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1. Introduction     
 

The control of robotic manipulators has become important due to the development of the 
flexible automation. Requirements such as the high speed and high precision trajectory 
tracking make the modern control indispensable for versatile applications of manipulators 
(Middleton & Goodwin, 1998; Ortega & Spong, 1999; Popescu et al., 2008). Rigid robot 
systems are subjects of the research in both robotic and control fields. The reported research 
leads to a variety of control methods for such rigid robot systems (Ortega & Spong, 1999; 
Raimondi et al., 2004; Bobaşu & Popescu, 2006; Dinh et al., 2008). 
Conventional controllers for robotic structures are based on independent control schemes in 
which each joint is controlled separately by a simple servo loop. This classical control 
scheme (for example a PD control) is inadequate for precise trajectory tracking. The imposed 
performance for industrial applications requires the consideration of the complete dynamics 
of the manipulator. Moreover, in real-time applications, the ignoring parts of the robot 
dynamics or errors in the parameters of the robotic manipulator may cause the inefficiency 
of this classical control. An alternative solution to PD control is the computed torque 
technique. This classical method is in fact a nonlinear technique that takes account of the 
dynamic coupling between the robot links. The main disadvantage of this structure is the 
assumption of an exactly known dynamic model. However, the basic idea of this method 
remains important and it is the base of the neural and adaptive control structures (Gupta & 
Rao, 1994; Pham & Oh, 1994; Dumbravă & Olah, 1997; Ortega & Spong, 1999; Aoughellanet 
et al., 2005; Popescu et al. 2008). 
Industrial robotic manipulators are exposed to structured and unstructured uncertainties. 
Structured uncertainties are characterized by having a correct model but with parameter 
uncertainty (unknown loads and friction coefficients, imprecision of the manipulator link 
properties, etc.). Unstructured uncertainties are characterized by unmodelled dynamics. 
Generally speaking, two classes of strategies have been developed to maintain performance 
in the presence of the parameter uncertainties: robust control and adaptive control. The 
adaptive controllers can provide good performances in face of very large load variation. 
Therefore the adaptive approach is intuitively superior to robust approach in this type of 
application. When the dynamic model of the system is not known a priori (or is not 
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available), a control law is designed based on an estimated model. This is the basic idea 
behind adaptive control strategies (Ortega & Spong, 1999).  
Over the last few years several authors (Zalzala & Morris, 1996; Miyamoto et al., 1998; 
Popescu et al. 2001; Raimondi et al., 2004; Popescu et al., 2008) have considered the use of 
artificial neural networks (ANNs) within a control system for robotic arms. The differences 
in control schemes are in the role that ANN is playing, and the way it is trained for 
achieving desired trajectory tracking performance. 
In this chapter, which is an extended work of the research achieved in some papers of the 
authors (Popescu, 1998; Popescu et al., 2001, Selişteanu et al., 2001; Popescu et al., 2008), 
classical, adaptive and neural strategies for a robotic manipulator with two revolute joints 
are presented. The first section analyses the computed-torque method (based on the so-
called inverse dynamics of the robotic manipulator), which is a starting point for the design 
of the adaptive and neural control techniques. In the next section, an overview of adaptive 
strategies is presented, and two adaptive controllers for rigid manipulators are designed. 
First, a direct adaptive control with adaptation law of gradient type is analyzed. Second, an 
indirect adaptive controller is designed; this controller uses the prediction errors of the 
filtered joint torques to generate parameter estimates. In the following section, various non-
model and model-based neural control schemes have been designed. The ANN is used in 
order to generate auxiliary joint control torque to compensate for the uncertainties in the 
computed torque based primary robotic manipulator. Three neural control strategies are 
studied: feedforward neural control, feedback neural control, and feedback error based 
neural control. Also, numerical simulations are performed, in order to analyse the behaviour 
and the performance of the control strategies, and to make some useful comparisons. The 
final section deals with concluding remarks and further research directions. 

 
2. The computed-torque control strategy 
 

The robotic manipulator is modeled as a set of n rigid bodies connected in series with one 
end fixed to the ground and the other end free. The bodies are connected via either revolute 
or prismatic joints and a torque actuator acts at each joint.  
The dynamic equation of an n-link robotic manipulator is given by (Ivănescu, 2003; Popescu, 
1998): 
 

       qFqGqqqVqqJT   , , (1)
 
where:  T  is an (n 1) vector of joint torques;  J(q) is the (n n) manipulator inertia matrix; 

),( qqV   is an (n n) matrix representing centrifugal and Coriolis effects;  G(q) is an (n 1) 
vector representing gravity; )(qF   is an (n 1) vector representing friction forces; qqq  ,,  are 
the (n 1) vectors of joint positions, speeds and accelerations, respectively. 
The equations (1) form a set of coupled nonlinear ordinary differential equations which are 
quite complex, even for simple robotic arms. For simplicity, we denote 
 

       qqHqFqGqqqV  ,,  , (2)
 
so that (1) can be rewritten as: 

 

   qqHqqJT  , . (3)
 
The computed-torque method is a conventional control technique, which takes account of 
the dynamic coupling between the manipulator links. This method, also called the inverse 
model control technique (Zalzala & Morris, 1996; Ortega & Spong, 1999) leads to a 
completely decoupled error dynamics equation. The structure of this control strategy is 
illustrated in Fig. 1. 
One of most used computed-torque control scheme is based on the exactly linearization of 
the nonlinear dynamics of the robotic manipulator. If the dynamic model is exact, the 
dynamic perturbations are exactly cancelled. The total torque driving the robotic 
manipulator is given by (Dumbravă & Olah, 1997): 
 

           qqHTqJqFqGqqqVTqJT  ,ˆˆˆˆ,ˆˆ  , (4)

 
where: HFGVJ ˆ,ˆ,ˆ,ˆ,ˆ  are estimates of J, V, G, F, H, respectively, and T  is defined as:  
 

eKeKqT PVd   . (5)
 
The closed loop equation is found to be: 
 

                 qqHqqJqJqFqGqqqVqqJqJeKeKe PV  ,
~~ˆ~~

,
~~ˆ 11   , (6)

 
where HHHFFFGGGVVVJJJ ˆ~

;ˆ~
;ˆ~

;ˆ~
;ˆ

~
 are the modelling errors and the 

tracking error is qqe d  . 
If the robotic manipulator's parameters are perfectly known, the closed loop equation (6) 
takes a linear, decoupled form: 
 

0 eKeKe PV  . (7)
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Fig. 1. The computed-torque control scheme 
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The computed-torque control method has performance problems because of its reliance on a 
fixed dynamic model. The robotic arm structures have to face uncertainty in the dynamics 
parameters. Two classes of approach have been studied to maintain performances in the 
presence of parametric uncertainties - the robust control and the adaptive control. The next 
section deals with the adaptive control strategy for the robotic manipulator. 

 
3. The adaptive control method 
 

Adaptive controllers can be a good alternative when it is neither possible nor economical to 
make a thorough investigation of the causes of the process variations. In other situations, 
some of the dynamics may be well understood, but other parts are unknown. This is the 
case of robots, for which the geometry, motors and gearboxes do not change, but the load 
does change. An adaptive controller can be defined as a controller with adjustable 
parameters and a mechanism for adjusting the parameters (Astrom & Wittenmark, 1995). 
The modern adaptive control approach consists in the explicit introduction of the linear 
parameterization of the robot dynamics. The adaptive controllers can be classified into three 
major categories (Zalzala & Morris, 1996): direct, indirect and composite. 

 
3.1 Direct adaptive controller 
The direct adaptive controllers use tracking errors of the joint motion to drive parameter 
adaptation. The main goal of the control strategy is to reduce the tracking errors. Such a 
direct technique is an adaptive control method based on computed torque control. This 
method has been pioneered by (Craig et al., 1987), and the properties of stability and 
convergence are established in (Slotine & Li, 1987; Ortega & Spong, 1999). The controller is 
in fact composed of a modified computed-torque control and an adaptation law. 
Next, this direct adaptive strategy is used for the robot arm structure (1). Let's consider   
the vector of the uncertain (unknown) parameters, which are the viscous friction 
coefficients, the Coulomb friction coefficients and the load mass. Then, the dynamics of the 
robot arm can be written as: 
 

        ,,,,, qFqGqqqVqqJT  . (8)
 
A linear parameterization of (8) is: 
 

                 ),,(,,,,,, qqqRqFqGqqqVqqJqFqGqqqVqqJ CCCC  , (9)
 
where        .,.,.,. CCCC FGVJ  represent the known (certain) part of the dynamics and 

),,( qqqR   is the regressor matrix. 
The design of the control law is reached by using in (8) the vector of the estimated 
parameters. The linearization (9) allows us to obtain the torque: 
 

                 ˆ),,(,ˆ,ˆ,ˆ,,ˆ, qqqRqFqGqqqVqqJqFqGqqqVqqJT CCCC  , (10)
 
where ̂  is the vector of estimated parameters. 

 

From the equations (5), (10) the closed loop dynamics is obtained: 
 


~

),,())(ˆ,( qqqReKeKeqJ pv  , (11)

with 
 ˆ~  the estimation parameter error vector. 

If the inertia matrix is nonsingular, we can write: 
 

  ~
),,()ˆ,(1 qqqRqJeKeKe pv  . (12)

 

The state representation of (12) can be obtained if the state Teex ][ 

  is used: 

 
  ~

),,()ˆ,(1 qqqRqJBxAx mm  , (13)
 

where 









vp
m KK

I
A

0
, 



 IBm
0 . 

We can choose a gradient type adaptation law for the on-line estimation of the parameters: 
 

PxBqJqqqR
dt

td
dt

td T
m

T 



  )ˆ,(),,()(ˆ)(
~

1 , (14)

 
with 0 T  the amplification matrix and 0 TPP  a quadratic nn   matrix, solution 
of the Lyapunov equation: 
 

QPAPA m
T
m  , (15)

 

where 0 TQQ . 
 
Remark 1. The Lyapunov function 

~~TTPxxV  can be used to show that the tracking 
errors go to zero.   
 
The final adaptive control law consists of the computed-torque Eq. (4) and the estimates 
provided by the adaptation law (14). 
The global convergence of the direct adaptive controller based on computed-torque method 
is demonstrated in (Slotine & Li, 1987). The disadvantages of this adaptive method are the 
use of the acceleration measurements and the necessity of inversion of the estimated inertia 
matrix. The advantages are the simplicity of the method (comparatively to a least squares 
indirect method for example) and the rejection of the parametric disturbances, inherent for 
an adaptive method. 

 
3.2 Indirect adaptive controller 
The indirect adaptive control method for manipulators has been pioneered by (Middleton & 
Goodwin, 1998), who used prediction errors on the filtered joint torques to generate 
parameter estimates to be used in the control law. 
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Such indirect adaptive controller can be composed of a modified computed-torque control 
and a modified least-squares estimator.  
The design of this indirect control law for the manipulator (1) is based on the estimate of the 
torque: 
 

         ˆ),,(,ˆ qqqRqFqGqqqVqqJT CCCC  , (16)
 
where ̂  is the vector of estimated parameters. 
Now we can calculate the prediction error for the torque from (9), (16) 
 


 ~

),,()ˆ(),,(ˆ qqqRqqqRTT  , (17)

 

with 
 ˆ~  the estimation parameter error vector. 

The prediction error is filtered to eliminate the measurements of the accelerations in the 
control law. First, the torque T is filtered through a first-degree filter with the transfer 

function 
f

f

s
sH




)( , where f  is the crossover frequency of the filter. The filtered torque 

is the convolution 
 

)(*)( tTthTf  , (18)
 
where h(t) is the impulse response of  H(s). 
The estimated torque is also filtered. We define 
 

       qFqGqqqVqqJT CCCCC   , , (19)
 
and from (16), (19) the estimated torque can be written as 
 

 ˆ),,(ˆ qqqRTT C  . (20)
 
We have 
 

)(*)()( tTthtT CCf  , (21)
)(*)()( tRtht  . (22)

 
In the relations (21), (22), CfT  and the filtered regressor matrix   depend only of the state 
q(t) and of the time derivative )(tq , and not of the accelerations (Ivănescu, 2003): 
 

))(),(()());(),(()( tqtqttqtqTtT CfCf   . (23)
 
We obtain the filtered estimated torque from (20), (21), and (22): 

 

 ˆˆ
Cff TT . (24)

 
Now we can obtain the filtered prediction error, which will be used in the adaptation law. 
From (17), (18), (24) the filtered prediction error is 
 

)(*)(ˆ)()(ˆ tTthttTTT Cffff  . (25)
 
The torque T can be written as 
 

 RTT C , (26)
 
therefore the filtered prediction error becomes 
 


~

))(),(()()(*)(ˆ)()(*)( tqtqttTthttTth CCf  . (27)
 
The adaptation parameter law is based on a least-squares estimator (Dumbravă & Olah, 
1997) that it has as input the filtered prediction error (27). The equations of the adaptation 
law are 
 

)(),()()(ˆ)(
~

tqqt
dt

td
dt

td
f

T 



  , (28)

)(),(),()()( tqqqqt
dt

td TT 
  , (29)

 
with .0)0()0(  T  The matrix 0)()(  tt T  is the amplification matrix. 
The final indirect adaptive control law consists of the computed-torque equation (4) and the 
estimates provided by the adaptation law (28), (29): 
 

        )ˆ,()ˆ,()ˆ,,()ˆ,(ˆˆ,ˆˆ  qFqGqqqVTqJqFqGqqqVTqJT  , (30)
 
with T' given by (5). 
The indirect adaptive control structure is presented in Fig. 2. 
The least-squares estimator (28), (29) has good convergence and stability properties 
(Ivănescu, 2003). A disadvantage can be the complexity of the algorithm and the correlation 
between the prediction error and the estimation parameter error (Ivănescu, 2003; Dumbravă 
& Olah, 1997). This disadvantage can be canceled by addition of a stabilizing signal to the 
control law (Dumbravă & Olah, 1997). 
 
Remark 2. Indirect controllers allow the various parameter-estimation algorithms to be used 
to select time variations of the adaptation gains.   
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Remark 2. Indirect controllers allow the various parameter-estimation algorithms to be used 
to select time variations of the adaptation gains.   
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Composite adaptive controllers for manipulators have been developed by (Slotine & Li, 
1989). These adaptive control strategies use both tracking errors in the joint motions and 
prediction errors on the filtered torque to drive the parameter adaptation. 
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4. Neural control strategies 
 

Various neural control schemes have been studied, proposed and compared. The differences 
in these schemes are in the role that artificial neural network (ANN) is playing in the control 
system and the way it is trained for achieving desired trajectory tracking performance 
structures (Psaltis et al., 1988; Gupta & Rao, 1994; Zalzala & Morris, 1996; Raimondi et al., 
2004; Aoughellanet et al., 2005; Dinh et al., 2008). Two classes of approaches have been 
studied: non-model based neural control and model based neural control. Non-model based 
neural control consists of PD feedback controller and an ANN. The inverse dynamics is 
learned by measuring the input and output signals in the manipulator and then adjusting 
the connection weights vector by using a learning algorithm. After the learning was 
finished, the actual trajectory of the manipulator followed well the desired trajectory. But, 
when the desired trajectory was changed to one not used in the training of ANN, the error 
between the actual and desired trajectory became large. This means that the ANN had fitted 
a relationship between the input/output data but had no succeeded in learning the inverse-
dynamics model (Zalzala & Morris, 1996). We want that training doesn't depend on desired 
trajectory. Hence, we proposed to train the ANN with  eeqqq d  ,,,,  (see Fig. 3). 
For training of ANN, there are two possibilities: off-line or on-line. From the viewpoint of 
real time control it's better to train ANN on-line. But, from the viewpoint of initial weights 
and biases, rate of convergence and stability of learning it's better to train ANN off-line. The 
tracking performance was better if ANN was trained off-line and then ANN was used to 
improve the performance of PD feedback controller (Popescu et al., 2001). 
In this section, model based neural control structures for a robotic manipulator are 
implemented. Various neural control schemes have been studied, proposed and compared. 
The differences in these schemes are in the role that ANN is playing in the control system 

 

and the way it is trained for achieving desired trajectory tracking performance. The most 
popular control scheme is one which uses ANN to generate auxiliary joint control torque to 
compensate for the uncertainties in the computed torque based primary robotic manipulator 
controller that is designed based on a nominal robotic manipulator dynamic model.  
This is accomplished by implementing the neural controller in either a feedforward or a 
feedback configuration, and the ANN is trained on-line. Based on the computed torque 
method, a training signal is derived for neural controller. Comparison studies based on a 
robotic planar manipulator have been made for the neural controller implemented in both 
feedforward and feedback configurations. Also, a feedback error based neural controller is 
proposed. In this approach, a feedback error function is minimized and the advantage over 
Jacobian based approach is that Jacobian estimation is not required. 
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The feedforward neural controller (Fig. 3) is designed to achieve perturbation rejection for a 
computed torque control system of a robotic manipulator. The ANN output cancels out the 
uncertainties caused by inaccurate robotic manipulator’s model in the computed torque 
controller. The robot joint torques are: 
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4.2 Feedback neural control strategy 
The main difference between feedforward and feedback neural controller schemes is that the 
joint variables used in the ANN inputs and the computed torque controller are either the 
desired values  tqd  or the actual values  tq . The ANN inputs can be either  tqd ,  tqd , 

 tqd , or  tq ,  tq ,  tq , or the time-delayed values  tqd ,  1tqd ,  2tqd , or  tq , 
 1tq ,  2tq . Delay time is chosen as the sampling period of the controller. In 

simulations the ANN performs better when time-delayed joint values are used instead of the 
velocity and acceleration values calculated from finite difference approximations based on 
samples of  tq . 
For feedback neural controller (Fig. 4) the robotic manipulator joint torques are: 
 

    qqHTqJT b ,ˆˆ  . (35)
 
The three-layer feedforward neural network is used as the compensator. It is composed of 
an input layer (6 neurons), a nonlinear hidden layer, and a linear output layer (2 neurons). 
The weight updating law minimizes the objective function J which is a quadratic function of 
the training signal u: 
 

 J =  uuT

2
1 . (36)

 
For simplicity, we use   for f  or b . Differentiating equation (36) and making use of (32) 
yields the gradient of J  as follows: 
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Fig. 4. The structure of the feedback neural controller 
 

 

The backpropagation update rule for the weights with a momentum term is: 
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where   is the learning rate and   is the momentum coefficient. 

 
4.3 Feedback error based neural control strategy 
In this approach, a feedback error function is minimized and the advantage over Jacobian 
based approach is that Jacobian estimation is not required. The inputs to the neural 
controller (Fig. 5) are the required trajectories  tqd ,  tqd ,  tqd . The compensating signals 
from ANN, p , v , a , are added to the desired trajectories.  
The control law is: 
 

      HeKeKqJT pPvVad
ˆˆ   . (39)

 
Combining (39) with dynamic equation of robotic manipulator yields: 
 

     HqJJeKeKeu PV
~~ˆ 1  , (40)

 
where  pPvVa KK  . Ideally, at u = 0, the ideal value of   is: 
 

  HqJJ ~~ˆ 1    . (41)
 
The error function u is minimized and objective function is the same – see expression (36).  
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The gradient of  J  is: 
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The backpropagation updating rule for the weights with momentum term is: 
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5. Simulation results and comparisons 
 

In order to test the proposed adaptive and neural control strategies, the control of the simple 
planar robotic manipulator with two revolute joints shown in Fig. 6 was considered. 
The elements of the dynamic equation (1) for this robotic manipulator with electrical motor 
dynamics are (Selişteanu et al., 2001; Popescu et al., 2008): 
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with 1m  - mass of link 1, pmmm  202 , 20m - mass of link 2, pm  - mass of payload, 1l  - 
length of link 1, 2l  - length of link 2,   2,1,cos  iqc ii ,   2,1,sin  iqs ii ,  2112 cos qqc  , 

 2112 sin qqs  , 2,1, iJ i  - moments of inertia for electrical motor i, 2,1, in i  - factor of 
reduction gear i, 2,1, ivi - viscous friction for joint i, 2,1, iC i  - Coulomb friction for joint i. 
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For simulation and comparisons, the planar robot manipulator with two revolute joints (1), 
(44)-(47) is used. The simulation model parameters are (SI units): 101 m , 2m  consists of  
mass of link 2, 5.220 m , and mass of payload pm , 5.0,1 21  ll , link lengths. 
The robot manipulator starts at position  0,0 21  qq , and the control objective is to track 
the desired trajectory given by: 
 

 tq d  4,0sin4.01 ,  tq d  5,0sin5.02 . (48)
 
In order to test the performance and to analyze the behaviour of the control strategies, 
several numerical simulations were performed. We considered three basic simulation cases: 
 
1) When the model of robot manipulator is known, the use of the computed-torque method 
is recommended. The equations (4), (5) are used and a simulation has been done for the 
tuning parameters 15,6,50,50 2121  vvpp KKKK  (matrices pK , vK  of diagonal form). 

The time evolution of tracking errors    Tdd
T qqqqeee 221121   is presented in Fig. 7. 

 
2) The computed-torque method provides good results when the model is exactly known. If 
parametric uncertainties occur, an adaptive control method can be used. Let's consider that 
the uncertain parameters are the viscous friction coefficients, the Coulomb friction 
coefficients and the load mass. Therefore we have:  Tp CvCvm 2211 . The direct 
adaptive control law (9), (10), (14) is implemented with the design parameters 

,501 pK ,502 pK  ,61 vK  ,152 vK  and the diagonal matrix   15,5,1   iiiii . The 
results are presented in Fig. 8. 

We can see that even if the estimated parameters  Tp CvCvm 2211
ˆˆˆˆˆˆ   are used, the 

evolution of tracking errors remains good.  
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Fig. 7. Tracking errors – the computed-torque case 
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The gradient of  J  is: 
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The backpropagation updating rule for the weights with momentum term is: 
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The imposed trajectories are preserved in the presence of the parametric uncertainties. 
Another simulation is done for the indirect adaptive control law (28)-(30), which is 
implemented with the parameters  ,501 pK ,502 pK  ,61 vK  ,152 vK  5f  and the 
diagonal matrix     15,0 5,1   iiiii . The estimated parameters have a fast convergence 
to their actual ("true") values. The evolution of tracking errors is illustrated in Fig. 9. 
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Fig. 8. Simulation results – direct adaptive control law 
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Fig. 9. Tracking errors – the indirect adaptive controller 

 

3) The neural control strategies were implemented. For feedforward neural control law and 
for feedback neural controller (with the neural network structure of the form 6 x 10 x 2), 
with update backpropagation rule (38), the time evolution of the tracking errors is presented 
in Fig. 10 and Fig. 11, respectively.  
Also, for the feedback error based neural control law (with the neural network structure of 
the form 6 x 9 x 2), and with the update backpropagation rule (43), the time profiles of the 
tracking errors are depicted in Fig. 12. 
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Fig. 10. Tracking errors – the feedforward neural control scheme 
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Fig. 11. Simulation results – the feedback neural controller  
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Fig. 10. Tracking errors – the feedforward neural control scheme 
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Fig. 11. Simulation results – the feedback neural controller  
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The comparisons between the control strategies can be done by visualization of tracking 
errors, but accurate comparisons can be done by considering a criterion based on averaged 
square tracking errors – see (Whitcomb et al., 1991; Popescu et al., 2008): 
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where ST  is the total simulation time. 
The values of 1I  and 2I , computed for the studied control strategies (manipulator with two 
revolute joints), and for numerous simulations (including PD control law and non-model 
based neural controllers) are presented in Table 1. 
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robotic manipulator with two revolute joints were designed and implemented.  
First, the conventional computed-torque method was discussed. This control method solves 
the precision tracking problem, by using an exactly linearization of the nonlinearities of the 
manipulator model. The main disadvantage is the assumption of an exactly known dynamic 
model. If the model is imprecise known, it is necessary to design adaptive and/or neural 
control strategies. 
Direct and indirect adaptive controllers have been studied and implemented in order to 
preserve the tracking performances when parameter uncertainties occur. From the 
simulation point of view, it can be noticed that the evolution of tracking errors remains 
good, even if the estimated parameters are used in the control law. 
Also, three neural based control strategies were developed: a feedforward neural controller, 
a feedback neural control scheme, and a feedback error based neural controller. The 
simulations showed that the proposed neural controllers obtain results comparable to those 
achieved using adaptive control strategies. If a classical (PD or computed-torque) controller 
already controls a manipulator the advantage of proposed neural structures is that extension 
to a neural controller for performances improvement is easy. 
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