζ by ζ̄ defined as: ζ̄ =
[

ζ βν
]T

, (β > 0). It
follows that the standard form in (31)-(32) satisfies the conditions of the so-called “Simplified
H∞ problem” (Doyle et al., 1989); (Zhou & Doyle, 1998) if and only if (A, C) is detectable, which
does not impose any new design restrictions on the observer design. The equivalence between
the original problem and this “Simplified H∞ problem” can also be shown as follows: Assume
T1 as the setup in Fig. 1 associated with the original τ and ζ. And assume T2 as the one
associated with τ̄ and ζ̄, i.e the one described by equations (31)-(32). Assume both setups use
the observer gain K in (25). And let T̂1(s) and T̂2(s) be their corresponding transfer matrices.
The following lemma demonstrates certain equivalence relationships among these two setups
(the proof of this Lemma is omitted and can be found in (Pertew et al., 2005)).

Lemma 1. Given the same observer gain controller K for the setups T1 and T2 defined above, then
‖ T̂1(s) ‖∞< γ if and only if ∃ ǫ > 0, β > 0 such that ‖ T̂2(s) ‖∞< γ.

This now lays the ground to the main result of this section, in the form of a theorem showing
that the observer gain K needed to stabilize the observer error dynamics and achieve mea-
surement error detection according to Theorem 2 must solve a “Simplified H∞ control problem”
according to the definition used in (Zhou & Doyle, 1998). To this end, we define the “Nonlin-
ear Lipschitz observer design problem” as follows:

Definition 5. (Nonlinear Lipschitz observer design problem) Given ǫ > 0 and β > 0, find S , the set
of admissible observer gains K satisfying ‖ T̂ζ̄ τ̄ ‖∞<

1
α for the setup in Fig. 1 with G having the state

space representation in (14) along with the matrices in (31)-(32).

Defining the following two Hamiltonian matrices associated with this problem:

N∞ =

[

A α2 In − 1
β2 In

−In −AT

]

, J∞ =

[

AT α2 In − 1
ǫ2 CTC

−In −A

]

(33)

the main result is then summarized as follows:

Theorem 3. There exists a dynamic observer gain K for the observer (8)-(11) (or a static gain L for the
classical observer in (6)-(7)) that achieves measurement error detection according to Theorem 2 if and
only if ∃ ǫ, β > 0 such that:
1) N∞ ∈ dom(Ric) and X∞ = Ric(N∞) > 0.
2) J∞ ∈ dom(Ric) and Y∞ = Ric(J∞) > 0.
3) ρ(X∞Y∞) < 1

α2 (where ρ(.) is the spectral radius).
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J

Q

✛

✲

✛ ✛
u y

Ĵ(s) =







Â∞
1
ǫ2 (In − α2Y∞X∞)−1Y∞CT − 1

β (In − α2Y∞X∞)−1

1
β2 X∞ 0np

1
β In

− 1
ǫ C 1

ǫ Ip 0pn







Fig. 3. Parametrization of all observer gains.

Proof : A direct result of Theorem 2 and Lemma 1. △
Moreover, by using the result in (Doyle et al., 1989), the set of all observer gains K can be
represented by the set of all transfer matrices from y to u in Fig. 3:
where Â∞ = A + (α2 − 1

β2 )X∞ − 1
ǫ2 (In − α2Y∞X∞)−1Y∞CTC, and Q is such that ‖Q‖∞ <

1
α .

Based on the previous results, the following iterative “binary search” procedure is proposed
to evaluate the observer gain:

Design Procedure:
Step 1 Set ǫ, β > 0.
Step 2 Test solvability of the problem in Definition 5 . If the test fails then go to Step 3 ;
otherwise solve the problem (using available software packages or using the analytical result
of Theorem 3) and any K ∈ S (the set of admissible observer gains) is a candidate observer
gain that stabilizes the error dynamics and achieves measurement error detection.

Step 3 Set ǫ ← ǫ
2 , β ←

β
2 . If ǫ or β < r, a threshold value, then stop ; otherwise go to Step 2.

Remarks:

• This design procedure is less restrictive than the designs introduced in (Raghavan &
Hedrick, 1994); (Rajamani, 1998); (Rajamani & Cho, 1998); (Aboky et al., 2002), since it
is directly related to the stability condition through the result of Theorem 3.

• If the H∞ problem can not be solved due to its infeasibility or due to the software limi-
tations, one can decrease the Lipschitz constant α and this decreases the region of con-
vergence if α is obtained through linearization but is still a possible way to solve the
problem. The word stop in step 3 can then be replaced by: decrease α and go to Step 1. The
algorithm is then guaranteed to work as α → 0. The choice of the threshold in step 3 is
also important to avoid numerical instability of the used software.

• Design of the H∞ observer can also be done by including appropriate weightings to em-
phasize the performance requirements of the observer over specific frequency ranges.

• If some states are not affected by nonlinearities (i.e, if some entries of the Lipschitz
function Φ are zeros), the corresponding 1’s of the Identity matrix in the matrix B1 of
the setup (31)-(32) can be replaced by zeros. As long as (A, B1) is controllable, and the
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regularity assumptions are satisfied, the observer design is still equivalent to a “Simpli-
fied H∞ problem”.

4. The Measurement Error Identification Problem

After solving the measurement error detection problem in Section 3, it would be interesting
if those results are extended to the identification problem, where the objective of estimating
the error magnitudes and locating the error sources are also considered. The advantage of the
dynamic formulation is clear at this point: the measurement error detection condition (29) (in
Theorem 2) is satisfied by a family of observers, which helps to include the “identification”
objective according to Definition 3 as an additional objective.
Since the residual “r” is given by equation (27), it is clear that the observer estimation error “e”
constitutes a part of the residual response, and that by minimizing “e” the residual converges
to ” f ” which guarantees measurement error identification in this case. This could be seen
by noting that the estimation error “e” can be represented by the feedback interconnection
in Fig. 4 where “ f ” is the measurement error vector that affects the system (compare this
representation to the loop dynamics in Fig. 2 when the measurement error vector ” f ” is equal
to zero).

✲

φ̃
T̂eφ̃

e1

e ❄
✛ ❤✛ e2

+

+
∆ T̂e f

✛
f

Fig. 4. Observer dynamics with measurement errors.

Therefore, minimizing “e” is equivalent to minimizing the effect of ” f ” on the feedback inter-
connection of Fig. 4. This minimization problem can be considered in L2 sense by assuming
the measurement error to have finite energy, and applying the small gain theorem to Fig. 4.
This assumption is with no loss of generality, since it is guaranteed over any finite time oper-
ation of the observer. In this section, the solution of this minimization problem is considered
when ” f ” is in a narrow frequency band around a nominal frequency ωo. From the special
cases of interest is the case of sensor bias and the case of measurement errors of known har-
monics. We first show that the problem is not tractable for the classical structure in (6)-(7), and
then present a solution using the dynamic observer. Towards that goal, we will first assume
that the Fourier transform of the measurement error F(jω) have a frequency pattern restricted
to the narrow band ωo ± ∆ω as described by equation (34).

|F(jω)| ≤

{

A ; |ω − ωo| < ∆ω

δ ; otherwise
(34)

where δ is a small neglected number for the frequency magnitudes outside the region of
interest, and where A is a positive upper bound on these magnitudes inside the consid-
ered domain. We will then define an observer gain K as optimal if ‖ e ‖L2

can be made

www.intechopen.com



Measurement Analysis and Diagnosis for Robot  
Manipulators using Advanced Nonlinear Control Techniques 149

arbitrarily small for all possible measurement errors satisfying (34). But by applying the
small gain theorem to Fig. 4 when measurement error detection is satisfied (i.e, when K
satisfies ‖ T̂eφ̃ ‖∞= µ <

1
α ) we have: ‖e‖L2

≤ 1
1−µα ‖e2‖L2

. And since (as ∆ω → 0),

T̂e f (jω) → T̂e f (jωo) then we have ‖e2‖L2
≤ σmax

(

T̂e f (jωo)
)

‖ f ‖L2
, and therefore, it is easy

to see that an optimal gain K is one that satisfies T̂e f (jωo) = 0. By assuming that the measure-
ment error detection objective is satisfied (as stated in Theorem 2, it follows that measurement
error identification according to Definition 3 is satisfied if the following two conditions are sat-
isfied: (i) ‖ T̂eφ̃ ‖∞<

1
α , (ii) T̂e f (jωo) = 0, where the first one is a sufficient condition in order

to achieve measurement error detection according to Definition 1.
Moreover, to include the effect of measurement errors on the standard setup which was used
in conjunction with the H∞ problem in Section 3, the vectors of the setup of Fig. 1 are redefined

as: τ �

[

τ1

τ2

]

=

[

φ̃
f

]

, ν = η, ζ= e, ϕ= r. The residual can be then represented by:

ż =
[

A
]

z +
[[

In 0np
]

−In
]

[

τ
ν

]

(35)

[

ζ
ϕ

]

=

[

In

C

]

z +

[[

0n 0np
]

0n
[

0pn Ip
]

0pn

] [

τ
ν

]

(36)

which can also be represented by the standard form in Fig. 1 where G has the representation
in (14) with the matrices in (35)-(36) and where K is the dynamic observer gain.
Based on the previous discussion, we define an optimal residual generator as:

Definition 6. (Optimal residual generator for narrow frequency band) An observer of the form (8)-(12)
is said to be an optimal residual generator for the measurement error identification problem (with mea-
surement errors in a narrow frequency band around ωo) if the observer gain K satisfies ‖ T̂eφ̃ ‖∞<

1
α

and T̂e f (jωo) = 0, for the standard setup in Fig. 1 where the plant G has the state space representation
in (14) with the matrices defined in (35)-(36).

The main result of this section is now presented in the form of a theorem showing that the
classical observer structure in (6)-(7) can never be an optimal residual generator. This shows
the importance of having a dynamic observer gain in this case.

Theorem 4. An observer of the form (6)-(7) with a static observer gain L can never be an optimal
residual generator according to Definition 6.

Proof : First, using (35)-(36) and the dynamic observer gain K it can be shown that T̂e f is given
from:

Te f = Tζτ2
=





A − DLC −CL

BLC AL

−DL

BL

In 0nk 0np



 (37)

The proof follows by noting that (when the observer gain K is replaced by the static gain

L) the transfer matrix from f to e in (37) is given by Te f =

[

A − LC −L

In 0np

]

. Since the

gain L is chosen to stabilize (A − LC), then (∀ωo) jωo is not an eigenvalue of (A − LC).

Therefore, by using (13), we have: rank
(

T̂e f (jωo)
)

=rank

[

A − LC − jωo In −L
In 0np

]

− n. But
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rank

[

A − LC − jωo In −L
In 0np

]

= rank

[

0n L
In 0np

]

= n + rank(L) (using the invariant zero

property (13)).

Therefore, rank
(

T̂e f (jωo)
)

�= 0 unless L = 0. This implies that no gain L can satisfy

T̂e f (jωo) = 0, and therefore the static observer structure can never be an optimal residual
generator according to Definition 6. △
In the following section (section 4.1), a numerical approach based on LMIs is provided, by
modelling the problem as a convex optimization problem using the dynamic observer struc-
ture in (8)-(12).

4.1 A LMI Design Procedure

The second objective, i.e T̂e f (jωo) = 0, can also be modelled as a weighted H∞ problem solv-
able using the dynamic observer formulation. To this end, we first note that for an observer
gain K that satisfies the measurement error detection condition (as stated in Theorem 2, the
following two statements are equivalent: (i) T̂e f (jωo) = 0, (ii) W(s)T̂e f (s) ∈ RH∞, where

W(s) = diagp(
1
s ) if ωo = 0 and W(s) = diagp(

1
s2+ω2

o
) if ωo �= 0. The equivalence of

these two statements can be seen by first noting that the condition in Theorem 2 implies that
‖ T̂eφ̃ ‖∞<

1
α and hence that T̂eφ̃ ∈ RH∞. It then follows that T̂e f (s) ∈ RH∞ since Te f in (37)

and Teφ̃ both have the same state transition matrix. Finally, since T̂e f (jωo) = 0 corresponds to

jωo being a system zero of T̂e f (s) (which is equivalent to cancelling the poles of W(s) on the

imaginary axis), it follows that T̂e f (jωo) = 0 is equivalent to having W(s)T̂e f (s) ∈ RH∞.

According to the previous discussion, it follows that the objective T̂e f (jωo) = 0 can be restated

as follows: ∃ǫ > 0 such that
{

ǫ ‖ W(s)T̂e f (s) ‖∞<
1
α

}

, where the scalar “ǫ” is used for com-

patibility with the first objective (i.e, ‖ T̂eφ̃ ‖∞<
1
α ). The two objectives can then be combined

in the unified framework in Fig. 5, where the plant G has the state space representation in (14)
with the matrices defined in (35)-(36).

✲
τ̄

I 0

0 ǫW

τ

G

K ✛

✲

✲ ✲
ζ

Ḡ

Fig. 5. Weighted standard setup.

It can be seen that the augmented plant Ḡ in Fig. 5 is given by:

Ḡ =





Ā B̄1 B̄2

C̄1 D̄11 D̄12

C̄2 D̄21 D̄22



 =









[

Aθ 0ℓn

0nℓ A

] [

0ℓn Bθ

In 0np

] [

0ℓn

−In

]

[

0nℓ In
] [

0n 0np
] [

0n
]

[

ǫCθ C
] [

0pn 0p
]

0pn









(38)
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where:






ℓ= p, Aθ= 0p, Bθ= Ip, Cθ= Ip ; if ωo= 0

ℓ= 2p, Aθ= diagp

[

0 1
−ω2

o 0

]

, Bθ= diagp

[

0
1

]

, Cθ= diagp
[

1 0
]

; if ωo �= 0
(39)

The following theorem gives necessary and sufficient conditions for solving the measurement
error identification problem in Definition 6:

Theorem 5. Given the system (3)-(4), there exists an optimal residual according to Definition 6, ∀ Φ

satisfying (5) with a Lipschitz constant α, if and only if ∃ ǫ > 0 and a dynamic observer gain K
satisfying ‖ T̂ζτ̄ ‖∞<

1
α .

Proof : A direct result of Definition 6 and the discussion in the beginning of Section 4.1 showing
the equivalence between the two objectives. △
However, standard H∞ tools can not be directly applied for the H∞ problem defined in The-
orem 5, unlike the measurement error detection problem discussed in Section 3. For instance
the Riccati approach in (Zhou & Doyle, 1998) can not be implemented since the augmented
plant Ḡ in (38) does not satisfy the needed regularity assumptions. Also, the LMIs in equation
(15)-(17) are not feasible due to the poles that Ḡ has on the imaginary axis, making the use
of the LMI approach in (Gahinet & Apkarian, 1994) impossible. However, by replacing the
weightings W(s) by the modified weightings W̄(s) where W̄(s) = diagp(

1
s+λ ) if ωo = 0 and

W̄(s) = diagp(
1

s2+2λωos+ω2
o
) if ωo �= 0, with λ ∈ +, the augmented plant Ḡ in Fig. 5 is still

given by equation (38), but with Aθ as:

Aθ =







diagp(−λ) ; ωo = 0

diagp

[

0 1
−ω2

o −2λωo

]

; ωo �= 0
(40)

which has no poles on the imaginary axis. Using the modified plant and the result in Theorem
1, the following convex optimization problem is proposed to solve the problem in Theorem 5:

minR,S λ

subject to “ the 3 LMIs in (15)-(17) with γ =
1

α
”

with the matrices in (15)-(17) replaced by the corresponding ones in (38)-(40).
The set of all admissible observer gains K for a given λ can then be parameterized using R,
S by using the result in (Gahinet & Apkarian, 1994). It can also be seen, that these LMIs
are feasible for all λ > 0, and that minimizing λ in this case is equivalent to minimizing

σmax

(

T̂e f (jωo)
)

. This guarantees that the proposed optimization problem converges to the

existing solution as λ → 0. It also guarantees that standard software packages can be used to
solve this optimization problem.
The optimal residual generator guarantees measurement errors estimation and at the same
time state estimation. An advantage of having state estimation in the presence of measurement
errors is the possibility to use the observer in fault tolerant output feedback control (i.e, if
a reconfiguration control action is involved). Also, from the special cases of interest is the
case of sensor bias, where the previous approach can be used to get an exact estimation of all
sensor biases at the same time. An important advantage over the adaptive approaches used to
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diagnose sensor biases in nonlinear systems, such as (Vemuri, 2001); (Wang et al., 1997), is the
ability to diagnose piecewise constant bias with the same observer. Moreover, the proposed
approach is not limited to sensor biases and can be used to diagnose measurement errors of
any harmonics.

5. Measurement Error Identification for Low and High Frequencies

We now consider measurement errors of low frequencies determined by a cutoff frequency

ωl . The SISO weighting ŵl(s) =
as+b

s , (Zhou & Doyle, 1998), emphasizes this range with “b”
selected as ωl and “a” as an arbitrary small number for the magnitude of ŵl(jω) as ω → ∞.
With a diagonal transfer matrix Ŵ(s) that consists of these SISO weightings (and similar to
the approach adopted in section 4.1), the detection and identification objectives can be com-
bined in the unified framework represented by the weighted setup of Fig. 5. In this case, the
augmented plant Ḡ is given by:

Ḡ =





Ā B̄1 B̄2

C̄1 D̄11 D̄12

C̄2 D̄21 D̄22



 =









[

Aθ 0pn

0np A

] [

0pn Bθ

In 0np

] [

0pn

−In

]

[

0np In
] [

0n 0np
] [

0n
]

[

ǫCθ C
] [

0pn ǫDθ

]

0pn









(41)

where Aθ=0p, Bθ=Ip, Cθ=diagp(b) and Dθ=diagp(a). This form also violates the assumptions
of Theorem 1 (note that (Ā, B̄2) is not stabilizable). Similar to Section 4, we introduce the
modified weighting ŵlmod(s)=

as+b
s+λ ; with arbitrary small positive “λ”. The augmented plant

Ḡ is then the same as (41) except for Aθ which is now given by the stable matrix diagp(−λ)
and Cθ given by diagp(b − aλ). Similar to the narrow frequency band case, the assumptions
of Theorem 1 are now satisfied and the LMI approach in (Gahinet & Apkarian, 1994) can be
used to solve the H∞ problem. To this end, we define the H∞ problem associated with the low
frequency range as follows:

Definition 7. (Low frequency H∞) Given λ > 0, ǫ > 0, find S , the set of admissible controllers K
satisfying ‖ T̂ζτ̄ ‖∞< γ for the setup in Fig. 5 where Ḡ has the state space representation (41) with
Aθ = diagp(−λ), Bθ = Ip, Cθ = diagp(b − aλ) and Dθ = diagp(a).

Based on all the above, we now present the main result of this section in the form of the
following definition for an optimal residual generator in L2 sense:

Definition 8. (Optimal residual for low frequencies) An observer of the form (8)-(12) is an optimal
residual generator for the measurement error identification problem (with low frequency measurement
errors below the cutoff frequency ωl) if the dynamic gain K ∈ S∗ (the set of controllers solving the H∞

problem in Definition 7 for γ = 1/α with the minimum possible λ).

Similar to the low frequency range, a proper weighting ŵhmod(s) =
s+(a×b)

λs+b , (Zhou & Doyle,
1998), with an arbitrary small λ > 0, could be selected to emphasize the high frequency range
[wh, ∞) with “b” selected as wh and “a” as an arbitrary small number for |ŵh(jω)| as ω → 0.
With the help of ŵhmod(s), a suitable weighting W that emphasizes the high frequency range
can be designed. The augmented Ḡ is also given from (41) (same as the low frequency case),

but with Aθ , Bθ , Cθ and Dθ given as diagp(−
b
λ ), Ip, diagp(

a×b
λ − b

λ2 ) and diagp(
1
λ ) respec-

tively. It is straightforward that Ḡ satisfies all of the assumptions of Theorem 1 and therefore,
similar to the low frequency range, an H∞ problem related to the high frequency range can be
defined. An optimal residual generator can be defined in the same way as Definition 8 for the
generalized low frequency case.
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6. Experimental Results

The experimental results presented in this section (Pertew, 2006) are intended to illustrate the
applicability of the theoretical results presented in this chapter for robotic systems.

6.1 The ROTPEN: Models and Assumptions

The Quanser rotary inverted pendulum (ROTPEN) is shown schematically in Fig. 6, Lynch
(2004). The angle that the perfectly rigid link of length l1 and inertia J1 makes with the x-axis
of an inertial frame is denoted θ1 (degrees). Also, the angle of the pendulum (of length l2 and
mass m2) from the z-axis of the inertial frame is denoted θ2 (degrees).

Fig. 6. The Rotary Inverted Pendulum (ROTPEN).

The system has one input which is the scalar servomotor voltage input (Volt). Therefore, the
system is a special case of the robot manipulator model discussed in Section 1: a planar robot
manipulator with two links (n = 2), with only one torque applied at the first joint, while the
second joint is subject to the gravitational force. In fact, the ROTPEN has a state space model
of the form ẋ = f (x)+ g(x)u, where x = [θ1 θ2 θ̇1 θ̇2]

T is the state vector, and u is the scalar
servomotor voltage input (Volt). More details about this model and its parameters can be
found in Appendix 9.1.
The system has an infinite number of equilibrium points, representing the following two equi-
librium points:

1) Pendant position: x1 = 0 (rad), x2 = π (rad), x3 = x4 = 0 (rad/sec).

2) Inverted position: x1 = x2 = 0 (rad), x3 = x4 = 0 (rad/sec).

By separating the nonlinear terms, the model can be put in the form ẋ = Ax + Φ(x, u), where:

A =









0 0 1 0
0 0 0 1
0 −25.14 −17.22 0.2210
0 68.13 16.57 −0.599









, Φ(x, u) =









0
0

φ1(x, u)
φ2(x, u)









. The nonlinear terms in Φ are
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mainly trigonometric terms, and using the symbolic MATLAB toolbox, an upper bound on
‖Φ(x, u)‖ is found as 44.45, and hence the Lipschitz constant for the ROTPEN is α = 44.45.
This follows from the fact that if Φ : n × → m is continuously differentiable on a domain

D and the derivative of Φ with respect to the first argument satisfies ‖ ∂Φ

∂x ‖ ≤ α on D, then Φ

is Lipschitz continuous on D with constant α, i.e.:

‖Φ(x, u)− Φ(y, u)‖ ≤ α ‖x − y‖, ∀ x, y ∈ D (42)

There are two encoders to measure the angle of the servomotor output shaft (θ1) and the angle
of the pendulum (θ2). An encoder is also available to measure the motor velocity θ̇1, but
no one is available to measure the pendulum velocity θ̇2. In the experiments, linear as well as
nonlinear control schemes are used to stabilize the pendulum at the inverted position (θ2 = 0),
while tracking a step input of 30 degrees for the motor angle.

6.2 Case Study 1 - Lipschitz Observer Design

In this experiment, we focus on the nonlinear state estimation problem when no measure-
ment errors are affecting the system. We consider situations in which the operating range of
the pendulum is either close or far from the equilibrium point, comparing the Luenberger ob-
server with the Lipschitz observer in these cases. For the purpose of applying the Lipschitz
observer design, the nonlinear model discussed in section 6.1 is used. We also compare the
dynamic Lipschitz observer of section 3 with the static design method in Reference (Raghavan
& Hedrick, 1994). In this case study the full-order linear and Lipschitz models are used for
observer design, where the output is assumed as y = [x1 x2]

T (all the observer parameters
that are used in this experiment can be found in Appendix 9.2).
First, a linear state feedback controller is used to stabilize the system in a small operating
range around the inverted position, and three observers are compared:

1) Observer 1: A linear Luenberger observer where the observer gain is obtained by plac-
ing the poles of (A − LC) at {−24, −3.8, −4.8, −12.8} (see L3−small in Appendix
9.2).

2) Observer 2: A high gain Luenberger observer, which has the same form of Observer
1 but with the poles placed at {−200, −70, −20 + 15i, −20 − 15i} (see L3−large in
Appendix 9.2).

3) Observer 3: A Lipschitz observer of the form (8)-(11), based on the full-order Lipschitz
model of the ROTPEN. The dynamic gain is computed using the design procedure in
section 3.1, for α = 44.45 (see K3 in Appendix 9.2).

The three observers run successfully with stable estimation errors. Table 1 shows the maxi-
mum estimation errors in this case. It can be seen that both the Luenberger observer (large
poles) and the Lipschitz observer achieve comparable performance, which is much better than
the Luenberger observer with small poles. The three observers are also tested in observer-
based control, and their tracking performance is compared in Table 2. We conclude that, due
to the small operating range considered in this case study, a high-gain Luenberger observer
achieves a good performance in terms of the state estimation errors and the tracking errors.
We then consider a large operating range by using a nonlinear control scheme that stabilizes
the pendulum angle at the pendant position (see Appendix 9.2 for more details about the
controller used in this case study). Using this controller, a large operating range is obtained
as seen in Fig. 7. The same observers (Observers 2 and 3) are used in parallel with this control
scheme, and the resulting estimation errors are compared in Fig. 8. The two observers are also
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Small-gain Luenberger High-gain Luenberger Lipschitz

max |e1| 3.6485 0.4323 0.1716

max |e2| 1.5681 0.0925 0.1865

Table 1. Case study 1 - Estimation errors “e1” and “e2” in degrees

pure state feedback High-gain Luenberger Lipschitz

Percentage of overshoot 20.3613% 12.7440% 48.4863%

|steady state error | 2.5635 3.4424 3.7939

Table 2. Case study 1 - Tracking performance in degrees

compared in observer-based control, and the Luenberger observer fails in this case, causing
total system unstability. The Lipschitz observer, on the other hand, runs successfully and its
performance (compared to the pure state feedback control) is shown in Fig. 9. This case study
illustrates the importance of the Lipschitz observer in large operating regions, where the linear
observer normally fails.
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Fig. 7. Case Study 1 - (a) Motor Response, (b) Pendulum Response.

Finally, we conduct a comparison between static and dynamic Lipschitz observers, namely the
observer (6)-(7) and the one in (8)-(11). The comparison is between the new design proposed
in Section 3 and the one in Reference (Raghavan & Hedrick, 1994). First, the design algorithm
in (Raghavan & Hedrick, 1994) is tested for different values of α and ε. It fails for all values
of α > 1, and the maximum attainable value is α = 1 (see L5 in Appendix 9.2), while the
Lipschitz constant of the ROTPEN model is 44.45 as mentioned earlier. This observer is then
compared to the dynamic Lipschitz observer having the dynamic gain K3, and the estimation
errors are shown in Fig. 10. It is also important to note that the static Lipschitz observer fails
in stabilizing the system, when used in observer-based control, for both the small and large
operating range experiments. This shows the importance of the dynamic Lipschitz observer
design in this case.
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Fig. 8. Case Study 1 - (a) High-gain Luenberger Errors, (b) Dynamic Lipschitz Errors.

0 5 10 15 20 25 30
−100

0

100

200

300

400

500

600

700

time (sec)

(d
eg

)

(a)
state feedback
Lipschitz observer−based feedback

0 5 10 15 20 25 30
−100

−50

0

50

100

150

200

time (sec)

(d
eg

)

(b)
state feedback
Lipschitz observer−based feedback

Fig. 9. Case Study 1 - (a) Pendulum Angle, (b) Motor Angle.

6.3 Case Study 2 - Lipschitz Measurement Error Diagnosis

In this experiment, the results of Sections 4 and 5 are assessed on the nonlinear Lipschitz
model. A large operating range is considered by using a nonlinear, switching, LQR control
scheme (with integrator) that stabilizes the pendulum at the inverted position (starting from
the pendant position) while tracking a step input of 30 degrees for the motor angle as seen in
Fig. 11 (the no-bias case). In the first part of this experiment, an important measurement error
that affects the ROTPEN in real-time is considered. This is a sensor fault introduced by the
pendulum encoder. The encoder returns the pendulum angle relative to the initial condition,
assuming this initial condition to be θ2 = 0. This constitutes a source of bias, as shown in
Fig. 11(b), when the pendulum initial condition is unknown or is deviated from the inverted
position. The effect of this measurement error on the tracking performance is also illustrated
in Fig. 11(a) for two different bias situations. The dynamic Lipschitz observer (discussed in
section 4) is applied to diagnose and tolerate this fault. In addition to this bias fault, the
observer is also applied for a 2 rad/sec fault introduced in real-time, as well as for the case of
a low frequency fault in the range [0, 1 rad/sec].
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Fig. 10. Case Study 1 - (a) Estimation Error “e1”, (b) Estimation Error “e2”.
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Fig. 11. Case Study 2 - (a) Tracking Performance, (b) Pendulum Angle.

First, the design procedure in section 4 is used to accurately estimate and tolerate the bias
faults shown in Fig. 11(b). This is the special case where ωo = 0. Using the reduced-order
Lipschitz model with α = 44.45 (and using the LMI design procedure, the dynamic gain for
the observer (8)-(12) that achieves measurement error identification is obtained as K6 (see Ap-
pendix 9.3 for more details). Using this observer, the biases affecting the system in Fig. 11 are
successfully estimated as shown in Fig. 12. Moreover, by using this observer in an observer-
based control scheme, the tracking performance in the large bias case is illustrated in Fig. 13.
The performance is much improved over the one with no fault tolerance as seen in Fig. 13(b).
It also gives less overshoot than the no bias case, as seen in Fig. 13(a). Similar results are
obtained for the small bias case.
The case of measurement error in the form of harmonics is now considered, with a sensor
fault having a frequency of 2 rad/sec. The dynamic gain for the observer (8)-(12) is computed
using the design approach discussed in section 5. This is the special case where ωo = 2. The
gain is obtained at λ = 10−12 as K7 (see Appendix 9.3). Using this observer, Fig. 14 shows the
correct estimation of a measurement error of amplitude 20 degrees and frequency 2 rad/sec.
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Fig. 12. Case Study 2 - (a) Estimation of the Small Bias, (b) Estimation of the Large Bias.
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Fig. 13. Case Study 2 - (a) No-bias versus Observer-based, (b) Large Bias versus Observer-
based.

We then consider the case of low frequency sensor faults (in the range [0, 1 rad/sec]). Using
the design introduced in section 5 (and with a = 0.1, b = 1 and ǫ = 0.1), the optimal observer
gain is obtained using the command hinflmi in MATLAB, with minimum λ as 10−12 (see K8

in Appendix 9.3). Using this observer for measurement error diagnosis, a correct estimation
of a low frequency sensor fault (generated using the MATLAB command idinput) is shown in
Fig. 15.

7. Conclusion

The Lipschitz observer design approach provides an important framework for solving the
measurement error diagnosis problem in robot manipulators. The classical observer structure
is not directly applicable to the detection and identification problems. This is in part due to the
restrictive observer structure, and also due to the idealized assumptions inherent in this struc-
ture that do not take into account uncertain model parameters and disturbances. The dynamic
observer structure offers two important advantages in that regard: (i) The observer stability
condition that ensures asymptotic convergence of the state estimates is satisfied by a family
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Fig. 14. Case Study 2 - Frequency Band Estimation.
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Fig. 15. Case Study 2 - Diagnosis of Low Frequency Sensor Fault.

of observers, adding extra degrees of freedom to the observer which lay the ground to the ad-
dition of the detection and identification objectives in the design, (ii) The observer design can
be carried out using a systematic design procedure which is less restrictive than the existing
design approaches and which is solvable using commercially available software. The design
depends heavily on the nature of the objectives considered. While an analytical solution can
be used for measurement error detection, the identification problem is more demanding and
needs a more general design framework. This problem is shown to be equivalent to a standard
convex optimization problem which is solvable using Linear Matrix Inequalities (LMIs). Us-
ing this generalized framework, different frequency patterns for the measurement errors that
affect the robot manipulator could be considered, and systematic design procedures could be
used to solve the problem. A practical example, namely the Quanser rotary inverted pendu-
lum (ROTPEN) in the Control Systems Lab, Electrical and Computer Engineering department,
University of Alberta, is used to illustrate these results. The ROTPEN model falls in the cate-
gory of planar robot manipulators, and the experimental results illustrate the applicability of
the proposed techniques in the robotics field by showing the following:
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i) How to model a robot manipulator as a standard Lipschitz system.

ii) The importance of the dynamic Lipschitz observer in large operating regions where the
linear observer normally fails.

iii) The accurate velocity estimations obtained using the dynamic observer, alleviating the
need to introduce velocity sensors in real-time.

iv) How the static observer fails, compared to the dynamic observer, when applied to
Robotic Systems due to the large Lipschitz constant that these systems normally have.

v) The efficiency of the dynamic observer in diagnosing and tolerating measurement er-
rors of different frequencies, including an important bias introduced by the error in the
initial conditions of the pendulum encoder.
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9. Appendix

9.1 The ROTPEN Model

The system parameters are: l1 = 0.215 m, l2 = 0.335 m, m2 = 0.1246 Kg, β = 0.135Nm/s,
µ = 0.2065Nm/V, b2 = 0.0018Kg/s, g = 9.81m/s2, and J1 = 0.0064 Kg.m2. With the state
defined as x = [x1 x2 x3 x4]

T = [θ1(rad) θ2(rad) θ̇1(rad/s) θ̇2(rad/s)]T , the state space model
has the form ẋ = f (x) + g(x)u as follows (This model was derived in Lynch (2004)):

ẋ =











x3

x4

h3(x)−
m2 l2

2 βx3

3∆

h4(x) +
m2 l1 l2 βc2

2∆











+











0
0

µm2 l2
2

3∆
−µm2 l1 l2c2

2∆











u

where sk = sin(xk), ck = cos(xk) are used to simplify notation, and where:
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2l2
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∆
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∆
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9.2 Models and Parameters for Case Study 1

Luenberger observer with small gain :

L3−small =

[

5.9207 −7.4414 −13.0209 −9.9019
−1.5356 21.6603 −7.2493 108.1343

]T

.

High-gain Luenberger observer :

L3−large = 103

[

0.0716 0.0070 0.1432 −0.5022
0.0203 0.2206 1.4312 4.4841

]T

.

Dynamic Lipschitz observer : (K3, obtained for α = 44.45, ǫ = β = 0.00048828)

AL3 =104









−0.3428 0 0 0
0 −0.3428 0 0

−6.2073 0 −0.2048 0
0 −6.2073 0 −0.2048









, BL3 = 104









0.138 0
0 0.138

6.2072 0
0 6.2072









,

CL3 =103









2.048 0 0.0005 0
0 2.048 0 0.0005

0.0005 0 2.0480
0 0.0005 0 2.0485









, DL3 =









0 0
0 0
0 0
0 0









.

Nonlinear “normal form” Controller :

By considering y = x2, and using the nonlinear model of the ROTPEN in Appendix 9.1, the
following coordinate transformation:









ξ1

ξ2

η1

η2









=











x2

x4

x1

x3

(

l1
2 c2

)

+ x4
l2
3











is used to put the system in the so-called normal or tracking form (Marino & Tomei, 1995), that
is:









ξ̇1

ξ̇2

η̇1

η̇2









=









ξ2

f4(x) + g4(x)u
x3

− l1
2 x3x4s2 +

l1
2 c2 f3(x) + l2

3 f4(x)









and using the control law:

u =
1

g4(x)
[−9x2 − 6x4 − f4(x)]

where f4(x) and g4(x) denote the 4th elements of f (x) and g(x) in Appendix 9.1 respectively.
The subsystem (ξ1, ξ2) is then stabilized. It is important to note that the zero dynamics in this
case, i.e the subsystem (η1, η2) is unstable, and therefore the motor angle is not guaranteed to
converge to the reference input.
Static Lipschitz observer : (obtained for α = 1, ε = 0.5)

L5 =

[

1.7108 −2.1247 1.9837 −5.4019
0.4338 −0.2089 1.1030 −2.8972

]T

.
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9.3 Models and Parameters for Case Study 2

Lipschitz reduced-order model for observer design (x̄ = [θ2 θ̇1 θ̇2]
T) :

˙̄x =





0 0 1
−25.14 −17.22 0.2210
68.13 16.57 −0.599



 x̄ +





0
φ1(x̄, u)
φ2(x̄, u)





ȳ =
[

1 0 0
]

x̄

Lipschitz dynamic observer for sensor bias : (K6, obtained for λ = 10−12, ǫ = 0.1)

AL6 =









−175.7353 3.8503 0.1710 −30.6336
16.8182 −171.9539 26.7652 32.1257
35.1361 16.5360 −97.3465 114.1349
−87.9041 25.7568 62.1442 −87.8099









, BL6 =









5.0462
−44.8932
−75.4539
106.5497









,

CL6 =





167.6750 −5.0531 −8.5208 42.0138
−7.1899 155.5373 −42.6804 −11.1441
5.3053 −18.7128 −120.8293 171.1055



 , DL6 =





0
0
0



 .

Lipschitz dynamic observer for fault of 2 rad/sec : (K7, obtained for λ = 10−12, ǫ = 0.1)

AL7 =













−816.9997 −12.5050 −51.0842 −64.0861 31.8003
23.8482 −772.7024 149.1621 122.7602 −75.3718
−3.0714 139.9543 −412.1421 361.2027 −176.7926
−193.3011 128.2831 346.2370 −405.3024 201.2094

71.5547 −47.7237 −104.0209 129.8922 −64.7247













, BL7 =













9.2096
−73.6540
−80.3861
177.6628
−67.4227













,

CL7 =





809.4037 11.3091 28.1928 88.3295 −43.7581
−13.1309 758.2718 −276.6110 4.7255 12.0717
−15.9908 −176.8554 −509.7118 587.8999 −294.7496



 , DL7 =





0
0
0



 .

Lipschitz dynamic observer for low frequencies : (K8, obtained for λ = 10−12, ǫ = 0.1)

AL8 =









−217.7814 1.8898 −4.8573 −38.2385
−1.5288 −185.0261 38.1186 36.8585
108.5437 28.4810 −87.0920 135.1710
−618.9648 28.9348 82.1016 −164.6086









, BL8 =









−30.2950
26.3896

147.7784
−637.5223









,

CL8 =





−184.6168 3.4213 1.8716 −51.2266
6.5728 −171.5615 49.1851 16.3542
−4.3022 15.0586 114.2413 −224.5769



 , DL8 =





0
0
0



 .
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